首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptides are known to have the ability of modulating the activity of important regulatory cellular systems. One of them--thyroliberin, i.e. thyreotropin-releasing hormone (TRH), causes changes in the membrane structure and morphology of rat erythrocytes, as well as activates retractive activity of lymphatic vessels in ultra low concentrations (10(-10) to 10(-16) mol/l). In this study we used an electron spin resonance (ESR) method to explore the effect of TRH in a wide range of concentrations (10(-4) to 10(-18) mol/l) on thermo-induced structural transitions and microviscosity of lipid bilayer of the endoplasmic reticulum membrane of mice (C57 bI) liver cells. Two stable free radicals were used as paramagnetic probes: 2,2,6,6-tetramethil-4-capryolyl-1-oxyl and 16-doxyl-stearic acid, that are localized in superficial and deep layers of the membrane respectively. TRH caused a statistically significant change (p < 0.001) in microviscosity of the membrane surface layer. The largest effect (up to 30% decrease) was observed at TRH concentrations of 10(-10) and 10(-16) mol/l. It was also demonstrated that an addition of 10(-4), 10(-10) and 10(-16) mol/l of TRH decreases effective activation energy and temperature (by several degrees) of the thermo-induced structural transitions. The observed changes in the parameters of the membrane surface layer induced by TRH may be essential for its physiological activity, because of the obtained negative correlation (r = 0.99; p < 0.001) between the membrane microviscosity and frequency of lymphatic vessels' contraction. Complex changes in the structure of deep hydrophobic layer of the membrane caused by TRH were observed in this study as well. Higher concentrations of TRH (10(-4) and 10(-10) mol/l) produced results that were similar to the effect of TRH on the superficial lipid layer of the membrane, whereas the effect of ultra low TRH concentration (10(-16) mol/l) was reversed for microviscosity, number and activation energy of structural transitions in contrast with the case of surface layer. The results of this study suggest presence of a nonspecific factor in the effect of TRH on structural characteristics of the lipid component of biological membranes. It is possible, that the change of structural properties of biological membranes may be a part of the mechanism of TRH action at ultra low concentrations.  相似文献   

2.
The aim of the present work was to study by ESR-spin-probe technique the effect of the natural antioxidant alpha-tocopherol (alpha-tp) in vitro on the structural parameters (microviscosity, order parameter) of endoplasmic reticulum membranes of the mice liver cells starting from the concentration of 10(-3) mol/l and down to the dilution of 10(-25) mol/l. The stable nitroxyl radicals 16-doxylstearic acid (with the deep localization depth of 20 A) and 5-doxylstearic acid (with the surface localization depth of 8 A) were used as spin probes. It has been shown that alpha-tp causes the increase in microviscosity of the deep lipid bilayer regions and in rigidity of the surface ones at the certain concentrations. The concentration curves obtained have the polymodal shapes being typical of the effects of substances at ultra low doses. Using 16-doxylstearic acid it is detected the increase in the number of thermoinduced structural transitions and appearance of much more high-cooperative ones, as well as the increase in their effective activation energy with the rise of temperature at the supplement of different alpha-tp doses.  相似文献   

3.
The effect of alpha-tocopherol (alpha-tp) prepared in solvents of different polarity in a wide range of concentrations (10(-4) M - 10(-25) M) on lipid phase structural characteristics of microsomal membranes isolated from mouse liver cells has been investigated in vitro. Structural changes in membranes were detected on a Bruker-200D ESR-spectrometer (Germany) by the method of spin probes. Changes in the rigidity of surface lipid bilayer regions (8 A) and microviscosity of deep membrane layers (20 A) were studied using the stable nitroxyl radicals 5- and 16-doxylstearic acids, correspondingly. As a result, nonlinear multimodal dose dependences were obtained. It was demonstrated that the physiological (10(-4) M - 10(-9) M) and ultralow doses of alpha-tocopherol up to "apparent" concentrations (10(-11) M - 10(-25) M) increased the rigidity of surface lipid bilayer regions and microviscosity in the depth of membrane. Additionally, these doses of alpha-tp induced an increase in the number of thermoinduced structural transitions in deep lipid bilayer regions. The effect at "apparent" concentrations (< 10(-18) M) has only been observed in polar alpha-tocopherol solutions. The results obtained are statistically reliable with a significance level of 95%.  相似文献   

