首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the applicability of plasma nitriding treatment in the production of non-magnetic and corrosion resistant layer on 316L stainless steel implant material was investigated. 316L stainless steel substrates were plasma nitrided at temperatures of 350 ℃, 375 ℃, 400 ℃, 425 ℃ and 450 ℃ for 2 h in a gas mixture of 50% N2-50% H2, respectively. It was determined that the treatment temperature is the most important factor on the properties of the corrosion resistant layer of 316L stainless steel. The results show that s-phase formed at the temperatures under 400 ℃, and at the temperatures above 400 ℃, instead of s-phase, CrN and y'-Fe4N phases were observed in the modified layer. The electrical resistivity and surface roughness of the modified layer increase with treatment temperature. Under 400 ℃ the corrosion resistance increased with the temperature, above 400 ℃ it decreased with the increase in treatment temperature. It was analyzed that the electrical resistivity and the soft (ideal) ferro- magnetic properties of 316L stainless steel increased with treatment temperature during nitriding treatment. Also, plasma ni- triding at low temperatures provided magnetic behavior close to the ideal untreated 316L stainless steel.  相似文献   

2.
Targets made of ITER-grade 316L(N)-IG stainless steel and Russian-grade 12Cr18Ni10Ti stainless steel with a close composition were exposed at the QSPA-T plasma gun to plasma photonic radiation pulses simulating conditions of disruption mitigation in ITER. After a large number of pulses, modification of the stainless-steel surface was observed, such as the formation of a wavy structure, irregular roughness, and cracks on the target surface. X-ray and optic microscopic analyses of targets revealed changes in the orientation and dimensions of crystallites (grains) over a depth of up to 20 μm for 316L(N)-IG stainless steel after 200 pulses and up to 40 μm for 12Cr18Ni10Ti stainless steel after 50 pulses, which is significantly larger than the depth of the layer melted in one pulse (~10 μm). In a series of 200 tests of ITER-grade 316L(N)-IG ITER stainless steel, a linear increase in the height of irregularity (roughness) with increasing number of pulses at a rate of up to ~1 μm per pulse was observed. No alteration in the chemical composition of the stainless-steel surface in the series of tests was revealed. A model is developed that describes the formation of wavy irregularities on the melted metal surface with allowance for the nonlinear stage of instability of the melted layer with a vapor/plasma flow above it. A decisive factor in this case is the viscous flow of the melted metal from the troughs to tops of the wavy structure. The model predicts saturation of the growth of the wavy structure when its amplitude becomes comparable with its wavelength. Approaches to describing the observed stochastic relief and roughness of the stainless-steel surface formed in the series of tests are considered. The recurrence of the melting-solidification process in which mechanisms of the hill growth compete with the spreading of the material from the hills can result in the formation of a stochastic relief.  相似文献   

3.
Iron, chromium, nickel, and manganese released from gas-atomized AISI 316L stainless steel powders (sized <45 and <4 μm) were investigated in artificial lysosomal fluid (ALF, pH 4.5) and in solutions of its individual inorganic and organic components to determine its most aggressive component, elucidate synergistic effects, and assess release mechanisms, in dependence of surface changes using atomic absorption spectroscopy, Raman, XPS, and voltammetry. Complexation is the main reason for metal release from 316L particles immersed in ALF. Iron was mainly released, while manganese was preferentially released as a consequence of the reduction of manganese oxide on the surface. These processes resulted in highly complexing media in a partial oxidation of trivalent chromium to hexavalent chromium on the surface. The extent of metal release was partially controlled by surface properties (e.g., availability of elements on the surface and structure of the outermost surface) and partially by the complexation capacity of the different metals with the complexing agents of the different media. In general, compared to the coarse powder (<45 μm), the fine (<4 μm) powder displayed significantly higher released amounts of metals per surface area, increased with increased solution complexation capacity, while less amounts of metals were released into non-complexing solutions. Due to the ferritic structure of lower solubility for nickel of the fine powder, more nickel was released into all solutions compared with the coarser powder.  相似文献   

