首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract: The kinesin family of motor proteins comprises at least two isoforms of conventional kinesin encoded by different genes: ubiquitous kinesin, expressed in all cells and tissues, and neuronal kinesin, expressed exclusively in neuronal cells. In the present study, we have analyzed the expression of the two kinesin isoforms by immunochemistry at different stages of development of the rat CNS. We have found that the level of expression of neuronal kinesin is five to eight times higher in developing than in adult rat brains, whereas that of ubiquitous kinesin is only ∼2.5 times higher in maturing versus adult brains. Moreover, we have studied the distribution of neuronal kinesin by light microscopic immunocytochemistry in the rat brain at different postnatal ages and have found this protein not only to be more highly expressed in juvenile than in adult rat brains but also to show a different pattern of distribution. In particular, tracts of axonal fibers were clearly stained at early postnatal stages of development but were markedly unlabeled in adult rat brains. Our results indicate that the expression of at least one isoform of conventional neuron-specific kinesin is up-regulated in the developing rat CNS and suggest that this protein might play an important role in microtubule-based transport during the maturation of neuronal cells in vivo.  相似文献   

3.
目的研究生长休止蛋白7(Gas7)在大鼠海马和齿状回不同发育阶段的表达。方法采用免疫组织化学方法观察Gas7在SD大鼠胚胎第18d(E18)、新生(P0)、生后第7d(P7)、P14、P21和成年海马和齿状回中的表达和分布。结果在大鼠脑海马和齿状回部位的冠状切片上,Gas7免疫反应阳性产物主要表达在海马的锥体细胞、齿状回的颗粒细胞和门区的多形层细胞。随着发育的进程,在海马,Gas7较早表达在CA3区,其次是CA2和CA1区;在齿状回,Gas7在外臂的表达早于内臂,在颗粒细胞层的表达是按先外层后内层的顺序。在围生期,Gas7在海马和齿状回各区的表达逐渐增强,至P14达到高峰,后逐渐降低,至P21其表达强度和分布趋于恒定至成年水平。结论 Gas7在大鼠海马和齿状回发育过程中的动态表达具有时间和空间上的特异性,提示Gas7可能参与了海马和齿状回形态形成和功能成熟的调控。  相似文献   

4.
The present study was conducted to investigate the mRNA expression of the two estrogen receptor (ER) subtypes ERalpha and ERbeta in the brain of Japanese quail embryos. We found expression of both ERalpha and ERbeta mRNA in homogenate of whole head from 6-day-old embryos, and in brain homogenate from 9- and 12-day-old embryos using real-time PCR. In 9- and 12-day-old embryos the ERalpha expression was higher in females than in males. We used in situ hybridization to examine the localization of the ERs in sections from male and female brains on day 9 and day 17 of incubation. On day 9, ERbeta mRNA was detected in the developing medial preoptic nucleus (POM), in the medial part of the bed nucleus of the striae terminalis (BSTm), and in the tuberal region of the hypothalamus. ERalpha signal could not be detected in the POM, the BSTm or the tuberal region in 9-day-old embryos. In 17-day-old embryos, ERbeta was highly expressed in the preoptic area, the nucleus Taeniae of the Amygdala (TnA) and the BSTm. Expression of ERalpha mRNA was detected in parts of the preoptic area and in the telencephalic TnA. No ERalpha expression was found in the BSTm, an area known to be sexually dimorphic in adults. The high embryonic expression of ERbeta in brain areas linked to sexual behavior indicates that ERbeta plays a role in sexual differentiation of the Japanese quail brain.  相似文献   

5.
6.
We cloned a cDNA encoding a novel mouse protein whose human homolog has been annotated in GenBank as a regulatory subunit of protein phosphatase 1, PPP1R16B. Both the primary protein sequence and the domain structure are highly conserved between PPP1R16B and proteins of unknown function from other species, such as Caenorhabditis elegans and Drosphila melanogaster. Besides a protein phosphatase 1 interaction motif, mouse PPP1R16B (mPPP1R16B) and the related proteins contain ankyrin repeats that may constitute binding sites for other proteins and C-terminal prenylation signals that are likely to target the proteins to the plasma membrane. In the adult mouse, Ppp1r16b mRNA is expressed in most tissues examined, with highest expression levels in kidney and brain. In the brain, Ppp1r16b message is particularly enriched in the olfactory bulb, striatum, dentate gyrus, and cerebellum. During postnatal cerebellar development, Ppp1r16b mRNA expression levels increase gradually and are maximal around postnatal day 30. In situ hybridization revealed that Ppp1r16b message is found in both the cell bodies and the dendrites in Purkinje cells of the cerebellum and granule neurons of the dentate gyrus.  相似文献   