4.
This paper deals with microviscosity parameters and thermoinduced structural transitions in the lipids of smooth and heavy rough endoplasmic reticulum membranes isolated from Krebs II ascites cells incubated with the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate. The phorbol ester was found to bring about a threefold increase in the microviscosity of the lipids in heavy rough membranes. Spin probe I (2,2,6,6-tetrahydro-4-capryloyl-oxypiperidine-1-oxyl), localized in the surface layer of the membrane lipids, gave results which indicate an increased number of thermoinduced structural transitions in the smooth membranes in the treated cells due to the transitions occurring at relatively low temperature and a decreased number of such transitions in the heavy rough fraction especially at high temperature. For 5,6-benzo-2,2,4,4-tetramethyl-1,2,3,4-tetrahydro-gamma-carboline-oxyl, probe II, mainly distributed in the annular lipids, a decrease in the number of low temperature transitions in the smooth fraction was observed, while an increase occurred in the heavy rough one. The results obtained are discussed in terms of the effect of phorbol esters as promoters of tumor progression.  相似文献   

5.
Summary This paper concerns the estimation of microviscosity parameters in smooth, light rough and heavy rough endoplasmic reticulum subfractions isolated from L-929 cells. Electron spin resonance using three probes was utilized in order to make estimations of rotational correlation times. The highest microviscosity was found in the smooth fraction. The lipid bilayer is less viscous and the annular one more rigid in heavy rough compared to light rough membranes. The individual membrane subfractions differ with regard to their portrait of thermoinduced structural transitions. The highest number of such transitions was detected in smooth membranes. There were no low-temperature transitions (relative to physiological temperature) or common thermoinduced structural rearrangements of the lipids in the heavy rough subfraction, a membrane fraction characteristic of transformed cells. The results show that each membrane subfraction is characterized by an intrinsic series of thermoinduced structural transitions, which, in combination with an estimation of microviscosity, yields a portrait of the structural state of the membrane lipids.  相似文献   

6.
The changes in microviscosity of the lipid phase of microsomal membranes under microsomal modification in vivo and in vitro were studied. It was shown that in intact microsome lipids there occur five thermo-induced structural transitions within the temperature range of 5--50 degrees. Delipidation of microsomes results in a shift in structural transitions temperature. Based on the literary and own data it was assumed that the breaks on the Arrhenius plots for glucose-6-phosphatase (EC 3.1.3.9) activity are due to phase-structural changes of microsomal lipids.  相似文献   

7.
The effect of synthetic anti-oxidant potassium phenosan (PP, potassium salt of β-(4-hydroxy-3,5-ditretbutil-phenyl)-propionic acid) on the structural state of the surface (8 Å) and deep (20–22 Å) lipid regions of plasma membranes of mice liver cells was studied by spin probes method in vitro in a wide range of concentrations (10?5–10?21 M). Two stable free radicals, 5- and 16-doxyl-stearic acids (C5 and C16), were used as spin probes. The nonlinear polymodal dose-effect dependences were obtained for parameters that characterize the microviscosity of the lipid bilayer (τc) in the site of localization of the probe C16, and the order parameter (S), which characterizes the stiffness of the surface layers of lipids in the site of localization of the probe C5. Statistically a reliable increase was observed for parameter τc after addition of PP at concentrations 10?5–10?7 M and 10?18–10?19 M, and for parameter S after addition of PP at concentrations 10?6–10?7 M and 10?13–10?15 M. Peaks on both dose-effect curves were separated by the intervals of concentrations where PP had no effect on the studied physico-chemical characteristics of biomembranes. For PP concentrations which caused maximal changes in τc and S, we investigated thermal dependence of these parameters and determined the thermally induced structural transitions. Comparing with control, ultra-low doses of PP (10?13–10?15 M) and (10?18–10?19 M) caused an appearance of additional thermally induced structural transition in the surface and deep regions of plasma membrane lipids. The possible role of the interaction of PP molecules with specific binding sites on plasma membranes and formation of nanoparticles of PP in very dilute aqueous solutions are discussed.  相似文献   

8.
By means of weak-bound spin probes--stable iminoxyl free radicals differing in the level of hydrophobity there were studied thermoinduced structural transitions in the membranes of cell organells of animal liver after intraperitoneal injection of antioxidants and in the course of malignant growth, and in the nuclear membranes of Ehrlich ascite carcinoma as well. It has been found that during the growth of Ehrlich ascite carcinoma changes in rotationary mobility of probes in cell nuclei isolated from the liver of tumour-carrying animal are similar to the changes observed after antiocidants injection. A different pattern is observed in tumour cells. The membranes of ascite cell nuclei are characterized by a weak dependence of tau c on temperature for both probes. Within the temperature range studied no characteristic structural transitions proceeding in the nuclei of intact animals are observed.  相似文献   

