首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipoic acid is a coenzyme that is essential for the activity of enzyme complexes such as those of pyruvate dehydrogenase and glycine decarboxylase. We report here the isolation and characterization of LIP1 cDNA for lipoic acid synthase of Arabidopsis. The Arabidopsis LIP1 cDNA was isolated using an expressed sequence tag homologous to the lipoic acid synthase of Escherichia coli. This cDNA was shown to code for Arabidopsis lipoic acid synthase by its ability to complement a lipA mutant of E. coli defective in lipoic acid synthase. DNA-sequence analysis of the LIP1 cDNA revealed an open reading frame predicting a protein of 374 amino acids. Comparisons of the deduced amino acid sequence with those of E. coli and yeast lipoic acid synthase homologs showed a high degree of sequence similarity and the presence of a leader sequence presumably required for import into the mitochondria. Southern-hybridization analysis suggested that LIP1 is a single-copy gene in Arabidopsis. Western analysis with an antibody against lipoic acid synthase demonstrated that this enzyme is located in the mitochondrial compartment in Arabidopsis cells as a 43-kD polypeptide.  相似文献   

2.
Plastoquinone and tocopherols are the two major quinone compounds in higher plant chloroplasts and are synthesized by a common pathway. In previous studies we characterized two loci in Arabidopsis defining key steps of this biosynthetic pathway. Mutation of the PDS1 locus disrupts the activity of p-hydroxyphenylpyruvate dioxygenase (HPPDase), the first committed step in the synthesis of both plastoquinone and tocopherols in plants. Although plants homozygous for the pds1 mutation could be rescued by growth in the presence of homogentisic acid, the product of HPPDase, we were unable to determine if the mutation directly or indirectly disrupted HPPDase activity. This paper reports the isolation of a cDNA, pHPPD, encoding Arabidopsis HPPDase and its functional characterization by expression in both plants and Escherichia coli. pHPPD encodes a 50-kD polypeptide with homology to previously identified HPPDases, including 37 highly conserved amino acid residues clustered in the carboxyl region of the protein. Expression of pHPPD in E. coli catalyzes the accumulation of homogentisic acid, indicating that it encodes a functional HPPDase enzyme. Mapping of pHPPD and co-segregation analysis of the pds1 mutation and the HPPD gene indicate tight linkage. Constitutive expression of pHPPD in a pds1 mutant background complements this mutation. Finally, comparison of the HPPD genomic sequences from wild type and pds1 identified a 17-bp deletion in the pds1 allele that results in deletion of the carboxyterminal 26 amino acids of the HPPDase protein. Together, these data conclusively demonstrate that pds1 is a mutation in the HPPDase structural gene.  相似文献   

3.
4.
A gene encoding chitinases from Aeromonas sp. No. 10S-24 was cloned into Escherichia coli DH5α using pUC19, and its nucleotides were sequenced. The chitinase gene was clustered in ORFs (open reading frame) 1 to 4, in a 8-kb fragment of DNA. ORF-1 consisted of 1608 bp encoding 535 amino acid residues, and ORF-2 consisted of 1425 bp encoding 474 amino acid residues. ORF-3 was 1617 bp long and encodes a protein consisting of 538 amino acids. ORF-4 encodes 287 amino acids of the N-terminal region. The amino acid sequences of ORF-1 and ORF-3 share sequence homology with chitinase D from Bacillus circulans, and chitinase A and B from Streptomyces lividans. The amino acid sequence of ORF-2 shared sequence homology with chitinase II from Aeromonas sp. No. 10S-24, and chitinase from Saccharopolyspora erythraea. A region of the sequence starting from Ala-28 of the amino acid sequence of ORF-3 coincided with the N-terminal amino acid sequence of chitinase III from Aeromonas sp. No. 10S-24.  相似文献   

