首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated goat detrusor muscle exhibited spontaneous contractility with an irregular amplitude and frequency. The spontaneity of detrusor muscle exhibited a mean amplitude as 11.99 +/- 0.83 mm and frequency as 1.37 +/- 0.16/min. KATP-channel openers namely, cromakalim or pinacidil (10(-7) - 10(-4) M) added cumulatively, elicited a concentration-related inhibition of both amplitude and rate of spontaneous contractions. The mean IC50 values for both amplitude and frequency for cromakalim were 3.3 x 10(-6) M and 2.9 x 10(-6) M, respectively; and for pinacidil were 2.0 x 10(-5) M and 1.5 x 10(-5) M, respectively. Glibenclamide, a KATP-channel blocker inhibited the cromakalim-induced concentration-related relaxation of spontaneous contractions with a significant increase in its mean IC50. ACh-induced concentration-related contractile response was inhibited in the presence of either cromakalim (10(-4) M) or pinacidil (10(-4) M). The mean EC50 value of ACh, in the presence of cromakalim (2.5 x 10(-3) M) was significantly increased as compared to the control (1.2 x 10(-6) M). In the presence of glibenclamide (10(-5) M) the inhibitory effect of cromakalim was significantly reduced with consequent decrease in the EC50 value (1.9 x 10(-5) M). Application of EFS (30 V and 5 ms) on goat urinary bladder strips at 1, 2, 5, 10, 20 and 30 Hz elicited frequency-related contractile responses. Both cromakalim and pinacidil caused a rightward shift in the frequency-related contractile response curve with significant increase in the mean EF25 and EF50 values, respectively. In the presence of glibenclamide (10(-4) M), the frequency-related inhibitory response curve was shifted to left with significant (P < 0.001) increase in the mean EF25, EF50 and EF75. The present results suggest that in the goat detrusor muscle, agonist and EFS-induced contractile responses were more potently inhibited by cromakalim than pinacidil with activation of glibenclamide sensitive KATP channels.  相似文献   

2.
Spontaneous synaptic potentials and their relation to the end-plate potential (e.p.p.) are studied. It has been suggested earlier that the e.p.p. at a single nerve-muscle junction is built up statistically of small all-or-none units which are identical in size with the spontaneous miniature end-plate potentials (m.e.p.p.'s). In this paper, a more general theory is developed which takes into account latency fluctuations of the unit components. A general equation for e.p.p. amplitude probability distribution is derived. This probability distribution is a function of the latency distribution, m.e.p.p.'s pulse shape, m.e.p.p.'s amplitude distribution, and the mean quantal content. The time course of transmitter release, or latency distribution, is derived from a histogram of synaptic delays in a frog muscle, but obtained equations can be used for other distribution functions as well.  相似文献   

3.
Examination of miniature end-plate potentials (m.e.p.ps) in rat skeletal muscle poisoned in vivo by botulinum toxin type A reveals the presence of two populations of potentials. One population which corresponds to m.e.p.ps in unpoisoned muscles and to quantal end-plate potentials. The frequency of these m.e.p.ps is greatly reduced by botulinum toxin. The second population of m.e.p.ps has quite different characteristics. These m.e.p.ps have a more variable, but generally much larger amplitude, and their time to peak is longer than normal m.e.p.ps. The frequency of these m.e.p.ps increases during poisoning and reaches 0.3-1 Hz after 10-14 days. In addition to the variability in amplitude and time-to-peak these m.e.p.ps differ from those at unpoisoned junctions by being unaffected by procedures which alter extra- or intracellular Ca2+ concentrations. The appearance of this Ca2+-insensitive spontaneous quantal secretion of acetylcholine is apparently not a direct effect of the toxin but secondary to blockade of impulse transmission since it also appears at unpoisoned end-plates when transmission is impaired for other reasons. Procedures which increase the intracellular Ca2+ concentration in nerve terminals restore transmitter release from botulinum toxin poisoned nerves. Furthermore, the block caused by the toxin is very temperature-dependent, a reduction in temperature relieving the block. Since presynaptic Ca2+ currents are unaltered by the toxin it is proposed that the block of transmission is due to a reduction in the calcium content of the nerve terminal to a level where the amount of Ca2+, which normally enters, is insufficient to activate transmitter release.  相似文献   