9.
The erythrocyte ghosts were irradiated with doses of 4 x 10(-3) Gy-10(3) Gy. Changes in the membrane lipid microviscosity, membrane proteins' structural mobility, membrane surface potential and intensity of the lipid peroxidation processes were determined. It has been established that the features of membrane structural changes are characterised, by polyphase changes of examined parameters.  相似文献   

10.
Rates of thermoinduced conformational transitions of reaction center (RC) complexes providing effective electron transport were studied in chromatophores and isolated RC preparations of various photosynthesizing purple bacteria using methods of fast freezing and laser-induced temperature jump. Reactions of electron transfer from the primary to secondary quinone acceptors and from the multiheme cytochrome c subunit to photoactive bacteriochlorophyll dimer were used as probes of electron transport efficiency. The thermoinduced transition of the acceptor complex to the conformational state facilitating electron transfer to the secondary quinone acceptor was studied. It was shown that neither the characteristic time of the thermoinduced transition within the temperature range 233-253 K nor the characteristic time of spontaneous decay of this state at 253 K exceeded several tens of milliseconds. In contrast to the quinone complex, the thermoinduced transition of the macromolecular RC complex to the state providing effective electron transport from the multiheme cytochrome c to the photoactive bacteriochlorophyll dimer within the temperature range 220-280 K accounts for tens of seconds. This transition is thought to be mediated by large-scale conformational dynamics of the macromolecular RC complex.  相似文献   

11.
The influence of cyclic GMP on the structural state of photoreceptor membranes was studied. The spin probe technique was used to obtain the dependences of microviscosity of lipid domains of membranes on cGMP concentration. It was shown that microviscosity of 5-doxylsteraric acid environment in rod outer segment, disc and plasma mambranes changed at concentrations of 2.10(7); 5.10(-6) and 6.10(-6). Non-cyclic GMP was ineffective. The ultrasound treatment of membraneous samples resulted on disappearance of the structural changes.  相似文献   

12.
The action of 12-O-tetradecanoyl-13-acetate (TPA) in vitro in a wide range of concentration from 10(-3) mol/l down to ultra-low doses 10(-23) mol/l and dilution 10(-24) mol/l on the microsome membranes isolated from tumor--Ehrlich ascite carcinoma (EAC) has been studied by ESR-method using two spin probes: 5- and 16-doxyl stearates (5- and 16-DS) localized in the different regions of lipid bilayer. From the ESR spectra obtained it was calculated the following parameters: an order of the long axis 5-DS (S) related to order of the fatty acids chains in the lipid bilayer; two rotation correlation times (Tc1 and Tc2) of 16-DC to estimate a microviscosity value and structural-sensitive ones. It was found the stage changes of all these parameters (increase and decrease) as compared with control level (the membranes untreated by TPA) depending on TPA concentration into the range of 10(-3)-10(-24) mol/l; in particular, the most significant shape changes of structural-sensitive parameters have been observed at TPA doses below 10(-16) mol/l. It is concluded that tumor membranes are very sensitive to TPA action in vitro in a wide range of concentration included ultra-low doses.  相似文献   

13.
A new chemical procedure is described for preparing labelled GM1 molecular species, carrying as acyl moiety pyrene-decanoic acid, 5-doxyl-stearic acid and 16-doxyl-stearic acid. It makes use of a mixed anhydride formed by ethylchloroformate and the labelled acyl chain, as the reagent for N-acylation of a deacetylated, deacylated GM1 ganglioside, which is prepared by alkaline hydrolysis of natural GM1. The reaction performed with a unitary GM1 derivative/mixed anhydride molar ratio, occurs with a yield of above 40%. The labelled deacetylated GM1 molecular species are then N-acetylated by means of acetic anhydride with quantitative yield. The chemical process of insertion of labelled fatty acid and reconstitution of GM1 ganglioside has been confirmed by GLC-MS and NMR analyses. Fluorescence and electron spin resonance experiments indicate that the labelled gangliosides behave similarly to natural GM1, in both the aggregation properties and the capability to be transferred from micelles to vesicular dispersions of phospholipids.  相似文献   