5.
The first member of a novel subfamily of ubiquitin-conjugating E2-proteins was cloned from a cDNA library of Arabidopsis thaliana. Genomic blots indicate that this gene family (AtUBC2) consists of two members and is distinct from AtUBC1, the only other E2 enzyme known from this species to date (M.L. Sullivan and R.D. Vierstra, Proc. Natl. Acad. Sci. USA 86 (1989) 9861-9865). The cDNA sequence of AtUBC2-1 extends over 794 bp which would encode a protein of 161 amino acids and a calculated molecular mass of 18.25 kDa. The protein encoded by AtUBC2-1 is shown to accept 125I-ubiquitin from wheat E1 enzymes, when expressed from Escherichia coli hosts as fusion protein carrying N-terminal extensions. It is deubiquitinated in the presence of lysine and, by these criteria, is considered a functional E2 enzyme.  相似文献   

6.
The gene encoding for (R)-hydroxynitrile lyase ((R)-HNL) from Linum usitatissimum has been cloned by polymerase chain reaction using 3′,5′-RACE (rapid amplification of cDNA ends). The resulting clone contained an open reading frame of 1266 bp corresponding to a protein of 422 amino acids (45.8 kDa), which shows significant homologies to zinc-dependent formaldehyde dehydrogenases and alcohol dehydrogenases from various organisms. The dimeric active enzyme was expressed in Escherichia coli as N-terminal hexa-histidine fusion protein allowing the purification of homogeneous protein in one step. The formation of inclusion bodies could be reduced using a thioreductase deficient E. coli strain as a host and performing expression of (R)-HNL at 28°C. Under these conditions recombinant (R)-HNL was obtained with a specific activity of 76 U/mg.  相似文献   

7.
A mutant of Saccharomyces cerevisiae deleted for the COQ3 gene was constructed. COQ3 encodes a 3,4-dihydroxy-5-hexaprenylbenzoate (DHHB) methyltransferase that catalyses the fourth step in the biosynthesis of ubiquinone from p-hydroxybenzoic acid. A full length cDNA encoding a homologue of DHHB-methyltransferase was cloned from an Arabidopsis thaliana cDNA library by functional complementation of a yeast coq3 deletion mutant. The Arabidopsis thaliana cDNA (AtCOQ3) was able to restore the respiration ability and ubiquinone synthesis of the mutant. The product of the 1372 bp cDNA contained 322 amino acids and had a molecular mass of 35 360 Da. The predicted amino acid sequence contained all consensus regions for S-adenosyl methionine methyltransferases and presented 26% identity with Saccharomyces cerevisiae DHHB-methyltransferase and 38% identity with the rat protein, as well as with a bacterial (Escherichia coli and Salmonella typhimurium) methyltransferase encoded by the UBIG gene. Southern analysis showed that the Arabidopsis thaliana enzyme was encoded by a single nuclear gene. The NH2-terminal part of the cDNA product contained features consistent with a putative mitochondrial transit sequence. The cDNA in Escherichia coli was overexpressed and antibodies were raised against the recombinant protein. Western blot analysis of Arabidopsis thaliana and pea protein extracts indicated that the AtCOQ3 gene product is localized within mitochondrial membranes. This result suggests that at least this step of ubiquinone synthesis takes place in mitochondria.  相似文献   

8.
A cDNA encoding the Arabidopsis thaliana uridine 5′-monophosphate (UMP)/cytidine 5′-monophosphate (CMP) kinase was isolated by complementation of a Saccharomyces cerevisiae ura6 mutant. The deduced amino acid sequence of the plant UMP/CMP kinase has 50% identity with other eukaryotic UMP/CMP kinase proteins. The cDNA was subcloned into pGEX-4T-3 and expressed as a glutathione S-transferase fusion protein in Escherichia coli. Following proteolytic digestion, the plant UMP/CMP kinase was purified and analyzed for its structural and kinetic properties. The mass, N-terminal sequence, and total amino acid composition agreed with the sequence and composition predicted from the cDNA sequence. Kinetic analysis revealed that the UMP/CMP kinase preferentially uses ATP (Michaelis constant [Km] = 29 μm when UMP is the other substrate and Km = 292 μm when CMP is the other substrate) as a phosphate donor. However, both UMP (Km = 153 μm) and CMP (Km = 266 μm) were equally acceptable as the phosphate acceptor. The optimal pH for the enzyme is 6.5. P1, P5-di(adenosine-5′) pentaphosphate was found to be a competitive inhibitor of both ATP and UMP.  相似文献   