4.
The effects of prostaglandin E2 (PGE2) and indomethacin on excitatory neuro-effector transmission in the human bronchus were investigated by tension recording and microelectrode methods. PGE2 (10(-10)-10(-9)M) suppressed the amplitude of twitch contractions and excitatory junction potentials (e.j.ps) evoked by field stimulation at a steady level of basal tension obtained by the combined application of indomethacin (10(-5) M) and FPL55712 (10(-6) M). In doses over 10(-8)M, PGE2 reduced the muscle tone and dose-dependently suppressed the amplitude of twitch contractions. Indomethacin (10(-5) or 5 x 10(-5) M) reduced the muscle tone and enhanced the amplitude of twitch contractions and e.j.ps evoked by field stimulation in the presence of FPL55712. PGE2 (10(-9) M) had no effect on the post-junctional response of smooth muscle cells to exogenously applied acetylcholine (ACh) (4 x 10(-7) M). However, indomethacin (10(-5) M) significantly enhanced the ACh-induced contraction of the human bronchus. These results indicate that PGE2 in low concentrations has a pre-junctional action to inhibit excitatory neuro-effector transmission in addition to a post-junctional action, presumably by suppressing transmitter release from the vagus nerve terminals in the human bronchial tissues.  相似文献   

5.
Miniature and stimulus-evoked electroplaque potentials were recorded in Torpedo electrocytes intracellularly and extracellularly and analysed quantitatively. Tetrodotoxin reversibly blocked stimulus evoked potentials but hardly affected spontaneous miniature potentials in amplitude and frequency. The quantum content of stimulus-evoked potentials varied between 150 and 400 in normal saline and decreased in low Ca2+ high Mg2+ solution. Quantal release conformed to binomial statistics and allowed determination of the release parameters p and n. Analysis of the time constant of decay of spontaneous miniature electroplaque currents showed variation around a mean of 0.75 +/- 0.16 msec (SD) which was greatly prolonged by application of neostigmine.  相似文献   

6.
It has been shown on neuro-muscular preparations of frog sartorius muscle that chromium ions in the concentrations 1-4 x 10(-6) g/ml strengthen spontaneous and evoked transmitter release. Cr3+ ions in the concentrations above 4 x 10(-6) g/ml decrease the membrane potential of muscle fibres, decrease the quantum content of the end plate potentials. Experiments on a single Ranvier node have shown that Cr3+ ions decrease the amplitude, increase the rate and duration of the action potential of a nerve fibre. It is concluded that chromium ions produce a pronounced effect on synaptic transmission, which differs significantly from the action of manganese, cobalt and nickel ions.  相似文献   

7.
Amplitudes and times to peak of spontaneous miniature endplate potentials (m.e.p.ps) and evoked quantal endplate potentials (e.p.ps) were compared at normal, regenerating and botulinum toxin poisoned neuromuscular junctions of the extensor digitorum longus muscle of the rat. At normal junctions the mean time to peak of m.e.p.ps was longer and more variable than that of similar-sized e.p.ps. At endplates where nerve regeneration was induced by mechanical crushing of the motor nerve the frequency of m.e.p.ps was reduced and their amplitude distribution was broader than normal. The distribution of times to peak of m.e.p.ps was considerably broader than that of quantal e.p.ps recorded at the same endplates. At neuromuscular junctions poisoned with botulinum toxin type A, spontaneous and evoked transmitter release were greatly reduced. The amplitude distribution of m.e.p.ps was wider than that of e.p.ps and the time to peak of e.p.ps was about twice as fast as and less variable than that of m.e.p.ps. To explain the observed differences in time to peak among m.e.p.ps and between m.e.p.ps and quantal e.p.ps we suggest that some m.e.p.ps, but not e.p.ps, originate from transmitter quanta released from sites at a greater distance from postsynaptic receptors or that the release or diffusion process for acetylcholine is more prolonged when producing some of the m.e.p.ps. Such mechanisms produce at normal junctions a small population of m.e.p.ps with prolonged times to peak, at regenerating junctions a greater proportion of such m.e.p.ps and in botulinum toxin poisoning a majority.  相似文献   