14.
The effect of the natural antioxidant alpha-tocopherol in a broad concentration range (10(-4) - 10(-25) M) on the viscosity characteristics and thermally induced structural transitions of a lipid bilayer of plasma membranes of murine hepatocytes in vitro has been studied. Changes in the rigidity of surface (approximately Abb) of the lipid bilayer were measured on a Bruker EMX EPR spectrometer (Germany) by the method of spin probes. Stable nitroxyl radicals of 5- and 16-doxylstearic acid, localized at different depth in the membrane served as spin probes. It was shown that the concentration dependence of the effect of alpha-tocopherol is linear and polymodal with three statistically significant increases in three ranges of its concentration: (1) in the range of traditional physiological concentrations 10(-4)-10(-9) M, (2) in the range of superlow doses 10(-9) - 10(-17) M, and (3) in the range of "imaginary" concentrations 10(-17) - 10(-25) M. The mechanisms of action of alpha-tocopherol in each of the three ranges are discussed. When studying the temperature dependences of viscous characteristics, a new thermally induced structural transition in the range of "physiological" temperatures 309-313 K for those alpha-tocopherol concentrations (including superlow ones) to which the maxima on the dose dependence curves at constant temperature of 293 K corresponded.  相似文献   

15.
A series of thyrotropin-releasing hormone (TRH) analogs in which the pyroglutamic acid residue was replaced by (S)-2-oxoimidazolidine-4-carboxylic acid (Oic-OH) and the related derivatives was prepared, and the central nervous system (CNS) actions were examined. Of these, 1-benzyl-Oic-His-Pro-NH2 (2c) showed the most potent activities, which were 1.5-8 times greater than those of TRH. Moreover, the thyrotropin (TSH)-releasing activity of 2c was about 1/16 times weaker than that of TRH.  相似文献   

16.
Electron spin resonance (ESR) spectroscopy with nitroxide spin probes was used as a method to probe the liposome microenvironments. The effective microviscosities have been determined from the calibration of the ESR spectra of the probes in solvent mixtures of known viscosities. In the first time, by measuring ESR order parameter (S) and correlation time (tau(c)) of stearic spin probes, we have been able to quantify the value of effective microviscosity at different depths inside the liposome membrane. At room temperature, local microviscosities measured in dimyristoyl-l-alpha phosphatidylcholine (DMPC) liposome membrane at the different depths of 7.8, 16.95, and 27.7 A were 222.53, 64.09, and 62.56 cP, respectively. In the gel state (10 degrees C), those microviscosity values increased to 472.56, 370.61, and 243.37 cP. In a second time, we have applied this technique to determine the modifications in membrane microviscosity induced by 2,6-diisopropyl phenol (propofol; PPF), an anaesthetic agent extensively used in clinical practice. Propofol is characterized by a unique phenolic structure, absent in the other conventional anaesthetics. Indeed, given its lipophilic property, propofol is presumed to penetrate into and interact with membrane lipids and hence to induce changes in membrane fluidity. Incorporation of propofol into dimyristoyl-l-alpha phosphatidylcholine liposomes above the phase-transition temperature (23.9 degrees C) did not change microviscosity. At 10 degrees C, an increase of propofol concentration from 0 to 1.0 x 10(-2) M for a constant lipid concentration mainly induced a decrease in microviscosity. This fluidity effect of propofol has been qualitatively confirmed using merocyanine 540 (MC540) as lipid packing probe. Above 10(-2) M propofol, no further decrease in microviscosity was observed, and the microviscosity at the studied depths (7.8, 16.95, and 27.7 A) amounted 260.21, 123.87, and 102.27 cP, respectively. The concentration 10(-2) M was identified as the saturation limit of propofol in dimyristoyl-l-alpha phosphatidylcholine liposomes.  相似文献   

17.
Alpha-tocopherol level and fluidity were studied in the neuronal membrane of rat brain after exhaustive exercise. The order parameter, 5-doxyl-stearic acid (5-DS), which is utilized for assessing the fluidity of the lipid bilayer closer to the hydrophilic face of the membrane, decreased in the pons-medulla oblongata, and the motion parameter, 16-doxyl-stearic acid (16-DS) for the core of the lipid bilayer, decreased in the cortex, hippocampus, hypothalamus and striatum, whereas it increased in the cerebellum after exercise. The w/s ratio of n-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl)-maleimido (maleimido-TEMPO) for the conformation of SH-protein also decreased in the hippocampus and midbrain after exercise. These changes were not observed in alpha-tocopheryl acetate supplemented rats after exercise. Although the levels of 5-DS, 16-DS and maleimido-TEMPO were affected by alpha-tocopheryl acetate in rat neuronal membranes, fluidity changes were reversible with exercise.  相似文献   