4.
This study focused on increasing the freezing rate in cell vitrification cryopreservation by using a cryopreservation container possessing rigid mechanical properties and high heat-transfer efficiency. Applying a fast freezing rate in vitrification cryopreservation causes a rapid temperature change in the cryopreservation container and has a substantial impact on mechanical properties; therefore, a highly rigid cryopreservation container that possesses a fast freezing rate must be developed. To produce a highly rigid cryopreservation container possessing superior heat transfer efficiency, this study applies an electrochemical machining (ECM) method to an ANSI 316L stainless steel tube to treat the surface material by polishing and roughening, thereby increasing the freezing rate and reducing the probability of ice crystal formation. The results indicated that the ECM method provided high-quality surface treatment of the stainless steel tube. This method can reduce internal surface roughness in the stainless steel tube, thereby reducing the probability of ice crystal formation, and increase external surface roughness, consequently raising convection heat-transfer efficiency. In addition, by thinning the stainless steel tube, this method reduces heat capacity and thermal resistance, thereby increasing the freezing rate. The freezing rate (3399 ± 197 °C/min) of a stainless steel tube after interior and exterior polishing and exterior etching by applying ECM compared with the freezing rate (1818 ± 54 °C/min) of an original stainless steel tube was increased by 87%, which also exceeds the freezing rate (2015 ± 49 °C/min) of an original quartz tube that has a 20% lower heat capacity. However, the results indicated that increasing heat-transferring surface areas and reducing heat capacities cannot effectively increase the freezing rate of a stainless steel tube if only one method is applied; instead, both techniques must be implemented concurrently to improve the freezing rate.  相似文献   

5.
There is considerable interest in both Europe and the USA in the effects of microbiological fouling on stainless steels in potable water. However, little is known about the formation and effects of biofilms, on stainless steel in potable water environments, particularly in turbulent flow regimes. Results are presented on the development of biofilms on stainless steel grades 304 and 316 after exposure to potable water at velocities of 0.32, 0.96 and 1.75 m s−1. Cell counts on slides of stainless steel grades 304 and 316 with both 2B (smooth) and 2D (rough) finishes showed viable and total cell counts were higher at the higher flow rates of 0.96 and 1.75 m s−1, compared to a flow rate of 0.32 m s−1. Extracellular polysaccharide levels were not significantly different (P< 0.05) between each flow rate on all stainless steel surfaces studied. higher levels were found at the higher water velocities. the biofilm attached to stainless steel was comprised of a mixed bacterial flora including Acinetobacter sp, Pseudomonas spp, Methylobacterium sp, and Corynebacterium/Arthrobacter spp. Epifluorescence microscopy provided evidence of rod-shaped bacteria and the formation of stands, possibly of extracellular material attached to stainless steel at high flow rates but not at low flow rates. Received 04 February 1998/ Accepted in revised form 12 February 1999  相似文献   

6.
In this work, sediment microbial fuel cell (SMFC) with granule activated carbon (GAC) cathode and stainless steel anode was constructed in laboratory tests and various factors on SMFC power output were investigated. The maximum power densities for the SMFC with GAC cathode was 3.5 mW m−2, it was much higher than SMFC with round stainless steel cathode. Addition of cellulose reduced the output power from SMFC at the beginning of experiments, while the output power was found to increase after adding cellulose to sediments on day 90 of operation. On 160 day, maximum power density from the SMFC with adding 0.2% cellulose reached to 11.2 mW m−2. In addition, the surface morphology of stainless steel anode on day 90 was analyzed by scanning electron microscope. It was found that the protection layer of the stainless steel as electrode in SMFCs was destroyed to some extent.  相似文献   

7.
Little is known about the formation and effects of biofilms on stainless steel pipes in freshwater environments, particularly as they are considered as a direct replacement for copper pipes for ‘problem’ water. There is some cause for concern especially as stainless steel cannot claim the inherent biocidal potential of copper. As molybdenum is known to be leached out of stainless steel grade 316, in very small amounts, a study was set up to see if molybdenum could retard the development of biofilms. When a comparison of biofilm viable and total cell counts was made between pure molybdenum metal and stainless steel grade 304, it was found that cell counts were significantly higher (P < 0.05) on grade 304 stainless steel after 5 weeks exposure to flowing water (0.64 m s−1). Molybdenum (above a concentration of 1 g L−1) affected the growth rate of Acinetobacter sp, a pioneering bacterium of biofilms in potable water. Received 18 February 1998/ Accepted in revised form 17 May 1999  相似文献   