8.
4-Aminoquinoline (4-AQ) in concentrations around 200 micrometers induces, within minutes of its application to isolated mouse or rat neuromuscular junctions, the appearance of a population of miniature endplate potentials (m.e.p.ps) with a larger than normal amplitude, so-called giant m.e.p.ps (g.m.e.p.ps). With amplitudes 2-12 times the modal value of m.e.p.p. amplitude, the population of g.m.e.p.ps varied between 15 and 45% of the total population of m.e.p.ps. There was no increase in the frequency of m.e.p.ps but a positive correlation between the frequency of g.m.e.p.ps and the total frequency of m.e.p.ps. In many instances the rise time and decay time of g.m.e.p.ps were prolonged compared to normal. Elevated extracellular calcium concentrations increased the frequency of m.e.p.ps but had no effect on g.m.e.p.p. frequency. High extracellular potassium concentrations markedly increased m.e.p.p. frequency but failed to influence g.m.e.p.p. frequency. Similar observations were made with ethanol 0.1 M, ouabain 200 micrometers or black widow spider venom. Botulinum toxin type A markedly reduced total m.e.p.p. frequency but 4-AQ still induced g.m.e.p.ps. Nerve stimulation failed to release quanta corresponding to the g.m.e.p.ps. G.m.e.p.ps seemed to originate from quantal acetylcholine release from the nerve terminal since they were abolished by surgical denervation and by the addition of d-tubocurarine to the medium. Blockade of voltage-sensitive calcium or sodium channels by, respectively, manganese ions or tetrodotoxin failed to affect the appearance and the frequency of g.m.e.p.ps. The electrophysiological findings and a statistical analysis of the characteristics of the m.e.p.ps indicate that they belong to two populations. One population is accelerated by the depolarization-release coupling mechanism responsible for evoked transmitter release and is characterized by an amplitude distribution and a process in time that indicate that they correspond to releases occurring at 'active zones' in the nerve terminal. The second population of m.e.p.ps is uninfluenced by nerve terminal depolarization and transmembrane calcium fluxes. This population apparently originates from sites dispersed in the nerve terminal membrane and outside the 'active zones'. 4-AQ increases the frequency of this second m.e.p.p. population without affecting the first population.  相似文献   

9.
The aim of this work was to determine the relationship between peak twitch amplitude and sarcoplasmic reticulum (SR) Ca2+ content during changes of stimulation frequency in isolated canine ventricle, and to estimate the extent to which these changes were dependent upon sarcolemmal Na(+)-Ca2+ exchange. In physiological [Na+]o, increased stimulation frequency in the 0.2-2-Hz range resulted in a positive inotropic effect characterized by an increase in peak twitch amplitude and a decrease in the duration of contraction, measured as changes in isometric force development or unloaded cell shortening in intact muscle and isolated single cells, respectively. Action potentials recorded from single cells indicated that the inotropic effect was associated with a progressive decrease of action potential duration and a marked reduction in average time spent by the cell near the resting potential during the stimulus train. The frequency-dependent increase of peak twitch force was correlated with an increase of Ca2+ uptake into and release from the SR. This was estimated indirectly using the phasic contractile response to rapid (less than 1 s) lowering of perfusate temperature from 37 degrees C to 0-2 degrees C and changes of twitch amplitude resulting from perturbations in the pattern of electrical stimulation. Lowering [Na+]o from 140 to 70 mM resulted in an increase of contractile strength, which was accompanied by a similar increase of apparent SR Ca2+ content, both of which could be abolished by exposure to ryanodine (1 x 10(-8) M), caffeine (3 x 10(-3) M), or nifedipine (2 x 10(-6) M). Increased stimulation frequency in 70 mM [Na+]o resulted in a negative contractile staircase, characterized by a graded decrease of peak isometric force development or unloaded cell shortening. SR Ca2+ content estimated under identical conditions remained unaltered. Rate constants derived from mechanical restitution studies implied that the depressant effect of increased stimulation frequency in 70 mM [Na+]o was not a consequence of a decreased rate of refilling of a releasable pool of Ca2+ within the cell. These results demonstrate that frequency-dependent changes of contractile strength and intracellular Ca2+ loading in 140 mM [Na+]o require the presence of a functional sarcolemmal Na(+)-Ca2+ exchange process. The possibility that the negative staircase in 70 mM [Na+]o is related to inhibition of Ca(2+)-induced release of Ca2+ from the SR by various cellular mechanisms is discussed.  相似文献   