7.
Heat shock proteins (Hsps) are a group of highly conserved proteins, that are constitutively expressed in most cells under normal physiological conditions. Previous work from our laboratory has shown that neurons in the adult brain exhibit high levels of Hsp90 and Hsc70 mRNA and protein, as well as basal levels of Hsp70 mRNA. We have now investigated the expression of Hsp90, Hsc70, Hsp60 and Hsp70 in neural and non-neural tissues of the rat during postnatal development, a time of extensive cell differentiation. Western blot analysis revealed constitutive expression of these Hsps early in postnatal development. Developmental profiles of these Hsps suggest that they are differentially regulated during postnatal development of the rat. For example, while levels of Hsp90 decrease somewhat in certain developing brain regions, levels of Hsp60 show a developmental increase, and Hsc70 protein is abundant throughout postnatal neural development. Low basal levels of Hsp70 are also observed in the developing and adult brain. A pronounced decrease in Hsp90 and Hsc70 was observed during postnatal development of the kidney while levels of Hsp60 increased. In addition, tissue-specific differences in the relative levels of these Hsps between brain and non-brain regions were found. Immunocytochemical studies demonstrated a neuronal localization of Hsp90, Hsc70 and Hsp60 at all stages of postnatal development examined as well as in the adult, suggesting a role for Hsps in both the developing and fully differentiated neuron. The developmental expression of subunit IV of cytochrome oxidase was similar to that of Hsp60, a protein localized predominantly to mitochondria.  相似文献   

8.
Ack1 is a non-receptor tyrosine kinase that is highly expressed in the adult central nervous system (CNS). Here, we studied the distribution of Ack1 mRNA throughout the development of mouse CNS. Expression was detected in all areas of the brain but especially high levels were observed in the neocortex, hippocampus, and cerebellum. Interestingly, expression levels were prominent in areas of proliferation such as the subventricular zone and areas that originate other structures such the pontine nucleus and the ganglionic eminence. During development, several areas showed an increase in Ack1 expression, especially the dentate gyrus and CA3 in the hippocampus, layer V in the neocortex, and the Purkinje cell layer in the cerebellum. These results demonstrate that this kinase is up-regulated during development and that it is expressed in proliferative areas and in migratory pathways in the developing brain.  相似文献   

9.
10.
11.
A regional Northern blot analysis demonstrated that the highest levels of NF-L mRNA in the adult mouse brain are present in brain stem followed by mid-brain, with lower levels found in neocortex, cerebellum, and hippocampus. The study was extended to the cellular level over the time course of postnatal development using in situ hybridization. This developmental analysis revealed that the expression of NF-L mRNA closely follows the differentiation pattern of many large neurons during postnatal neurogenesis. Neurons which differentiate early such as Purkinje, mitral, pyramidal, and large neurons of brain stem and thalamic nuclei, expressed high levels of NF-L mRNA at postnatal day 1. Early expression of NF-L mRNA may be required for the maintenance of the extensive neurofilament protein networks that are detected within the axons of larger neurons. Smaller neurons which differentiate later, such as dentate gyrus granule cells, small pyramidal and granule cells of the neocortex, and granule cells of the cerebellum, exhibit a delayed expression of NF-L mRNA.To whom to address reprint requests.  相似文献   

12.
Notch signaling plays a pivotal role in the regulation of vertebrate neurogenesis. However, in vitro experiments suggest that Notch1 may also be involved in the regulation of later stages of brain development. We have addressed putative roles in the central nervous system by examining the expression of Notch signaling cascade components in the postnatal mouse brain. In situ mRNA hybridization revealed that Notch1 is associated with cells in the subventricular zone, the dentate gyrus and the rostromigratory stream, all regions of continued neurogenesis in the postnatal brain. In addition, Notch1 is expressed at low levels throughout the cortex and olfactory bulb and shows striking expression in the cerebellar Purkinje cell layer. The Notch ligands, including Delta-like1 and 3 and Jagged1 and Jagged2, show distinct expression patterns in the developing and adult brain overlapping that of Notch1. In addition, the downstream targets of the Notch signaling cascade Hes1, Hes3, Hes5 and the intrinsic Notch regulatory proteins Numb and Numblike also show active signaling in distinct brain regions. Hes5 coincides with the majority of Notch1 expression and can be detected in the cerebral cortex, cerebellum and putative germinal zones. Hes3, on the other hand, shows a restricted expression in cerebellar Purkinje cells. The distribution of Notch1 and its putative ligands suggest distinct roles in specific subsets of cells in the postnatal brain including putative stem cells and differentiated neurons.  相似文献   

