首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human ankyrin repeat and suppressor of cytokine signaling box protein 9 (hASB9), a subunit of an Elongin C-cullin-SOCS box (ECS) E3 ubiquitin ligase complex, is believed to be involved in specific substrate-recognition for ubiquitination and degradation. In fact, this specific substrate-recognition is determined by the ankyrin repeats of hASB9 protein. Here, we have cloned and overexpressed the hASB9-2, the splice variant of hASB9 with only one ankyrin repeat domain, as a 6His-tagged recombinant protein in Escherichia coli. The purified hASB9-2 protein was crystallized by the hanging-drop vapor-diffusion technique and diffracted to 2.2A resolution. The data showed that the cubic hASB9-2 crystal belongs to space group P4(3)32 with unit-cell parameters (a=b=c=129.25A, alpha=beta=gamma=90 degrees ). An asymmetric unit in the crystal was assumed to contain one protein molecule giving the Matthews Coefficient factor of 2.81 and the solvent content of 56.3%.  相似文献   

2.
The suppressors of cytokine signaling (SOCS) proteins inhibit cytokine action by direct interaction with Janus kinases or activated cytokine receptors. In addition to the N-terminal and Src homology 2 domains that mediate these interactions, SOCS proteins contain a C-terminal SOCS box. DNA data base searches have identified a number of other protein families that possess a SOCS box, of which the ankyrin repeat and SOCS box-containing (Asb) proteins constitute the largest. Although it is known that the SOCS proteins are involved in the negative regulation of cytokine signaling, the biological and biochemical functions of the Asbs are largely undefined. Using a proteomics approach, we demonstrate that creatine kinase B (CKB) interacts with Asb-9 in a specific, SOCS box-independent manner. This interaction increases the polyubiquitylation of CKB and decreases total CKB levels within the cell. The targeting of CKB for degradation by Asb-9 was primarily SOCS box-dependent and suggests that Asb-9 acts as a specific ubiquitin ligase regulating levels of this evolutionarily conserved enzyme.  相似文献   

3.
The ankyrin repeat is a protein module with high affinity for other ankyrin repeats based on strong Van der Waals forces. The resulting dimerization is unusually resistant to both mechanical forces and alkanization, making this module exceedingly useful for meeting the extraordinary demands of muscle physiology. Many aspects of muscle function are controlled by the superfamily ankyrin repeat domain containing proteins, including structural fixation of the contractile apparatus to the muscle membrane by ankyrins, the archetypical member of the family. Additionally, other ankyrin repeat domain containing proteins critically control the various differentiation steps during muscle development, with Notch and developmental stage-specific expression of the members of the Ankyrin repeat and SOCS box (ASB) containing family of proteins controlling compartment size and guiding the various steps of muscle specification. Also, adaptive responses in fully formed muscle require ankyrin repeat containing proteins, with Myotrophin/V-1 ankyrin repeat containing proteins controlling the induction of hypertrophic responses following excessive mechanical load, and muscle ankyrin repeat proteins (MARPs) acting as protective mechanisms of last resort following extreme demands on muscle tissue. Knowledge on mechanisms governing the ordered expression of the various members of superfamily of ankyrin repeat domain containing proteins may prove exceedingly useful for developing novel rational therapy for cardiac disease and muscle dystrophies.  相似文献   

4.
An interferon-induced endoribonuclease, ribonuclease L (RNase L), is implicated in both the molecular mechanism of action of interferon and the fundamental control of RNA stability in mammalian cells. RNase L is catalytically active only after binding to an unusual activator molecule containing a 5'-phosphorylated 2',5'-linked oligoadenylate (2-5A), in the N-terminal half. Here, we report the crystal structure of the N-terminal ankyrin repeat domain (ANK) of human RNase L complexed with the activator 2-5A. This is the first structural view of an ankyrin repeat structure directly interacting with a nucleic acid, rather than with a protein. The ANK domain folds into eight ankyrin repeat elements and forms an extended curved structure with a concave surface. The 2-5A molecule is accommodated at a concave site and directly interacts with ankyrin repeats 2-4. Interestingly, two structurally equivalent 2-5A binding motifs are found at repeats 2 and 4. The structural basis for 2-5A recognition by ANK is essential for designing stable 2-5As with a high likelihood of activating RNase L.  相似文献   