10.
Urease has been purified from the dehusked seeds of pigeonpea (Cajanus cajan L.) to apparent electrophoretic homogeneity with approximately 200 fold purification, with a specific activity of 6.24 x10(3) U mg(-1) protein. The enzyme was purified by the sequence of steps, namely, first acetone fractionation, acid step, a second acetone fractionation followed by gel filtration and anion-exchange chromatographies. Single band was observed in both native- and SDS-PAGE. The molecular mass estimated for the native enzyme was 540 kDa whereas subunit values of 90 kDa were determined. Hence, urease is a hexamer of identical subunits. Nickel was observed in the purified enzyme from atomic absorption spectroscopy with approximately 2 nickel ions per enzyme subunit. Both jack bean and soybean ureases are serologically related to pigeonpea urease. The amino acid composition of pigeonpea urease shows high acidic amino acid content. The N-terminal sequence of pigeonpea urease, determined up to the 20th residue, was homologous to that of jack bean and soybean seed ureases. The optimum pH was 7.3 in the pH range 5.0-8.5. Pigeonpea urease shows K(m) for urea of 3.0+/-0.2 mM in 0.05 M Tris-acetate buffer, pH 7.3, at 37 degrees C. The turnover number, k(cat), was observed to be 6.2 x 10(4) s(-1) and k(cat)/K(m) was 2.1 x 10(7) M(-1) s(-1). Pigeonpea urease shows high specificity for its primary substrate urea.  相似文献   

11.
In this paper, we attempt to develop a sensitive detection method for glucose with the combination of the unique optical property of quantum dots and the specificity of enzymatic reactions. With glucose and hydroquinone as substrates, benzoquinone that intensively quenches the photoluminescence of quantum dots can be produced via the catalysis of bienzyme (glucose oxidase and horseradish peroxidase) system. A relatively low detection limit of 1.0x10(-8)mol/L can be achieved. Two linear ranges from 1.0x10(-6) to 1.5x10(-4)M and from 1.5x10(-4) to 1.0x10(-3)M were obtained. For the detection of 1.0x10(-4)M glucose, six replicative measurements showed the reproducibility (R.S.D.) of 4.43%. The quantum dots-enzymes system possesses advantages of simple procedure without modification of quantum dots or immobilization of enzymes, low cost, high sensitivity and short detection times within several minutes.  相似文献   

12.
Summary The muscle fibers of brown and red chromatophores in the skin of the squid, Loligo opalescens, respond to motor nerve stimulation with non-propagating excitatory postsynaptic potentials (e.p.s.p.'s) of fluctuating amplitude. Depending on the strength of stimulation several size classes of e.p.s.p.'s are found, indicating polyneuronal innervation. Facilitation and summation are minimal even though the reversal potential of the e.p.s.p.'s is close to zero.Acetylcholine (ACh) and 5-hydroxytryptamine (5-HT) have no effect on membrane characteristics of the muscle fiber, but ACh greatly augments the spontaneous quantal release of transmitter [increase in the frequency of miniature postsynaptic potentials (m.p.s.p.'s)] and thereby causes tonic contraction (miniature tetanus). 5-HT reduces the frequency of miniature potentials and abolishes tonic contraction. Inhibition of cholinesterase by eserine does not affect the amplitude or time course of e.p.s.p.'s and of m.p.s.p.'s. High concentrations of cholinergic blocking agents (atropine, banthine) reduce the postsynaptic effects of nerve stimulation in some cases. The natural transmitter substance of the motoneurones may not be ACh. The action of 5-HT appears to be intracellular.Neighboring muscle fibers are electrically coupled through low resistance pathways. These are most likely provided by the close junctions that form part of the myo-muscular junctions. The specific membrane resistance of the regular muscle fiber membrane was found to range from 1,056 to 1,320 Ohm×cm2, that of the close junctions ranges from 12.8 to 22.6 Ohm×cm2. The area occupied by close junctions is small, however, and only 10% of the current injected into one cell passes into the next. Some of the e.p.s.p.'s observed in a given muscle fiber most likely represent the electrotonic spread of the e.p.s.p.'s of the neighbor fibers. Of the six classes of e.p.s.p.'s observed in some muscle fibers, only two may originate in these fibers themselves.Chromatophores in aged preparations often exhibit pulsations. These are caused by spike potentials arising within muscle fibers whose membranes have become electrically excitable. Each spike is preceded by a generator depolarization. The electrical coupling of neighboring muscle cells permits conduction of the spike potentials throughout the set of muscle fibers of a pulsating chromatophore. Altered conditions within such preparations also lead to tonic contractions and contractures that are not necessarily accompanied by electrical activity. Several arguments are presented in support of the hypothesis that the tonic condition of nerve terminals (characterized by enhanced spontaneous transmitter release) and of muscle fibers (characterized by inability to relax) is due to an abnormal condition of intracellular calcium (lack of Ca-binding by sarcoplasmic reticulum or other storage sites).No evidence could be found for an inhibitory innervation of the chromatophore muscles. The nerve-induced relaxation of tonically contracted muscle fibers is caused by the action of motoneurones.Preliminary experiments on muscle fibers of the anterior byssus retractor muscle of Mytilus support the hypothesis that the tonic behavior (catch) of other molluscan muscles is due to mechanisms similar to those found in the chromatophore muscles.This investigation was supported by Public Health Service Grant No. NB 04145 from the National Institute of Neurological Diseases and Blindness. We are grateful to the director of the Friday Harbor Laboratories, Prof. R. L. Fernald for providing space and facilities for this investigation.Supported by a Training Grant GM 1194 from the National Institute of General Medical Sciences.  相似文献   

