首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: SR 57746A {1-[2-(naphth-2-yl)ethyl]-4-(3-trifluoromethylphenyl)-1,2,5,6-tetrahydropyridine hydrochloride} exhibits neurotrophic activities in vivo and in vitro. We used the rat pheochromocytoma PC12 cell line to investigate in vitro cellular changes induced by SR 57746A. A significant increase in the percentage of cells bearing neurite-like processes was obtained in cells treated by SR 57746A and nerve growth factor (NGF) compared with NGF treatment alone. SR 57746A added alone, however, had no effect on morphogenesis or on survival of cells in serum-free medium. In contrast, SR 57746A induced a "priming" effect on PC12 cells for neurite outgrowth within 6 h of addition of the protein tyrosine kinase inhibitor genistein. An increase in α-actinin content resulted from treatment with SR 57746A. Expression of NGF-mediated acetylcholinesterase and choline acetyltransferase was enhanced within 5 days by SR 57746A. The molecule also induced rapid F-actin redistribution. Within 2 min of incubation, outgrowth of F-actin-containing filopodia was clearly visible at the cell periphery, as previously shown with NGF. It is interesting that this effect of SR 57746A could be mimicked by protein tyrosine kinase inhibitors and abolished by preincubation with sodium orthovanadate, a protein tyrosine phosphatase inhibitor.  相似文献   

2.
3.
4.
NGF can regulate nitric oxide synthase (NOS) expression and nitric oxide (NO) can modulate NGF-mediated neurotrophic responses. To investigate the role of NO in NGF-activated expression of cholinergic phenotype, PC12 cells were treated with either the nonselective NOS inhibitor L-NAME (N (omega)-nitro-L-arginine methylester) or the inducible NOS selective inhibitor MIU (s-methylisothiourea), and the effect on NGF-stimulated ChAT mRNA levels and ChAT specific activity was determined. NGF increased steady-state levels of mRNA and protein for both inducible and constitutive isozymes of NOS in PC12 cells, and led to enhanced NOS activity and NO production. MIU and, to a lesser extent, L-NAME blocked neurite outgrowth in nerve growth factor (NGF)-treated PC12 cells. Both L-NAME and MIU attenuated NGF-mediated increases in choline transferase (ChAT)-specific activity and prevented the increase in expression of ChAT mRNA normally produced by NGF treatment of PC12 cells. The present study indicates that NO may be involved in the modulation of signal transduction pathways by which NGF leads to increased ChAT gene expression in PC12 cells.  相似文献   

5.
cAMP induces neurite outgrowth in the rat pheochromocytoma cell line 12 (PC12). In particular, di-butyric cAMP (db-cAMP) induces a greater number of primary processes with shorter length than the number induced by nerve growth factor (NGF). db-cAMP up- and down-regulates GTP-RhoA levels in PC12 cells in a time-dependent manner. Tat-C3 toxin stimulates neurite outgrowth, whereas lysophosphatidic acid (LPA) and constitutively active (CA)-RhoA reduce neurite outgrowth, suggesting that RhoA inactivation is essential for the neurite outgrowth from PC12 cells stimulated by cAMP. In this study, the mechanism by which RhoA is inactivated in response to cAMP was examined. db-cAMP induces phosphorylation of RhoA and augments the binding of RhoA with Rho guanine nucleotide dissociation inhibitor (GDI). Moreover, RhoA (S188D) mimicking phosphorylated RhoA induces greater neurite outgrowth than RhoA (S188A) mimicking dephosphorylated form does. Additionally, db-cAMP increases GTP-Rap1 levels, and dominant negative (DN)-Rap1 and DN-Rap-dependent RhoGAP (ARAP3) block neurite outgrowth induced by db-cAMP. DN-p190RhoGAP and the Src inhibitor PP2 suppress neurite outgrowth, whereas transfection of c-Src and p190RhoGAP cDNAs synergistically stimulate neurite outgrowth. Taken together, RhoA is inactivated by phosphorylation of itself, by p190RhoGAP which is activated by Src, and by ARAP3 which is activated by Rap1 during neurite outgrowth from PC12 cells in response to db-cAMP.  相似文献   

6.
Abstract: Nerve growth factor (NGF) and dibutyryl cyclic AMP (dbcAMP) have synergistic effects on the neurite outgrowth of rat pheochromocytoma PC12 cells. The sites of interaction between NGF and dbcAMP have been studied extensively; however, the role of Ca2+ in differentiation induced by the two agents remains unclear. To understand whether intracellular Ca2+ is involved in the differentiation induced by the two agents, PC12 cells were treated with NGF, dbcAMP, or NGF plus dbcAMP for 2 days, and then effects on neurite outgrowth, ATP-induced Ca2+ influx, and Ca2+ mobilization from intracellular Ca2+ pools were examined. NGF or dbcAMP alone enhanced neurite outgrowth and Ca2+ accumulation by nonmitochondrial Ca2+ pools or the thapsigargin (TG)-sensitive Ca2+ pool. The dbcAMP acted synergistically with NGF to increase neurite outgrowth and to enlarge the TG-sensitive Ca2+ pool. The synergistic effect occurred within the first hour of treatment with dbcAMP plus NGF. On the other hand, dbcAMP abolished NGF's ability to enhance ATP-induced influx of extracellular Ca2+. Therefore, NGF and dbcAMP induced different effects on Ca2+ signaling pathways through two different but interacting pathways. In PC12 cells pretreated with TG to deplete the TG-sensitive Ca2+ pool, the dbcAMP- or dbcAMP plus NGF-mediated neurite outgrowth was significantly inhibited, whereas NGF-mediated neurite outgrowth was not affected by TG pretreatment. Our results suggest that the intracellular nonmitochondrial Ca2+ pools were changed in the differentiation process and were necessary for the synergistic effect of NGF and dbcAMP.  相似文献   