5.
M E Zweifel  D Barrick 《Biochemistry》2001,40(48):14357-14367
To define the boundaries of the Drosophila Notch ankyrin domain, examine the effects of repeat number on the folding of this domain, and examine the degree to which the modular architecture of ankyrin repeat proteins results in modular stability, we have investigated the thermodynamics of unfolding of polypeptides corresponding to different segments of the ankyrin repeats of Drosophila Notch. We find that a polypeptide containing the six previously identified ankyrin repeats unfolds cooperatively, but is of modest stability. However, inclusion of a putative seventh, C-terminal ankyrin sequence doubles the stability of the Notch ankyrin domain (a 1000-fold increase in the folding equilibrium constant), indicating that the seventh ankyrin repeat is an important part of the Notch ankyrin domain, and demonstrating long-range interactions among ankyrin repeats. This putative seven-repeat polypeptide also shows increases in enthalpy, denaturant dependence (m-value), and heat capacity of unfolding (DeltaC(p)()) of around 50% each, suggesting that deletion of the seventh repeat results in partial unfolding of the sixth ankyrin repeat, consistent with spectroscopic and hydrodynamic data reported in the preceding paper [Zweifel, M. E., and Barrick, D. (2001) Biochemistry 40, 14344-14356]. A polypeptide consisting of only the five N-terminal repeats has stability similar to the six-repeat construct, demonstrating that stability is distributed asymmetrically along the ankyrin domain. These data are consistent with highly cooperative two-state folding of these ankyrin polypeptides, despite their modular architecture.  相似文献   

6.
7.
TRPV channels are important polymodal integrators of noxious stimuli mediating thermosensation and nociception. An ankyrin repeat domain (ARD), which is a common protein-protein recognition domain, is conserved in the N-terminal intracellular domain of all TRPV channels and predicted to contain three to four ankyrin repeats. Here we report the first structure from the TRPV channel subfamily, a 1.7 A resolution crystal structure of the human TRPV2 ARD. Our crystal structure reveals a six ankyrin repeat stack with multiple insertions in each repeat generating several unique features compared with a canonical ARD. The surface typically used for ligand recognition, the ankyrin groove, contains extended loops with an exposed hydrophobic patch and a prominent kink resulting from a large rotational shift of the last two repeats. The TRPV2 ARD provides the first structural insight into a domain that coordinates nociceptive sensory transduction and is likely to be a prototype for other TRPV channel ARDs.  相似文献   

8.
ASB12(homo sapiens ankyrin repeat and SOCS box containing 12)蛋白含有5个ANK(ankyrin repeat sequence)序列和一个保守的SOCS(suppressor of cytokine signaling)盒结构域,是ASBs(human ankyrin repeat andSOCS box containing protein family,ASB family)家族的成员.人类ASB12基因在成体心肌和骨骼肌组织中特异表达,是成肌分化的候选基因.利用阳离子聚合物转染技术将重组表达质粒pCMV-tag2B-ASB12转染小鼠骨骼肌细胞系C2C12细胞,通过G418筛选、免疫荧光检测、RT-PCR分析、Western blotting检测建立了稳定表达ASB12的细胞系C2C12-ASB12,为研究ASB12在骨骼肌发育及其相关功能提供有用的细胞研究模型.  相似文献   

9.
10.