13.
Water conductance of the cuticular membrane (CM) of sweet cherry (Prunus avium L. cv. Sam) fruit during stages II and III (31-78 days after full bloom, DAFB) was investigated by gravimetrically monitoring water loss through segments of the exocarp. Segments were mounted in stainless-steel diffusion cells, filled with 0.5 ml of deionized water and incubated for 8 h at 25 +/- 2 degrees C over dry silica. Conductance was calculated by dividing the amount of water transpired per unit surface area and time by the difference in water vapor concentration across the segment (23.07 g m(-3) at 25 degrees C). Fruit mass and fruit surface area increased 4.9- and 2.8-fold between 31 and 78 DAFB, respectively. However, CM mass per unit area decreased from 3.9 to 1.5 g m(-2) and percentage of total wax content remained constant at about 31%. Stomatal density decreased from 0.8 to 0.2 mm(-2) (31-78 DAFB). Total conductance of the CM on the fruit cheek (gtot.) remained constant during stage II of development (approx. 1.38 x 10(-4) m s(-1) from 31 to 37 DAFB), increased to 1.73 x 10(-4) m s(-1) during early stage III of fruit growth (43-64 DAFB) then decreased to 0.95 x 10(-4) m s(-1) at maturity (78 DAFB). Partitioning gtot. into cuticular (gcut.) and stomatal conductance (gsto.) revealed that the relative contribution of gcut. to gtot. increased linearly from 30% to 87% of gtot. between 31 and 78 DAFB. respectively. On a whole-fruit basis, g,tot. and gcut. consistently increased up to 64 DAFB, and decreased thereafter. A significant negative linear relationship was obtained between gcut. and CM thickness, but not between the permeability coefficient (p) and CM thickness. Further, p was positively related to strain rate, suggesting that strain associated with expansion of the fruit surface increased p.  相似文献   

14.
The effect of 24 hrs. water deprivation on spontaneous and evoked transmitter release was studied at flexor nerve terminals of control and lead-treated male C57BL mice. Miniature endplate potentials (MEPPs) and endplate potentials (EPPs) were recorded intracellularly from urethane-anesthetized (2 mg/g, i.p.) control and lead exposed mice in both hydrated and dehydrated conditions. Exposure to lead was made by i.p. injection of lead acetate (1.0 mg/kg) dissolved in a 5% glucose solution 24 hrs. prior to the experiment. Unimodal and bimodal MEPP frequencies decreased with dehydration, while small mode MEPPs remained unchanged and large mode MEPPs increased in frequency. EPP amplitude and quantal content were unchanged by dehydration. Lead treatment by itself reduced the frequency of unimodal and bimodal MEPPs but had no effect on the amplitude of EPPs or of quantal content. However a combination of dehydration and acute lead treatment reduced the frequency of unimodal, bimodal and large mode MEPPs and significantly reduced both EPP amplitude and quantal content. Dehydration apparently reveals an underlying neurotoxic action of lead at the neuromuscular junction. This raises a health concern that people subjected to both lead pollution and dehydration are at greater risk to lead poisoning of the neuromuscular junction.  相似文献   