8.
High nitrogen nickel-free austenitic stainless steel (HNNF SS) is one of the biomaterials developed recently for circumventing the in-stent restenosis (ISR) in coronary stent applications. To understand the ISR-resistance mechanism, we have conducted a comparative study of cellular and molecular responses of human umbilical vein endothelial cells (HUVECs) to HNNF SS and 316L SS (nickel-containing austenitic 316L stainless steel) which is the stent material used currently. CCK-8 analysis and flow cytometric analysis were used to assess the cellular responses (proliferation, apoptosis, and cell cycle), and quantitative real-time PCR (qRT-PCR) was used to analyze the gene expression profile of HUVECs exposed to HNNF SS and 316L SS, respectively. Flow cytometry analysis revealed that 316L SS could activate the cellular apoptosis more efficiently and initiate an earlier entry into the S-phase of cell cycle than HNNF SS. At the molecular level, qRT-PCR results showed that the genes regulating cell apoptosis and autophagy were overexpressed on 316L SS. Further examination indicated that nickel released from 316L SS triggered the cell apoptosis via Fas-Caspase8-Caspase3 exogenous pathway. These molecular mechanisms of HUVECs present a good model for elucidating the observed cellular responses. The findings in this study furnish valuable information for understanding the mechanism of ISR-resistance on the cellular and molecular basis as well as for developing new biomedical materials for stent applications.  相似文献   

9.
Pseudomonas aeruginosa synthesizes large quantities of exopolysaccharide (EPS), making it an excellent model organism for the study of EPS-mediated adhesion. The purpose of this investigation was to evaluate the influence of limited nutrients availability in the culture medium on the composition of EPS produced by P. aeruginosa. The relationship between the EPS production and the adhesion process of the Paeruginosa cells to stainless steel surface (type 316 L) under starvation conditions were also examined. In all experimental variants Paeruginosa produced more EPS with an increase of incubation period upon starvation conditions. Under limited nutrients condition, glucose dominated in the EPS materials. After 6 days of the process, only glucosyl units were detected in the extracellular matrix produced by nutrient-deprived Paeruginosa cells. These extracellular molecules promoted more advanced stages of Paeruginosa biofilm formation on the surface of stainless steel.  相似文献   

10.
Four different structural models of artificial joints were developed and the finite element method (FEM) was employed to investigate their mechanical characteristics under static and dynamic conditions. The materials used in the FEM calculation were ultra-high molecular weight polyethylene (UHMWPE), 316L stainless steel, CoCrMo alloy and Ti6A14V alloy. The stress distribution, strain, and elastic deformation under static and dynamic conditions were obtained. Analysis and comparison of the ~alculation results of different models were conducted. It is shown that with the same parameters the model of a metallic femur head covered with an artificial cartilage layer is more similar to the structure of the natural human joint and its mechanical characteristics are the best of the four models.  相似文献   

11.
Using sophisticated microscopy techniques, we observed the spatial pattern of bacteria colonizing a sterile 316L stainless steel coupon as bulk water containing bacteria flowed across the coupon. The experiments used stainless steel of differing roughness and surface chemistry. The ultimate goal was to identify surface features which influence bacterial adsorption. The immediate statistical goal was to distinguish patterns consistent with complete spatial randomness from patterns showing regularity or aggregation. This goal was accomplished by using modified analyses of distance functions commonly applied in field ecology. The method protected against a potential multiple comparisons problem. For the null value of the distance function, we calculated tolerance envelopes such that the tolerance level was simultaneous for all distances of concern. Computer simulation experiments showed that the nominal level was accurate. The methodology was effective for detecting and describing patterns of colonization known not to be completely spatially random.  相似文献   

12.
A bioreactor system operating in a continuous mode was designed to generate biofilms on polished and as-received surfaces of AISI 316 stainless steel coupons exposed for 36 d to a pure culture of marine Pseudomonas NCIMB 2021. Scanning electron microscopy (SEM) and atomic force microscopy were employed to determine the degree of surface colonisation and to examine corrosion damage of the steel. X-ray photoelectron spectroscopy analysis was carried out to characterise the chemistry of the passive layers on polished steel stored for a period of time, freshly re-polished coupons, and as-received steel. The effect of biofilms on the composition of layers formed on the steel specimens was evaluated. SEM revealed that the surfaces of polished and stored steel appeared to accumulate more biofilm compared to as-received specimens. Micropitting of steel occurred underneath the biofilm, regardless of surface finish. The concentration of elements in the passive layers differed significantly between freshly re-polished and as-received or polished and stored coupons. In the presence of Pseudomonas NCIMB 2021 biofilm, the composition of the passive layer on the as-received steel surface was considerably altered compared to unexposed steel or steel exposed to abiotic medium.  相似文献   