18.
Thyrotropin-R eleasing hormone (TRH)-degrading pyroglutamyl peptidase I(PGP I) and prolyl endopeptidase (PE) activities have been demonstrated in rat insulinoma RINm 5F cell line. These two enzymes catalyze the conversion of TRH to Histydyl-Proline-Diketopiperazine and to acid TRH respectively.After cell fractionation, we found all the PGP I and PE activities in the cytosolic fraction. The membranebound PGP II activity is not detectable in the RINm 5F cells. Further investigations on these two cytosolic enzymes show that pyroglutamyl- and proline-containing peptides are inhibitors of each TRH-degrading enzyme.Gelfiltration chromatography on Sephadex G100 shows that PGP I and PE activity have an apparent molecular mass of about 18 kDa and 57 kDa, respectively. Kinetic analysis with TRH as substrate, gives a Km of 44 µM and 235 µM, and a Vmax of 1.49 and 8.80 pmoUmin/µg protein for PGP I and PE, respectively. Immunoreactive TRH, His-Pro-Diketopiperazine and acid TRH levels in the cell line extracts are 2.2 ± 0.9, 22.5 ± 11.1 and 28.7 ± 14.6pg/106 cells, respectively. When cells have been incubated for 2 to 72 hours with a P. E. inhibitor (Z-Gly-Pro-CHN2) at 5 × 10–7M, both cell PGP I and PE activities are inhibited. No change in the cellular content of immunoreactive TRH, His-Pro-Diketopiperazine and acid TRH have been observed in treated cells.These data suggest that TRH is not degraded by cytosolic, unspecific PGP I and PE enzymes in RINm 5F. The finding that these cells contain 10 and 13 times more His-Pro-Diketopiperazine and acid TRH than TRH may be an indirect evidence for the existence of another precursor than TRH for these two peptides or of the possibility that TRH can be degraded by other peptidases.Abbreviations TRH Thyrotropin-Releasing Hormone or Thyroliberin - His-Pro-DKP Histidyl-ProlineDiketopiperazine - TRH-OH acid TRH or deamidated TRH - LH-RH Luteinizing Hormone-Releasing Hormone - Z-Gly-Pro-CHN2 N-benzyloxycarboxyl-Gly-Pro-diazomethylketone - PGP Pyroglutamyl Peptidase, PGP I (EC 3.4.19.3) and PGP II (EC 3.4.19.-) - PE Prolyl Endopeptidase or post-proline cleaving enzyme (EC 3.4.21.26)  相似文献   

19.
The effect of thyrotrophin-releasing hormone (TRH, 10(-7) M) on luteinizing hormone (LH) release from rat anterior pituitary cells was examined using organ and primary cell culture. The addition of TRH to the culture medium resulted in a slightly enhanced release of LH from the cultured pituitary tissues. However, the amount of LH release stimulated by TRH was not greater than that produced by luteinizing hormone-releasing hormone (LH-RH, 10(-7) M). Actinomycin D (2 X 10(-5) M) and cycloheximide (10(-4) M) had an inhibitory effect on the action of TRH on LH release. The inability of TRH to elicit gonadotrophin release from the anterior pituitary glands in vivo may partly be due to physiological inhibition of its action by other hypothalamic factor(s).  相似文献   

20.
Methods of laser-induced temperature jumps and fast freezing were used for testing the rates of thermoinduced conformational transitions of reaction center (RC) complexes in chromatophores and isolated RC preparations of various photosynthesizing purple bacteria. An electron transfer reaction from primary to secondary quinone acceptors was used as a probe of electron transport efficiency. The thermoinduced transition of the acceptor complex to the conformational state facilitating electron transfer to the secondary quinone acceptor was studied. To investigate the dynamics of spontaneous decay of the RC state induced by the thermal pulse, the thermal pulse was applied either before or during photoinduced activation of electron transport reactions in the RC acceptor complex. The maximum effect was observed if the thermal pulse was applied against the background of steady-state photoactivation of the RC. It was shown that neither the characteristic time of the thermoinduced transition within the temperature range 233-253 K nor the characteristic time of spontaneous decay of this state at 253 K exceeded several tens of milliseconds. Independent support of the estimates was obtained from experiments with varied cooling rates of the samples tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号