15.
Reactive oxygen species production by bovine pulmonary alveolar macrophages was evaluated by a chemiluminescence assay utilizing luminol and opsonized zymosan. Incubation with dobutamine (5 x 10(-8) and 5 x 10(-7) M) or isoproterenol (5 x 10(-8) and 5 x 10(-7) M) prior to zymosan challenge significantly (p less than 0.05) increased the time for chemiluminescence to begin, and significantly decreased the level of maximum chemiluminescence. The agonists' inhibitory effects on maximum chemiluminescence were significantly reduced by pre-incubation with the appropriate antagonist (atenolol at 1 x 10(-6) M for dobutamine; and propranolol at 1 x 10(-6) M for isoproterenol). Salbutamol at 1 x 10(-6) M significantly reduced the level of maximum chemiluminescence only, but did not increase the time for chemiluminescence to begin. This effect was significantly reduced by the presence of the beta 2-antagonist ICI 118,551 at 1 x 10(-6) M. The results reveal the presence of beta 1- and beta 2-adrenoceptors on bovine pulmonary alveolar macrophages, and suggest that these receptors are important in the regulation of reactive oxygen species production by these cells.  相似文献   

16.
The electrical properties of neurons in the supraoptic nucleus (so.n.) have been studied in the hypothalamic slice preparation by intracellular and extracellular recording techniques, with Lucifer Yellow CH dye injection to mark the recording site as being the so.n. Intracellular recordings from so.n. neurons revealed them to have an average membrane potential of -67 +/- 0.8 mV (mean +/- s.e.m.), membrane resistance of 145 +/- 9 M omega with linear current-voltage relations from 40 mV in the hyperpolarizing direction to the level of spike threshold in the depolarizing direction. Average cell time constant was 14 +/- 2.2 ms. So.n. action potentials ranged in amplitude from 55 to 95 mV, with a mean of 76 +/- 2 mV, and a spike width of 2.6 +/- 0.5 ms at 30% of maximal spike height. Both single spikes and trains of spikes were followed by a strong, long-lasting hyperpolarization with a decay fitted by a single exponential having a time constant of 8.6 +/- 1.8 ms. Action potentials could be blocked by 10(-6) M tetrodotoxin. Spontaneously active so.n. neurons were characterized by synaptic input in the form of excitatory and inhibitory postsynaptic potentials, the latter being apparently blocked when 4 M KCl electrodes were used. Both forms of synaptic activity were blocked by application of divalent cations such as Mg2+, Mn2+ or Co2+. 74% of so.n. neurons fired spontaneously at rates exceeding 0.1 spikes per second, with a mean for all cells of 2.9 +/- 0.2 s-1. Of these cells, 21% fired slowly and continuously at 0.1 - 1.0 s-1, 45% fired continuously at greater than 1 Hz, and the remaining 34% fired phasically in bursts of activity followed by silence or low frequency firing. Spontaneously firing phasic cells showed a mean burst length of 16.7 +/- 4.5 s and a silent period of 28.2 +/- 4.2 s. Intracellular recordings revealed the presence of slow variations in membrane potential which modified the neuron's proximity to spike threshold, and controlled phasic firing. Variations in synaptic input were not observed to influence firing in phasic cells.  相似文献   

17.
The effect of PGE2 on neurotransmission in the canine tracheal strip dissected free of epithelium was studied in the single sucrose gap and organ bath. PGE2 was a potent inhibitor of the initiation of excitatory junction potentials (ejps) by just submaximal nerve stimulation. In a concentration of 10(-9) or 10(-8) M PGE2 nearly or completely abolished them. Contractile responses to field stimulation in the sucrose gap at 27 degrees C or in muscle baths at 37 degrees C were also reduced or abolished by PGE2 in the same dose range; reductions were greater at low frequency. Responses to acetylcholine were also depressed but significantly less than to field stimulation. These are consistent with major presynaptic as well as some postsynaptic inhibitory actions of PGE2. No evidence was obtained that endogenous PGE2 affected excitatory junction potentials and contractions; i.e. they were stable for hours and unaffected by indomethacin 10(-6) and 10(-5) M under our conditions. Post-stimulus potentiation of ejps amplitude, maximum at 10 s, was observed and became more marked after the first ejp had been markedly reduced or abolished by PGE2. This potentiation was unaffected by indomethacin. It was suggested that a presynaptic process inhibited by PGE2 might participate in this potentiation. The canine trachea is a useful preparation when studied under the experimental condition used here for study of effects of products of arachidonate on neurotransmission.  相似文献   

