首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
The foodborne pathogen Bacillus cereus can form biofilms on various food contact surfaces, leading to contamination of food products. To study the mechanisms of biofilm formation by B. cereus, a Tn5401 library was generated from strain UW101C. Eight thousand mutants were screened in EPS, a low nutrient medium. One mutant (M124), with a disruption in codY, developed fourfold less biofilm than the wild-type, and its defective biofilm phenotype was rescued by complementation. Addition of 0.1% casamino acids to EPS prolonged the duration of biofilms in the wild-type but not codY mutant. When decoyinine, a GTP synthesis inhibitor, was added to EPS, biofilm formation was decreased in the wild-type but not the mutant. The codY mutant produced three times higher protease activity than the wild-type. Zymogram and SDS-PAGE data showed that production of the protease (∼130 kDa) was repressed by CodY. Addition of proteinase K to EPS decreased biofilm formation by the wild-type. Using a dpp-lacZ fusion reporter system, it was shown that that the B. cereus CodY can sense amino acids and GTP levels. These data suggest that by responding to amino acids and intracellular GTP levels CodY represses production of an unknown protease and is involved in biofilm formation.  相似文献   

3.
Biocontrol of the root-knot nematode Meloidogyne javanica was studied on lentil using plant growth-promoting rhizobacteria (PGPR) namely Pseudomonas putida, P. alcaligenes, Paenibacillus polymyxa and Bacillus pumilus and root nodule bacterium Rhizobium sp. Pseudomonas putida caused greater inhibitory effect on the hatching and penetration of M. javanica followed by P. alcaligenes, P. polymyxa and B. pumilus. Inoculation of any PGPR species alone or together with Rhizobium increased plant growth both in M. javanica-inoculated and -uninoculated plants. Inoculation of Rhizobum caused greater increase in plant growth than caused by any species of plant growth-promoting rhizobacteria in nematode-inoculated plants. Among PGPR, P. putida caused greater increase in plant growth and higher reduction in galling and nematode multiplication followed by P. alcaligenes, P. polymyxa and B. pumilus. Combined use of Rhizobium with any species of PGPR caused higher reduction in galling and nematode multiplication than their individual inoculation. Use of Rhizobium plus P. putida caused maximum reduction in galling and nematode multiplication followed by Rhizobium plus P. alcaligens. Pseudomonas putida caused greater root colonization and siderophore production followed by P. alcaligenes, P. polymyxa and B. pumilus. Analysis of the protein bands of these four species by SDS-PAGE revealed that P. putida had a different protein band profile compared to the protein profiles of P. alcaligenes, P. polymyxa and B. pumilus. However, the protein profiles of P. acaligenes, P. polymyxa and B. pumilus were similar.  相似文献   

4.
The vhb gene encoding Vitreoscilla haemoglobin (VHb) was transferred to barley with the aim of studying the role of oxygen availability in germination and growth. Previous findings indicate that VHb expression improves the efficiency of energy generation during oxygen-limited growth, and germination is known to be an energy demanding growth stage during which the embryos also suffer from oxygen deficiency. When subjected to oxygen deficiency, the roots of vhb-expressing barley plants showed a smaller increase in alcohol dehydrogenase (ADH) activity than those of the control plants. This indicates that VHb plants experienced less severe oxygen deficiency than the control plants, possibly due to the ability of VHb to substitute ADH for recycling NADH and maintaining glycolysis. In contrast to previous findings, we found that constitutive vhb expression did not improve the germination rate of barley kernels in any of the conditions studied. In some cases, vhb expression even slowed down germination slightly. VHb production also appeared to restrict root formation in young seedlings. The adverse effects of VHb on germination and root growth may be related to its ability to scavenge nitric oxide (NO), an important signal molecule in both seed germination and root formation. Because NO has both cytotoxic and stimulating properties, the effect of vhb expression in plants may depend on the level and role of endogenous NO in the conditions studied. VHb production also affected the levels of endogenous barley haemoglobin, which may explain the relatively moderate effects of VHb in this study.  相似文献   

5.
6.
Strains of Enterobacter cloacae show promise as biological control agents for Pythium ultimum-induced damping-off on cucumber and other crops. Enterobacter cloacae M59 is a mini-Tn5 Km transposon mutant of strain 501R3. Populations of M59 were significantly lower on cucumber roots and decreased much more rapidly than those of strain 501R3 with increasing distance from the soil line. Strain M59 was decreased or deficient in growth and chemotaxis on most individual compounds detected in cucumber root exudate and on a synthetic cucumber root exudate medium. Strain M59 was also slightly less acid resistant than strain 501R3. Molecular characterization of strain M59 demonstrated that mini-Tn5 Km was inserted in cyaA, which encodes adenylate cyclase. Adenylate cyclase catalyzes the formation of cAMP and cAMP levels in cell lysates from strain M59 were approximately 2% those of strain 501R3. Addition of exogenous, nonphysiological concentrations of cAMP to strain M59 restored growth (1 mM) and chemotaxis (5 mM) on synthetic cucumber root exudate and increased cucumber seedling colonization (5 mM) by this strain without serving as a source of reduced carbon, nitrogen, or phosphorous. These results demonstrate a role for cyaA in colonization of cucumber roots by Enterobacter cloacae.  相似文献   