9.
This paper presents the first example of a complete gene sequence coding for and expressing a biologically functional human tRNA methyltransferase: the hTRM1 gene product tRNA(m22G)dimethyltransferase. We isolated a human cDNA (1980 bp) made from placental mRNA coding for the full-length (659 amino acids) human TRM1 polypeptide. The sequence was fairly similar to Saccharomyces cerevisiae Trm1p, to Caenorhabditis elegans TRM1p and to open reading frames (ORFs) found in mouse and a plant (Arabidopsis thaliana) DNA. The human TRM1 gene was expressed at low temperature in Escherichia coli as a functional recombinant protein, able to catalyze the formation of dimethylguanosine in E.coli tRNA in vivo. It targeted solely position G26 in T7 transcribed spliced and unspliced human tRNATyr in vitro and in yeast trm1 mutant tRNA. Thus, the human TRM1 protein is a tRNA(m22G26)dimethyltransferase. Compared with yeast Trm1p, hTRM1p has a C-terminal protrusion of ~90 amino acids which shows similarities to a mouse protein related to RNA splicing. A deletion of these 90 C-terminal amino acids left the modification activity in vitro intact. Among point mutations in the hTRM1 gene, only those located in conserved regions of hTRM1p completely eliminated modification activity.  相似文献   

10.
A cDNA (cNPK2) that encodes a protein of 518 amino acids was isolated from a library prepared from poly(A)+ RNAs of tobacco cells in suspension culture. The N-terminal half of the predicted NPK2 protein is similar in amino acid sequence to the catalytic domains of kinases that activate mitogen-activated protein kinases (designated here MAPKKs) from various animals and to those of yeast homologs of MAPKKs. The N-terminal domain of NPK2 was produced as a fusion protein in Escherichia coli, and the purified fusion protein was found to be capable of autophosphorylation of threonine and serine residues. These results indicate that the N-terminal domain of NPK2 has activity of a serine/threonine protein kinase. Southern blot analysis showed that genomic DNAs from various plant species, including Arabidopsis thaliana and sweet potato, hybridized strongly with cNPK2, indicating that these plants also have genes that are closely related to the gene for NPK2. The structural similarity between the catalytic domain of NPK2 and those of MAPKKs and their homologs suggests that tobacco NPK2 corresponds to MAPKKs of other organisms. Given the existence of plant homologs of an MAP kinase and tobacco NPK1, which is structurally and functionally homologous to one of the activator kinases of yeast homologs of MAPKK (MAPKKKs), it seems likely that a signal transduction pathway mediated by a protein kinase cascade that is analogous to the MAP kinase cascades proposed in yeasts and animals, is also conserved in plants.  相似文献   

11.
Hydroperoxide lyase (HPL) cleaves lipid hydroperoxides to produce volatile flavor molecules and also potential signal molecules. We have characterized a gene from Arabidopsis that is homologous to a recently cloned HPL from green pepper (Capsicum annuum). The deduced protein sequence indicates that this gene encodes a cytochrome P-450 with a structure similar to that of allene oxide synthase. The gene was cloned into an expression vector and expressed in Escherichia coli to demonstrate HPL activity. Significant HPL activity was evident when 13S-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid was used as the substrate, whereas activity with 13S-hydroperoxy-9(Z),11(E)-octadecadienoic acid was approximately 10-fold lower. Analysis of headspace volatiles by gas chromatography-mass spectrometry, after addition of the substrate to E. coli extracts expressing the protein, confirmed enzyme-activity data, since cis-3-hexenal was produced by the enzymatic activity of the encoded protein, whereas hexanal production was limited. Molecular characterization of this gene indicates that it is expressed at high levels in floral tissue and is wound inducible but, unlike allene oxide synthase, it is not induced by treatment with methyl jasmonate.  相似文献   