18.
The deconvolution method, i.e., reconstruction of noise-free discrete amplitude distributions of excitatory postsynaptic potentials (EPSPs), has been tested in computer experiments. A generalized quantal model without constraints on distribution of transmitter release probabilities (p) was used. Complex binomial amplitude distributions with a number of discrete components n between 2 and 10 and with different p were simulated. The distance between the discrete components (i.e., the quantum value, v) was determined from simulated distributions with the number of amplitudes N equal to 1000 or 100. For samples with N=100, mean v values were calculated from 10 distributions. The solutions obtained by deconvolution were close to (within ±20% of) the simulated v values when the standard deviation of the noise Sn0.5v. For Sn=0.5–2.0v, v grew in proportion to Sn and was overestimated. A similar correlation was found for v calculated from amplitudes of minimal EPSPs recorded from CA1 area neurons of guinea pig hippocampal slices. However, no significant correlation between v and Sn was found for v>135 µV, i.e., for estimates exceeding the total mean value. A substantial increase in the mean quantal content (m) with a relatively slight increase in v during longterm potentiation (LTP) was confirmed for those cases. Methods of elimination of erroneous v estimates were considered. Rejection of cases with v>2.5Sn (when N=1000) or v>3Sn (when N=100) eliminated erroneous estimates with a high probability but demanded very low noise levels. A new criterion for recognition of correct estimates is suggested. It is based on artificial contamination of the measured amplitudes by the Gaussian noise (noise addition) and on the double-step dependence of v on Sn described above. The solutions selected with this criterion also support a predominant increase of m during LTP with a slight growth of v.Translated from Neirofiziologiya, Vol. 25, No. 2, pp. 84–91, March–April, 1993.  相似文献   

19.
In the wheat cylinder bioassay technique as previously usedhere 5 sections have been enclosed in a 2 x 38 in, assay tubetogether with 0.5 ml. of the test solution. A method developedfor estimating the amount of carbon dioxide which accumulatesin these tubes through the respiration of the enclosed sectionshas shown that the level can rise to 20 per cent. after 24 hrs.at 25°C. In the presence of a 100 p.p.m. IAA(6x10-4M.) testsolution, growth of 5 enclosed sections is depressed from 8hrs. onwardas and they eventually shrink, releasing their accumulatedIAA back into the solution. The growth of sections under various gas mixtures of carbondioxide in air has also been followed and these experimentsshow that section length is reduced approximately lineraly withrespect to increasing carbon dioxide concentration up to 20per cent. in air, both in the presence and absence of a 100p.p.m. IAA solution. The slope of the fitted regression line,however, is much steeper when the test solution contains IAA—i.e.there is a large interaction. In the presence of IAA, growth-time data show that a reductionin the growth rate, as compared with that in normal air, canbe detected after only 4 hrs, at the highest carbon dioxideconcentration. In the absence of IAA, high concentrations ofcarbon dioxide accelerate growth during the first 8 hrs. ofthe assay but depress it later. The mechanism of action of this interaction is unknown but itis not shown at very high concentrations of IAA, e.g. 1,000p.p.m. (6x10-3M.).  相似文献   

20.
The aim of this research is the study of the modification of synaptic activity caused by ethanol in the rat sciatic nerve-extensor digitorum longus (EDL) muscle preparation. For such a purpose, intracellular recordings have been carried out, keeping the muscle immersed in normal Ringer solution and in Ringer solutions containing ethanol at different concentrations up to 0,8 M. Therefore, the resting potential of muscle cells and the frequency of m.e.p.p.s were measured. Qualitative observations of m.e.p.p.s shape were also carried out. Ethanol increases the frequency of m.e.p.p.s in the rat sciatic nerve - EDL muscle preparation. The logarithm of relative frequency (frequency in Ringer solution with ethanol/frequency in normal Ringer solution) is linear with respect to the concentration of ethanol, with a slope of 1.44. Furthermore, ethanol increases the amplitude and lengthens the time course of m.e.p.p.s. The muscle cells undergo a hyperpolarization of about 2-3% at the lowest concentrations of ethanol tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号