13.
The influence of flow velocity (FV) on the heat transfer process in tubes made from AISI 316L stainless steel in a heat exchanger-condenser cooled by seawater was evaluated based on the characteristics of the resulting biofilm that adhered to the internal surface of the tubes at velocities of 1, 1.2, 1.6, and 3 m s?1. The results demonstrated that at a higher FV, despite being more compact and consistent, the biofilm was thinner with a lower concentration of solids, and smoother, which favoured the heat transfer process within the equipment. However, higher velocities increase the initial cost of the refrigerating water-pumping equipment and its energy consumption cost to compensate for the greater pressure drops produced in the tube. The velocity of 1.6 m s?1 represented the equilibrium between the advantages and disadvantages of the variables analysed for the test conditions in this study.  相似文献   

14.
A quick-freezing and deep-etching method in combination with replica immunoelectron microscopy was applied for examining localization of hyaluronic acid and fibronectin on the upper surface layer of rat mandibular condylar cartilage. Rat temporomandibular joints were dissected with articular disks in order to leave the articular cartilage surface intact. The disks were slightly cut with razor blades for exposing the condylar articular cartilage surface. They were quickly frozen with the isopentane-propane cryogen (–193°C) and prepared for freeze-fracturing and deep-etching replica membranes. They were additionally treated with 5% SDS and 0.5% collagenase to keep some antigens attached on the replica membranes. After such a treatment, a routine immunogold method was applied for clarifying the localization of hyaluronic acid and fibronectin in the upper surface layer. Small immunogold particles for hyaluronic acid were mainly localized around upper filamentous networks covered with amorphous materials, but large immunogold ones for fibronectin were localized on deep thicker fibrils. We have revealed the native architecture of the upper surface layer of mandibular condylar cartilage on the replica membranes and also three-dimensional localization of hyaluronic acid and fibronectin by the immunogold method.  相似文献   

15.
The development of biofilms of Pseudomonas aeruginosa PAO-1 was studied using modified Robbins devices. Biofilm development was measured using viable counts, acridine orange direct counts (AODC), and a colorimetric method for exopolysaccharide (EPS). Biofilms reached their maximum population 24–72 h after inoculation on coupons with no paint or on coupons coated with marine paint VC-18 without additives. Biofilms on stainless steel contained higher numbers of total cells and of viable cells than biofilms on fiberglass or aluminum. Coating the surfaces with marine paint VC-18 resulted in decreased numbers of cells on stainless steel but had little effect on numbers of cells on fiberglass or aluminum. Addition to the paint of Cu or tributyltin (TBT), the active components in two types of antifouling paints, inhibited the initial development of biofilms. However, by 72–96 h, most biofilms contained the same number of cells as surfaces without additives as shown by both viable counts and AODC. Biofilms that formed on surfaces coated with Cu- or TBT-containing paint did not synthesize more EPS, suggesting that P. aeruginosa PAO-1 does not respond to these compounds by synthesizing more EPS, which could bind the metal and protect the cells. Rather, these biofilms may contain Cu- or TBT-resistant cells. TBT-resistant cells made up 1–10% of the viable counts in biofilms on uncoated stainless steel, but in biofilms on stainless steel coated with marine paint containing TBT, TBT-resistant cells made up as much as 50% of the population. For non-coated stainless steel surfaces, Cu-resistant cells initially made up the majority of the population, but after 48 h they made up less than 1% of the population. On Cu-coated stainless steel, Cu-resistant cells predominated through 48 h, but after 48 h they comprised less than 10% of the population. These results suggest that the growth of TBT-resistant and Cu-resistant cells contributes to biofilms of P. aeruginosa PAO-1 at early stages of development but not at later stages. Received 16 December 1997/ Accepted in revised form 9 March 1998  相似文献   

16.
Effects of surface-active chemicals on microbial adhesion   总被引:1,自引:0,他引:1  
Summary A simple, continuously circulating fed-batch culture system of microorganisms was designed and used to study the adhesion of mixed microbial cultures to surfaces of 316 stainless steel, Admiralty brass, and wood. The adhesion of the microbes to the surfaces was monitored by scanning electron microscope analysis. Eighteen non-toxic, non-ionic, or anionic surface-active compounds were tested for efficacy as inhibitors of microbial adhesion to stainless steel and wood surfaces. A rating system was devised to correlate efficacy with the degree of biomass adhered to 316 stainless steel, although correlation could not be made with wood. A correlation was also found between the ability of a compound to lower surface tension and its ability to prevent microbial adhesion.  相似文献   