12.
We affinity-purified an ornithine transcarbamoylase (carbamoyl phosphate:L-ornithine carbamoyltransferase; EC 2.1.3.3) 676-fold to near homogeneity from leaf tissues of Arabidopsis thaliana L. cv. Columbia. The purified OTCase protein exhibited a molecular mass of 37 kDa on SDS-PAGE gels and exhibited a pI = 6.8. A 41-kDa polypeptide was immunoprecipitated from Arabidopsis leaf poly(A)+ RNA in vitro translation products by pea OTCase antiserum. This precursor OTCase (pOTCase) is the predicted size (41 170 Da) for a polypeptide encoded by an Arabidopsis OTCase cDNA. Characteristics of N-terminal residues of the deduced amino acid sequence of this pOTCase suggest that it is a chloroplast-targeted protein. The sequences of plant OTCases suggest that they represent a distinct and evolutionarily-conserved group of OTCases. No evidence was found for OTCase isoenzymes in Arabidopsis leaf tissues. The Arabidopsis pOTCase was poorly-expressed in Escherichia coli strain TB-2, an OTCase-deficient mutant, and did not complement the mutant on arginine-minus selection medium.  相似文献   

13.
14.
Many blue-light mediated physiological responses have been studied in the fern Adiantum capillus-veneris. We have isolated genomic clones encoding sequences similar to those encoding blue-light photoreceptors (cryptochromes) in higher plants using the Arabidopsis CRY1 cDNA as a probe, and these positive clones fall into five independent groups. Using RACE procedures, we obtained full-length cDNA sequences for three of these five groups. The deduced amino acid sequences include the photolyase-homologous domain in the N-terminal half, and they also contain a C-terminal extension of about 200 amino acids in length. These structural features indicate that the genes indeed encode Adiantum cryptochromes and represent a small gene family having at least three members.  相似文献   

15.
Two kinds of truncated human c-myc proteins were produced in Escherichia coli. The human c-myc gene is composed of three exons, exons 2 and 3 having coding capacity for a protein of 439 amino acids. 252 N-terminal amino acids are encoded by exon 2, the C-terminal 187 amino acids being encoded by exon 3. One of the proteins (p42) produced in E. coli corresponds to 342 amino acids from the 98th Gln to the C-terminus, plus 21 amino acids derived from the H-ras gene at the N-terminus. The other (p23) corresponds to 155 amino acids from the 98th Gln to the 252nd Ser, plus five amino acids (Gly-Gly-Thr-Arg-Arg) at the C-terminus, plus 21 amino acids from the H-ras gene at the N-terminus. The p23 protein was produced by using cDNA in which a frame shift occurred at the boundary between exons 2 and 3. We investigated the DNA-binding activity in p42 and p23 proteins. DNA-cellulose column chromatography showed that p42 binds to DNA, whereas p23 does not. This DNA-binding activity of p42 was inhibited by antiserum prepared against p42 but not by antiserum against p23. This indicates that the DNA-binding activity of c-myc protein is localized in the portion encoded by exon 3.  相似文献   

16.
Characterization of the genes involved in the process of protein translocation is important in understanding their structure-function relationships. However, little is known about the signals that govern chlamydial gene expression and translocation. We have cloned a 1.7 kb HindIII-PstI fragment containing the secY gene of Chlamydia trachomatis. The complete nucleotide sequence reveals three open reading frames. The amino acid sequence shows highest homology with Escherichia coli proteins L15, SecY and S13, corresponding to the spc-α ribosomal protein operons. The product of the C. trachomatis secY gene is composed of 457 amino acids with a calculated molecular mass of 50 195 Daltons. Its amino acid sequence shows 27.4% and 35.7% identity to E. coli and Bacillus subtilis SecY proteins, respectively. The distribution of hydrophobic amino acids in the C. trachomatis secY gene product is suggestive of it being an integral membrane protein with ten transmembrane segments, the second, third and seventh membrane segments sharing > 45% identity with E. coli SceY. Our results suggest that despite evolutionary differences, eubacteria share a similar protein export apparatus.  相似文献   