7.
8.
Rat pheochromocytoma 12 (PC12) cells undergo neuronal differentiation in response to nerve growth factor (NGF). NGF-induced differentiation involves a number of protein kinases, including extracellular signal-regulated kinase (ERK). We studied the effect of iron on neuronal differentiation, using as model the neurite outgrowth of PC12 cells triggered by NGF when the cells are plated on collagen-coated dishes in medium containing 1% serum. The addition of iron enhanced NGF-mediated cell adhesion, spreading and neurite outgrowth. The differentiation-promoting effect of iron seems to depend on intracellular iron, since nitrilotriacetic acid (an efficient iron-uptake mediator) enhanced the response to iron. In agreement with this, intracellular, but not extracellular, iron enhanced NGF-induced neurite outgrowth in pre-spread PC12 cells, and this was correlated with increased ERK activity. Taken together, these data suggest that intracellular iron promotes NGF-stimulated differentiation of PC12 cells by increasing ERK activity.  相似文献   

9.
10.
Nerve growth factor(NGF)-mediated neurite outgrowth of PC12 pheochromocytoma cells was potentiated in medium containing high concentrations of extracellular K+. The binding of iodinated NGF to the cells was also enhanced by raising the concentration of K+ in medium up to 100 mM; the enhancement was saturated at 50 mM K+. Although the mechanism by which NGF-mediated neurite outgrowth is potentiated in high K+ medium remains to be largely unknown, high K+-induced alterations in the NGF binding are suggested to play a role in this phenomenon.  相似文献   

11.
Tests have been made of the action of the methyltransferase inhibitors 5'-S-methyl adenosine, 5'-S-(2-methyl-propyl)-adenosine, and 3-deaza- adenosine +/- L-homocysteine thiolactone, on nerve growth factor (NGF)- dependent events in the rat pheochromocytoma line PC12. Each of these agents inhibited NGF-dependent neurite outgrowth at concentrations of the order of millimolar. Slow initiation of neurite outgrowth over several days and more rapid regeneration of neurites (congruent to 1 d) were blocked, as was the priming mechanism necessary for genesis of neurites. The inhibitions were reversible in that PC12 cells maintained for several days in the presence of inhibitors grew neurites normally after washout of these agents. Other NGF-dependent responses of the PC12 line (i.e., induction of ornithine decarboxylase activity [over 4 h], enhancement of tyrosine hydroxylase phosphorylation [over 1 h], and rapid changes in cell surface morphology [30 s onward]) were inhibited by each of the agents. In contrast, corresponding epidermal growth factor-dependent responses in ornithine decarboxylase activity, phosphorylation, and cell surface morphology were not blocked, but instead either unaffected or enhanced, by the methylation inhibitors. These inhibitors did not act by blockade of binding of NGF to high- or low-affinity cell surface receptors, though they partially inhibited internalization of [125I]NGF. The inhibition of rapidly-induced NGF- dependent events and the differential inhibition of responses to NGF and epidermal growth factor imply that the methyltransferase inhibitors specifically block one of the first steps in the mechanistic pathway for NGF.  相似文献   

12.
13.
14.
15.
16.
Rho kinase (ROCK) inhibitor is a promising agent for neural injury disorders, which mechanism is associated with neurite outgrowth. However, neurite outgrowth resistance occurred when PC12 Adh cell was treated with ROCK inhibitors for a longer time. PC12 Adh cells were treated with ROCK inhibitor Y27632 or NGF for different durations. Neurite outgrowth resistance occurred when PC12 Adh cell exposed to Y27632 (33 µM) for 3 or more days, but not happen when exposed to nerve growth factor (NGF, 100 ng/mL). The gene expression in the PC12 Adh cells treated with Y27632 (33 µM) or NGF (100 ng/mL) for 2 or 4 days was assayed by gene microarray, and the reliability of the results were confirmed by real‐time RT‐PCR. Cluster analysis proved that the gene expression profile of PC12 Adh cell treated with Y27632 for 4 days was different from that treated with Y27632 for 2 days and those treated with NGF for 2 and 4 days, respectively. Pathway analysis hinted that the neurite outgrowth resistance could be associated with up‐regulation of inflammatory pathways, especially rno04610 (complement and coagulation cascades), and down‐regulation of cell cycle pathways, especially rno04110.  相似文献   