Background  

The ankyrin repeat and suppressor of cytokine signalling (SOCS) box proteins (Asbs) are a large protein family implicated in diverse biological processes including regulation of proliferation and differentiation. The SOCS box of Asb proteins is important in a ubiquitination-mediated proteolysis pathway. Here, we aimed to evaluate expression and function of human Asb-9 (ASB9).  相似文献   

11.
Ankyrin mediates the attachment of spectrin to transmembrane integral proteins in both erythroid and nonerythroid cells by binding to the beta-subunit of spectrin. Previous studies using enzymatic digestion, 2-nitro-5-thiocyanobenzoic acid cleavage, and rotary shadowing techniques have placed the spectrin-ankyrin binding site in the COOH-terminal third of beta-spectrin, but the precise site is not known. We have used a glutathione S-transferase prokaryotic expression system to prepare recombinant erythroid and nonerythroid beta-spectrin from cDNA encoding approximately the carboxy-terminal half of these proteins. Recombinant spectrin competed on an equimolar basis with 125I-labeled native spectrin for binding to erythrocyte membrane vesicles (IOVs), and also bound ankyrin in vitro as measured by sedimentation velocity experiments. Although full length beta-spectrin could inhibit all spectrin binding to IOVs, recombinant beta-spectrin encompassing the complete ankyrin binding domain but lacking the amino-terminal half of the molecule failed to inhibit about 25% of the binding capacity of the IOVs, suggesting that the ankyrin-independent spectrin membrane binding site must lie in the amino-terminal half of beta-spectrin. A nested set of shortened recombinants was generated by nuclease digestion of beta-spectrin cDNAs from ankyrin binding constructs. These defined the ankyrin binding domain as encompassing the 15th repeat unit in both erythroid and nonerythroid beta-spectrin, amino acid residues 1,768-1,898 in erythroid beta-spectrin. The ankyrin binding repeat unit is atypical in that it lacks the conserved tryptophan at position 45 (1,811) within the repeat and contains a nonhomologous 43 residue segment in the terminal third of the repeat. It also appears that the first 30 residues of this repeat, which are highly conserved between the erythroid and nonerythroid beta-spectrins, are critical for ankyrin binding activity. We hypothesize that ankyrin binds directly to the nonhomologous segment in the 15th repeat unit of both erythroid and nonerythroid beta-spectrin, but that this sequence must be presented in the context of a properly folded spectrin "repeat unit" structure. Future studies will identify which residues within the repeat unit are essential for activity, and which residues determine the specificity of various spectrins for different forms of ankyrin.  相似文献   

12.
The Notch receptor contains a conserved ankyrin repeat domain that is required for Notch-mediated signal transduction. The ankyrin domain of Drosophila Notch contains six ankyrin sequence repeats previously identified as closely matching the ankyrin repeat consensus sequence, and a putative seventh C-terminal sequence repeat that exhibits lower similarity to the consensus sequence. To better understand the role of the Notch ankyrin domain in Notch-mediated signaling and to examine how structure is distributed among the seven ankyrin sequence repeats, we have determined the crystal structure of this domain to 2.0 angstroms resolution. The seventh, C-terminal, ankyrin sequence repeat adopts a regular ankyrin fold, but the first, N-terminal ankyrin repeat, which contains a 15-residue insertion, appears to be largely disordered. The structure reveals a substantial interface between ankyrin polypeptides, showing a high degree of shape and charge complementarity, which may be related to homotypic interactions suggested from indirect studies. However, the Notch ankyrin domain remains largely monomeric in solution, demonstrating that this interface alone is not sufficient to promote tight association. Using the structure, we have classified reported mutations within the Notch ankyrin domain that are known to disrupt signaling into those that affect buried residues and those restricted to surface residues. We show that the buried substitutions greatly decrease protein stability, whereas the surface substitutions have only a marginal affect on stability. The surface substitutions are thus likely to interfere with Notch signaling by disrupting specific Notch-effector interactions and map the sites of these interactions.  相似文献   