17.
Laboratory studies on adhesion of microalgae to hard substrates   总被引:1,自引:0,他引:1  
Sekar  R.  Venugopalan  V.P.  Satpathy  K.K.  Nair  K.V.K.  Rao  V.N.R. 《Hydrobiologia》2004,512(1-3):109-116
Adhesion of Chlorella vulgaris(chlorophyceae), Nitzschia amphibia(bacillariophceae) and Chroococcus minutus(cyanobacteria) to hydrophobic (perspex, titanium and stainless steel 316-L), hydrophilic (glass) and toxic (copper, aluminium brass and admiralty brass) substrata were studied in the laboratory. The influence of surface wettability, surface roughness, pH of the medium, culture age, culture density, cell viability and presence of organic and bacterial films on the adhesion of Nitzschia amphibia was also studied using titanium, stainless steel and glass surfaces. All three organisms attached more on titanium and stainless steel and less on copper and its alloys. The attachment varied significantly with respect to exposure time and different materials. The attachment was higher on rough surfaces when compared to smooth surfaces. Attachment was higher on pH 7 and above. The presence of organic film increased the attachment significantly when compared to control. The number of attached cells was found to be directly proportional to the culture density. Attachment by log phase cells was significantly higher when compared to stationary phase cells. Live cells attached more when compared to heat killed and formalin killed cells. Bacterial films of Pseudomonas putida increased the algal attachment significantly. %  相似文献   

18.
AIMS: To compare the number of attached Shewanella putrefaciens on stainless steel with different silver surfaces, thus evaluating whether silver surfaces could contribute to a higher hygienic status in the food industry. METHODS AND RESULTS: Bacterial adhesion to three types of silver surface (new silver, tarnished silver and sulphide-treated silver) was compared with adhesion to stainless steel (AISI 316) using the Malthus indirect conductance method to estimate the number of cfu cm(-2). The number of attached bacteria on new silver surfaces was lower than on steel for samples taken after 24 h. However, this was not statistically significant (P > 0.05). The numbers of attached bacteria were consistently lower when tarnished silver surfaces were compared with stainless steel and some, but not all, experiments showed statistical significance (P < 0.05). Treating new silver with sulphide to reproduce a tarnished silver surface did not result in a similar lowering of adhering cells when compared with steel (P > 0.05). CONCLUSIONS: New or tarnished silver surfaces caused a slight reduction in numbers of attached bacteria; however, the difference was only sometimes statistically significant. SIGNIFICANCE AND IMPACT OF THE STUDY: The lack of reproducibility in differences in numbers adhering to the different surfaces and lack of statistical significance between numbers of adhered viable bacteria do not indicate that the tested silver surfaces can be used to improve hygienic characteristics of surfaces in the food industry.  相似文献   

19.
Raman S  Kumar R 《Biofouling》2011,27(6):569-577
The barnacle exhibits a high degree of control over its attachment onto different types of solid surface. The structure and composition of barnacle cement have been reported previously, but mostly for barnacles growing on low surface energy materials. This article focuses on the strategies used by barnacles when they attach to engineering materials such as polymethylmethacrylate (PMMA), titanium (Ti) and stainless steel 316L (SS316L). Adhesion to these substrata is compared in terms of morphological structure, thickness and functional groups of the primary cement, the molting cycle and the nanomechanical properties of the cement. Structural characterization studies using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in conjunction with nanomechanical characterization and infrared spectroscopy (FTIR) are used to understand the differences in the adhesion of primary barnacle cement to the different substrata. The results provide new insights into understanding the mechanisms at work across the barnacle-substratum interface.  相似文献   

20.
Sangeetha Raman 《Biofouling》2013,29(6):569-577
The barnacle exhibits a high degree of control over its attachment onto different types of solid surface. The structure and composition of barnacle cement have been reported previously, but mostly for barnacles growing on low surface energy materials. This article focuses on the strategies used by barnacles when they attach to engineering materials such as polymethylmethacrylate (PMMA), titanium (Ti) and stainless steel 316L (SS316L). Adhesion to these substrata is compared in terms of morphological structure, thickness and functional groups of the primary cement, the molting cycle and the nanomechanical properties of the cement. Structural characterization studies using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in conjunction with nanomechanical characterization and infrared spectroscopy (FTIR) are used to understand the differences in the adhesion of primary barnacle cement to the different substrata. The results provide new insights into understanding the mechanisms at work across the barnacle–substratum interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号