17.
Nerve growth factor (NGF) has previously been shown to increase the rate of adhesion of PC-12 pheochromocytoma cells to cell culture dishes. This increase in the rate of adhesion was postulated to be important in NGF-mediated neurite outgrowth. We now report that epidermal growth factor (EGF) is also able to increase the rate of adhesion of PC-12 cells to cell culture dishes, but does not elicit neurite outgrowth. The dose-response curve for EGF is bell-shaped, in contrast to the more classically shaped dose-response curve obtained with NGF. Tetradecanoyl-phorbol-acetate (TPA), a potent tumor promoter, blocks the EGF-induced increase in adhesion rate of PC-12 cells, but does not alter the NGF-induced increase in adhesion rate. TPA shifts the EGF binding curve to the right for PC-12 cells, but does not alter maximal EGF binding at saturating concentrations of EGF. The binding of NGF to PC-12 cells is not affected by TPA. NGF-induced neurite formation by PC-12 cells is unaffected by TPA, in contrast to the previously reported delay of neurite outgrowth of serum-deprived neuroblastoma cells and NGF-exposed chick embryonic ganglia cells. NGF and EGF both cause a decrease in the number of short microvilli and an increase in the number of long microvilli on PC-12 cells. TPA blocks the decrease in the number of short microvilli in EGF-treated cells, but not in NGF-treated cells. Long microvilli formation is blocked by TPA in both conditions, suggesting the latter are not involved in the increased adhesion rates.  相似文献   

18.
Nerve growth factor (NGF) induced the activities of acetylcholinesterase (AChE) and Na+,K+-ATPase concomitant with neurite outgrowth in PC12h cells, while dibutyryl cyclic AMP (DBcAMP) caused the induction of AChE activity and neurite outgrowth but not Na+,K+-ATPase activity. A nonproteinaceous extract isolated from the inflamed skin of rabbits inoculated with vaccinia virus (Neurotropin) induced neurite outgrowth and cell surface change similar to NGF without affecting AChE activity. The results suggest that NGF, DBcAMP and Neurotropin act on PC12h cells through different mechanisms.  相似文献   

19.
LAMTOR2 (p14), a part of the larger LAMTOR/Ragulator complex, plays a crucial role in EGF-dependent activation of p42/44 mitogen-activated protein kinases (MAPK, ERK1/2). In this study, we investigated the role of LAMTOR2 in nerve growth factor (NGF)-mediated neuronal differentiation. Stimulation of PC12 (rat adrenal pheochromocytoma) cells with NGF is known to activate the MAPK. Pharmacological inhibition of MEK1 as well as siRNA–mediated knockdown of both p42 and p44 MAPK resulted in inhibition of neurite outgrowth. Contrary to expectations, siRNA–mediated knockdown of LAMTOR2 effectively augmented neurite formation and neurite length of PC12 cells. Ectopic expression of a siRNA-resistant LAMTOR2 ortholog reversed this phenotype back to wildtype levels, ruling out nonspecific off-target effects of this LAMTOR2 siRNA approach. Mechanistically, LAMTOR2 siRNA treatment significantly enhanced NGF-dependent MAPK activity, and this effect again was reversed upon expression of the siRNA-resistant LAMTOR2 ortholog. Studies of intracellular trafficking of the NGF receptor TrkA revealed a rapid colocalization with early endosomes, which was modulated by LAMTOR2 siRNA. Inhibition of LAMTOR2 and concomitant destabilization of the remaining members of the LAMTOR complex apparently leads to a faster release of the TrkA/MAPK signaling module and nuclear increase of activated MAPK. These results suggest a modulatory role of the MEK1 adapter protein LAMTOR2 in NGF-mediated MAPK activation required for induction of neurite outgrowth in PC12 cells.  相似文献   

20.
Adrenal medullary cells were cultured in a serum-free medium from fetal, neonatal (calves), and adult bovine animals. Neurite outgrowth in response to nerve growth factor (NGF) was observed in cells obtained from fetuses up to a gestational age of 3 months but not in cultures from older animals. The tyrosine hydroxylase (TH) specific activity was found to depend on the cell density and corresponded, at a density of 2 × 105 cells/cm2, to the specific activity found in vivo. The TH specific activity increased about sevenfold from fetuses to adult animals. Administration of NGF in vitro caused an increase of the TH specific activity in fetal cells by up to 140% and in calf cells typically by 70–100%. Cultures from adult animals showed no significant TH increase in response to NGF. Scatchard analysis and kinetic studies of the NGF binding at 0°C to intact adrenal medullary cells cultured from calves or from adult bovine animals revealed the presence of only one class of receptors, having a dissociation constant (KD) of 1 × 10 9, M. There are 16,000 binding sites per cell. The affinity of the reeptors in vivo (determined in crude membrane preparations) did not alter during development, whereas the receptor density decreased with increasing fetal age, but was the same for calves and adults. Whereas the loss of NGF-mediated fiber outgrowth during development might be related to the reduction of receptor density, the disappearance of the NGF-mediated TH induction does not correlate with changes in the binding characteristics of NGF to the adrenal chromaffin cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号