13.
Conventional ankyrins are cortical cytoskeletal proteins that form an ankyrin‐spectrin meshwork underlying the plasma membrane. We report here the unusual structure of a novel ankyrin (AO13 ankyrin, 775,369 Da, 6994 aa, pI = 4.45) that is required for proper axonal guidance in Caenorhabditis elegans. AO13 ankyrin contains the ANK repeat and spectrin‐binding domains found in other ankyrins, but differs from all others in that the acidic carboxyl region contains six blocks of serine/threonine/glutamic acid/proline rich (STEP) repeats separated by seven hydrophobic domains. The STEP repeat blocks are composed primarily of sequences related to ETTTTTTVTREHFEPED(E/D)XnVVESEEYSASGSPVPSE (E/K)DVE(H/R)VI, and the hydrophobic domains contain sequences related to PESGEESDGEGFGSKVLGFAKK[AGMVAGGVVAAPVALAAVGA]KAAYDALKKDDDEE, which includes a potential transmembrane domain (in brackets). Recombinant protein fragments of AO13 ankyrin were used to prepare polyclonal antisera against the spectrin‐binding domain (AO271 Ab), the conventional ankyrin regulatory domain (AO280 Ab), the AO13 ankyrin STEP domain (AO346 Ab), the AO13 ankyrin STEP + hydrophobic domain (AO289 Ab), and against two carboxyl terminal domain fragments (AO263 Ab and AO327 Ab). Western blot analysis with these Ab probes demonstrated multiple protein isoforms. By immunofluorescence microscopy, the antispectrin‐binding and regulatory domain (AO271 and AO280) antibodies recognized many cell types, including neurons, and stained the junctions between cells. The AO13 ankyrin‐specific (AO289 and AO346) antibodies showed a neurally restricted pattern, staining nerve processes and the periphery of neural cell bodies. These results are consistent with a role for AO13 ankyrin in neural development. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 333–349, 2002; DOI 10.1002/neu.10036  相似文献   

14.
Ankyrin repeat and SOCS box protein 15 (ASB15) is an Asb family member expressed predominantly in skeletal muscle. We have previously reported that ASB15 mRNA abundance decreases after administration of beta-adrenergic receptor agonists. Because beta-adrenergic receptor agonists are known to stimulate muscle hypertrophy, the objective of this study was to determine whether ASB15 regulates cellular processes that contribute to muscle growth. Stable myoblast C2C12 cells expressing full-length ASB15 (ASB15-FL) and ASB15 lacking the ankyrin repeat (ASB15-Ank) or SOCS box (ASB15-SOCS) motifs were evaluated for changes in proliferation, differentiation, protein synthesis, and protein degradation. Expression of ASB15-FL caused a delay in differentiation, followed by an increase in protein synthesis of approximately 34% (P<0.05). A consistent effect of ASB15 overexpression was observed in vivo, where ectopic expression of ASB15 increased skeletal muscle fiber area (P<0.0001) after 9 days. Expression of ASB15-SOCS altered differentiation of myoblasts, resulting in detachment of cells from culture plates. Expression of ASB15-Ank increased protein degradation by 84 h of differentiation (P<0.05), and in vivo ectopic expression of an ASB15 construct lacking both the ankyrin repeat and SOCS box motifs decreased skeletal muscle fiber area (P<0.0001). Together, these results suggest ASB15 participates in the regulation of protein turnover and muscle cell development by stimulating protein synthesis and regulating differentiation of muscle cells. This is the first study to demonstrate a role for an Asb family member in skeletal muscle growth.  相似文献   

15.
Ankyrin repeat polypeptides contain repeated structural elements that pack to produce modular architectures lacking in close contacts between distant segments of the polypeptide chain. Despite this lack of sequence-distant contacts, ankyrin repeat polypeptides have been shown to fold in a cooperative manner. To determine the distance over which cooperative interactions can be propagated in a repeat protein, and to investigate the tolerance to internal duplication and deletion of modules, we have constructed a series of ankyrin repeat variants of the Notch ankyrin domain in which repeat number is varied by duplication and deletion of internal repeats. A construct with two copies of the fifth ankyrin repeat shows a modest increase in stability compared to the parent construct and retains apparent two-state unfolding behavior. Although constructs containing three and four copies of the fifth repeat retain this increased resistance to urea, they exhibit broad, multi-state unfolding transitions compared to the parent construct. For the Notch ankyrin domain, these larger constructs may represent a limit beyond which full cooperativity cannot be maintained. Deletions of internal repeats from the Notch ankyrin domain significantly destabilize the domain. This severe destabilization, which is larger than that resulting from end-repeat deletion, may arise from unfavorable interactions within the new non-native interfaces produced by internal repeat deletion. These results demonstrate both an asymmetry between the duplication and deletion of internal repeats, and a difference between deletion of internal and end-repeats, suggesting preferred mechanisms for evolution of repeat proteins.  相似文献   