13.
Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippocampal slices derived from P5 mice brains. Taurine increased cell proliferation without having a significant effect on neural differentiation both in cultured P5 NPCs as well as cultured hippocampal slices and in vivo. Expression level analysis of synaptic proteins revealed that taurine increases the expression of Synapsin 1 and PSD 95. We also found that taurine stimulates the phosphorylation of ERK1/2 indicating a possible role of the ERK pathway in mediating the changes that we observed, especially in proliferation. Taken together, our results demonstrate a role for taurine in neural stem/progenitor cell proliferation in developing brain and suggest the involvement of the ERK1/2 pathways in mediating these actions. Our study also shows that taurine influences the levels of proteins associated with synapse development. This is the first evidence showing the effect of taurine on early postnatal neuronal development using a combination of in vitro, ex-vivo and in vivo systems.  相似文献   

14.
甲低对新生早期大鼠海马及齿状回Goα mRNA的影响   总被引:7,自引:0,他引:7  
目的:研究甲状腺功能低下(甲减)对围生早期大鼠海马及齿状回Goα mRNA表达的影响。方法:采用地高辛标记寡核苷酸探针原位杂交技术,观察7d龄围生期甲减及正常Wistar大鼠海马CA1-4区及齿状回Goα mRNA的表达状况。结果:7d龄甲状腺激素对围生早期海巴及齿状回Goα 基因的表达具有负调节作用。  相似文献   

15.
In premature infants, glucocorticoids ameliorate chronic lung disease, but have adverse effects on long-term neurological function. Glucocorticoid excess promotes free radical overproduction. We hypothesised that the adverse effects of postnatal glucocorticoid therapy on the developing brain are secondary to oxidative stress and that antioxidant treatment would diminish unwanted effects. Male rat pups received a clinically-relevant tapering course of dexamethasone (DEX; 0.5, 0.3, and 0.1 mg x kg(-1) x day(-1)), with or without antioxidant vitamins C and E (DEXCE; 200 mg x kg(-1) x day(-1) and 100 mg x kg(-1) x day(-1), respectively), on postnatal days 1-6 (P1-6). Controls received saline or saline with vitamins. At weaning, relative to controls, DEX decreased total brain volume (704.4±34.7 mm(3) vs. 564.0±20.0 mm(3)), the soma volume of neurons in the CA1 (1172.6±30.4 μm(3) vs. 1002.4±11.8 μm(3)) and in the dentate gyrus (525.9±27.2 μm(3) vs. 421.5±24.6 μm(3)) of the hippocampus, and induced oxidative stress in the cortex (protein expression: heat shock protein 70 [Hsp70]: +68%; 4-hydroxynonenal [4-HNE]: +118% and nitrotyrosine [NT]: +20%). Dexamethasone in combination with vitamins resulted in improvements in total brain volume (637.5±43.1 mm(3)), and soma volume of neurons in the CA1 (1157.5±42.4 μm(3)) and the dentate gyrus (536.1±27.2 μm(3)). Hsp70 protein expression was unaltered in the cortex (+9%), however, 4-HNE (+95%) and NT (+24%) protein expression remained upregulated. Treatment of neonates with vitamins alone induced oxidative stress in the cortex (Hsp70: +67%; 4-HNE: +73%; NT: +22%) and in the hippocampus (NT: +35%). Combined glucocorticoid and antioxidant therapy in premature infants may be safer for the developing brain than glucocorticoids alone in the treatment of chronic lung disease. However, antioxidant therapy in healthy offspring is not recommended.  相似文献   