17.
Lactobacillus reuteri strain 121 produces a unique, highly branched, soluble glucan in which the majority of the linkages are of the α-(1→4) glucosidic type. The glucan also contains α-(1→6)-linked glucosyl units and 4,6-disubstituted α-glucosyl units at the branching points. Using degenerate primers, based on the amino acid sequences of conserved regions from known glucosyltransferase (gtf) genes from lactic acid bacteria, the L. reuteri strain 121 glucosyltransferase gene (gtfA) was isolated. The gtfA open reading frame (ORF) was 5,343 bp, and it encodes a protein of 1,781 amino acids with a deduced Mr of 198,637. The deduced amino acid sequence of GTFA revealed clear similarities with other glucosyltransferases. GTFA has a relatively large variable N-terminal domain (702 amino acids) with five unique repeats and a relatively short C-terminal domain (267 amino acids). The gtfA gene was expressed in Escherichia coli, yielding an active GTFA enzyme. With respect to binding type and size distribution, the recombinant GTFA enzyme and the L. reuteri strain 121 culture supernatants synthesized identical glucan polymers. Furthermore, the deduced amino acid sequence of the gtfA ORF and the N-terminal amino acid sequence of the glucosyltransferase isolated from culture supernatants of L. reuteri strain 121 were the same. GTFA is thus responsible for the synthesis of the unique glucan polymer in L. reuteri strain 121. This is the first report on the molecular characterization of a glucosyltransferase from a Lactobacillus strain.  相似文献   

18.
The cDNA sequence for CAP160, an acidic protein previously linked with cold acclimation in spinach (Spinacia oleracea L.), was characterized and found to encode a novel acidic protein of 780 amino acids having very limited homology to a pair of Arabidopsis thaliana stress-regulated proteins, rd29A and rd29B. The lack of similarity in the structural organization of the spinach and Arabidopsis genes highlights the absence of a high degree of conservation of this cold-stress gene across taxonomic boundaries. The protein has several unique motifs that may relate to its function during cold stress. Expression of the CAP160 mRNA was increased by low-temperature exposure and water stress in a manner consistent with a probable function during stresses that involve dehydration. The coding sequences for CAP160 and CAP85, another spinach cold-stress protein, were introduced into tobacco (Nicotiana tabacum) under the control of the 35S promoter using Agrobacterium tumefaciens-based transformation. Tobacco plants expressing the proteins individually or coexpressing both proteins were evaluated for relative freezing-stress tolerance. The killing temperature for 50% of the cells of the transgenic plants was not different from that of the wild-type plants. As determined by a more sensitive time/temperature kinetic study, plants expressing the spinach proteins had slightly lower levels of electrolyte leakage than wild-type plants, indicative of a small reduction of freezing-stress injury. Clearly, the heterologous expression of two cold-stress proteins had no profound influence on stress tolerance, a result that is consistent with the quantitative nature of cold-stress-tolerance traits.  相似文献   

19.
20.
We isolated a 38 kDa ssDNA-binding protein from the unicellular cyanobacterium Synechococcus sp. strain PCC 6301 and determined its N-terminal amino acid sequence. A genomic clone encoding the 38 kDa protein was isolated by using a degenerate oligonucleotide probe based on the amino acid sequence. The nucleotide sequence and predicted amino acid sequence revealed that the 38 kDa protein is 306 amino acids long and homologous to the nuclear-encoded 370 amino acid chloroplast ribosomal protein CS1 of spinach (48% identity), therefore identifying it as ribosomal protein (r-protein) S1. Cyanobacterial and chloroplast S1 proteins differ in size from Escherichia coli r-protein S1 (557 amino acids). This provides an additional evidence that cyanobacteria are closely related to chloroplasts. The Synechococcus gene rps1 encoding S1 is located 1.1 kb downstream from psbB, which encodes the photosystem 11 P680 chlorophyll a apoprotein. An open reading frame encoding a potential protein of 168 amino acids is present between psbB and rps1 and its deduced amino acid sequence is similar to that of E. coli hypothetical 17.2 kDa protein. Northern blot analysis showed that rps1 is transcribed as a monocistronic mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号