16.
17.
Voltage-dependant sodium channels at the axon initial segment and nodes of Ranvier colocalize with the nodal isoforms of ankyrin(G) (Ank(G) node). Using fusion proteins derived from the intracellular regions of the Nav1.2a subunit and the Ank repeat domain of Ank(G) node, we mapped a major interaction site in the intracellular loop separating alpha subunit domains I-II. This 57-amino acid region binds the Ank repeat region with a K(D) value of 69 nm. We identified another site in intracellular loop III-IV, and we mapped both Nav1.2a binding sites on the ankyrin repeat domain to the region encompassing repeats 12-22. The ankyrin repeat domain did not bind the beta(1) and beta(2) subunit cytoplasmic regions. We showed that in cultured embryonic motoneurons, expression of the beta(2) subunit is not necessary for the colocalization of Ank(G) node with functional sodium channels at the axon initial segment. Antibodies directed against the beta(1) subunit intracellular region, alpha subunit loop III-IV, and Ank(G) node could not co-immunoprecipitate Ank(G) node and sodium channels from Triton X-100 solubilisates of rat brain synaptosomes. Co-immunoprecipitation of sodium channel alpha subunit and of the 270- and 480-kDa AnkG node isoforms was obtained when solubilization conditions that maximize membrane protein extraction were used. However, we could not find conditions that allowed for co-immunoprecipitation of ankyrin with the sodium channel beta(1) subunit.  相似文献   

18.
19.
RNase L is activated by the binding of unusual 2',5'-linked oligoadenylates (2-5A) and acts as the effector enzyme of the 2-5A system, an interferon-induced anti-virus mechanism. Efforts have been made to understand the 2-5A binding mechanism, not only for scientific interests but also for the prospects that the understanding of such mechanisms lead to new remedies for viral diseases. We have recently elucidated the crystal structure of the 2-5A binding ankyrin repeat domain of human RNase L complexed with 2-5A. To determine the contributions of amino acid residues surrounding the 2-5A binding site, point mutants and a deletion mutant were designed based on the crystal structure. These mutant proteins were analyzed for their interaction with 2-5A using a steady-state fluorescence technique. In addition, full-length RNase L mutants were tested for their activation by 2-5A. The results reveal that pi-pi stacking interactions of Trp60 and Phe126, electrostatic interactions of Lys89 and Arg155, and hydrogen bonding by Glu131 make crucial contributions to 2-5A binding. It was also found that the crystal structure of the ankyrin repeat domain L.2-5A complex accurately portrays the 2-5A binding mode in full-length RNase L.  相似文献   

20.
Multiple ankyrin repeat motif-containing proteins play an important role in protein-protein interactions. ANKHD1 proteins are known to possess multiple ankyrin repeat domains and a single KH domain with no known function. Using yeast two-hybrid system analysis, we identified a novel splice variant of ANKHD1. This splice variant of ANKHD1, which we designated as HIV-1 Vpr-binding ankyrin repeat protein (VBARP), does not contain the signature KH domain, and codes for only a single ankyrin repeat motif. We characterized VBARP by molecular and functional analysis, revealing that VBARP is ubiquitously expressed in different tissues as well as cell lines of different lineage. In addition, blast searches indicated that orthologs and homologs to VBARP exist in different phyla, suggesting that VBARP might be evolutionarily conserved, and thus may be involved in basic cellular function(s). Furthermore, biochemical analysis revealed the presence of two VBARP isoforms coding for 69 and 49 kDa polypeptides, respectively, that are primarily localized in the cytoplasm. Functional analysis using short interfering RNA approaches indicate that this gene product is essential for cell survival through its regulation of caspases. Taken together, these results indicate that VBARP is a novel splice variant of ANKHD1 and may play a role in cellular apoptosis (antiapoptotic) and cell survival pathway(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号