16.
Cytochrome P450 (CYP) 2D6 is expressed in liver, brain and other extrahepatic tissues where it metabolizes a range of centrally acting drugs and toxins. As ethanol can induce CYP2D in rat brain, we hypothesized that CYP2D6 expression is higher in brains of human alcoholics. We examined regional and cellular expression of CYP2D6 mRNA and protein by RT-PCR, Southern blotting, slot blotting, immunoblotting and immunocytochemistry. A significant correlation was found between mean mRNA and CYP2D6 protein levels across 13 brain regions. Higher expression was detected in 13 brain regions of alcoholics (n = 8) compared to nonalcoholics (n = 5) (anovap < 0.0001). In hippocampus this was localized in CA1-3 pyramidal cells and dentate gyrus granular neurons. In cerebellum this was localized in Purkinje cells and their dendrites. Both of these brain regions, and these same cell-types, are known to be susceptible to alcohol damage. For one case, a poor metabolizer (CYP2D6*4/*4), there was no detectable CYP2D6 protein, confirming the specificity of the antibody used. These data suggest that in alcoholics elevated brain CYP2D6 expression may contribute to altered sensitivity to centrally acting drugs and to the mediation of neurotoxic and behavioral effects of alcohol.  相似文献   

17.
Neurogenesis in the hippocampal dentate gyrus occurs constitutively throughout postnatal life. Adult neurogenesis includes a multistep process that ends with the formation of a postmitotic and functionally integrated new neuron. During adult neurogenesis, various markers are expressed, including GFAP, nestin, Pax6, polysialic acid-neural cell adhesion molecule (PSA-NCAM), neuronal nuclei (NeuN), doublecortin, TUC-4, Tuj-1, and calretinin. Prosaposin is the precursor of saposins A–D; it is found in various organs and can be excreted. Strong prosaposin expression has been demonstrated in the developing brain including the hippocampus, and its neurotrophic activity has been proposed. This study investigated changes in prosaposin in the dentate gyrus of young and adult rats using double immunohistochemistry with antibodies to prosaposin, PSA-NCAM, and NeuN. Prosaposin immunoreactivity was intense in the dentate gyrus at postnatal day 3 (P3) and P7, but decreased gradually after P14. In the dentate gyrus at P28, immature PSA-NCAM-positive neurons localized exclusively in the subgranular zone were prosaposin-negative, whereas mature Neu-N-positive neurons were positive for prosaposin. Furthermore, these prosaposin-negative immature neurons were saposin B-positive, suggesting that the neurons take up and degrade prosaposin. In situ hybridization assays showed that prosaposin in the adult dentate gyrus is dominantly the Pro+9 type, a secreted type of prosaposin. These results imply that prosaposin secreted from mature neurons stimulates proliferation and maturation of immature neurons in the dentate gyrus.  相似文献   

18.
We isolated chromosome band-specific human fetal brain cDNAs by the microdissection mediated cDNA capture method, and localized these cDNA using in situ hybridization histochemistry with developing rat brain sections. Uni-Amp cDNAs were prepared from an 18-week old human fetal brain, and hybridized to human metaphase chromosomes. Eight Uni-Amp cDNAs, hybridized to chromosome band 1q25 or 8q24.1, were recovered by microdissection and PCR amplification with Uni-Amp primers. Among these cDNAs, two novel genes (FB113 of 8q24.1 and FB134 of 1q25) showed a temporospatially interesting expression pattern in the developing rat brains. The expression of FB113 was under dynamic regulation in the developing granule cells of cerebellum and dentate gyrus. FB134 showed a nervous tissue specific expression pattern and an exclusively prominent expression in the developing presubiculum and parasubiculum. By the fluorescence in situ hybridization using human genomic DNAs, FB113 and FB134 were mapped back to the human chromosome bands 8q24.1 and 1q25, respectively. These results indicate that combined application of the microdissection mediated cDNA capture method and in situ hybridization histochemistry can be used for the isolation of chromosomal band-specific genes related to brain development or human genetic diseases.  相似文献   

19.
Thyroid hormones are major regulators of postnatal brain development. Thyroid hormones act through nuclear receptors to modulate the expression of specific genes in the brain. We have used microarray analysis to identify novel responsive genes in 14-day-old hypothyroid rat brains, and discovered that synaptosomal-associated protein of 25 kDa (SNAP-25) was one of the thyroid hormone-responsive genes. SNAP-25 is a presynaptic plasma membrane protein and an integral component of the vesicle docking and fusion machinery mediating secretion of neurotransmitters and is required for neuritic outgrowth and synaptogenesis. Using microarray analysis we have shown that SNAP-25 was down-regulated in the hypothyroid rat brain compared with the age-matched controls. Real-time RT-PCR and western blotting analysis confirmed that SNAP-25 mRNA and protein levels decreased significantly in the developing hypothyroid rat brain. Our data suggest that in the developing rat brain, SNAP-25 expression is regulated by thyroid hormone, and thyroid hormone deficiency can cause decreased expression of SNAP-25 and this may on some level account for the impaired brain development seen in hypothyroidism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号