7.
Lin X  Minamisawa N  Takechi K  Zhang W  Sato H  Takio S  Tsukaya H  Takano H 《Planta》2008,228(4):601-608
ANGUSTIFOLIA (AN), a plant homolog of C-terminal binding protein, controls the polar elongation of leaf cells and the trichome-branching pattern in Arabidopsis thaliana. In the present study, degenerate PCR was used to isolate an ortholog of AN, referred to as LgAN, from larch (Larix gmelinii). The LgAN cDNA is predicted to encode a protein of 646 amino acids that shows striking sequence similarity to AN proteins from other plants. The predicted amino acid sequence has a conserved NAD-dependent 2-hydroxy acid dehydrogenase (D2-HDH) motif and a plant AN-specific LxCxE/D motif at its N-terminus, as well as a plant-specific long C-terminal region. The LgAN gene is a single-copy gene that is expressed in all larch tissues. Expression of the LgAN cDNA rescued the leaf width and trichome-branching pattern defects in the angustifolia-1 (an-1) mutant of Arabidopsis, showing that the LgAN gene has effects complementary to those of AN. These results suggest that the LgAN gene has the same function as the AN gene.  相似文献   

8.
Summary A liquid-based assay was used to evaluate the ability of Yersinia pseudotuberculosis to form a bacterial biofilm on the nematode Caenorhabditis elegans. After 3 days of incubation in the liquid assay a biofilm was clearly visible by light microscopy on both the head and vulva region of the worms. At times, the biofilm formation on the vulva appeared to prevent the laying of eggs by the adult hermaphrodite; the eggs would later hatch inside of the worm. One possible explanation for the biofilm formation observed on the vulva may be the increased motion of the cuticle surrounding the vulva when the worm is immersed in a liquid culture. This is the first report of biofilm formation on the vulva of C. elegans.  相似文献   

9.
Culture filtrates of Beauveria bassiana at different concentrations were evaluated for nematicidal activity against the northern root knot nematode (Meloidogyne hapla); bioassays included egg hatching, mortality and infectivity on tomato plants in pots under glasshouse conditions. The percentage mortality and inhibition of hatching of root-knot nematode were directly proportional to the concentration of culture filtrates of B. bassiana. Soil drenching with culture filtrate of B. bassiana significantly reduced nematode population densities in soil and in the roots and subsequent gall formation and egg-mass production by M. hapla under glasshouse conditions.  相似文献   

10.
11.
12.
The thale cress, Arabidopsis thaliana, is considered to be an important model species in studying a suite of evolutionary processes. However, the species has been criticized on the basis of its comparatively small size at maturity (and consequent limitations in the amount of available biomass for herbivores) and on the duration and timing of its life cycle in nature. In the laboratory, we studied interactions between A. thaliana and the cabbage butterfly, Pieris rapae, in order to determine if plants are able to support the complete development of the herbivore. Plants were grown in pots from seedlings in densities of one, two, or four per pot. In each treatment, one, two, or five newly hatched larvae of P. rapae were placed on fully developed rosettes of A. thaliana. In a separate experiment, the same densities of P. rapae larvae were reared from hatching on single mature cabbage (Brassica oleracea) plants. Pupal fresh mass and survival of P. rapae declined with larval density when reared on A. thaliana but not on B. oleracea. However, irrespective of larval density and plant number, some P. rapae were always able to complete development on A. thaliana plants. A comparison of the dry mass of plants in different treatments with controls (= no larvae) revealed that A. thaliana partially compensated for plant damage when larval densities of P. rapae were low. By contrast, single cress plants with 5 larvae generally suffered extensive damage, whereas damage to B. oleracea plants was negligible. Rosettes of plants that were monitored in spring, when A. thaliana naturally grows, were not attacked by any insect herbivores, but there was often extensive damage from pulmonates (slugs and snails). Heavily damaged plants flowered less successfully than lightly damaged plants. Small numbers of generalist plant-parasitic nematodes were also recovered in roots and root soil. By contrast, plants monitored in a sewn summer plot were heavily attacked by insect herbivores, primarily flea beetles (Phyllotreta spp.). These results reveal that, in natural populations of A. thaliana, there is a strong phenological mismatch between the plant and most of its potential specialist insect herbivores (and their natural enemies). However, as the plant is clearly susceptible to attack from non-insect generalist invertebrate herbivores early in the season, these may be much more suitable for studies on direct defense strategies in A. thaliana.  相似文献   

13.
Bacterial blight (BB) of rice, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most devastating bacterial disease in rice. A virulence-attenuated mutant strain HNU89K9 of X. oryzae pv. oryzae (KACC10331), with a transposon insertion in the pilQ gene was used for this study. The pilQ was involved in the gene cluster pilMNOPQ of the Xoo genome. Growth rate of the pilQ mutant was similar to that of wild-type. At level of amino acids, PilQ of Xoo showed that a high sequence identities more than 94% and 70% to Xanthomonas species and to Xyllela fastidiosa, respectively but a low sequence homology less than 30% to other bacterial species. The twitching motility forming a marginal fringe on PSA media was observed on colony of the wild-type strain KACC10331, but not in mutant HNU89K9. Wild-type Xoo cells formed a biofilm on the surface of the PVC plastic test tube, while the mutant strain HNU89K9 did not form a biofilm. The results suggest that the pilQ gene of X. oryzae pv. oryzae plays a critical role in pathogenicity, twitching motility, and biofilm formation.  相似文献   

14.
Salicylic acid (SA) and its glucoside (SAG) were detected in xylem sap of Brassica napus by HPLC–MS. Concentrations of SA and SAG in xylem sap from the root and hypocotyl of the plant, and in extracts of shoots above the hypocotyl, increased after infection with the vascular pathogen Verticillium longisporum. Both concentrations were correlated with disease severity assessed as the reduction in shoot length. Furthermore, SAG levels in shoot extracts were correlated with the amount of V. longisporum DNA in the hypocotyls. Although the concentration of SAG (but not SA) in xylem sap of infected plants gradually declined from 14 to 35 days post infection, SAG levels remained significantly higher than in uninfected plants during the whole experiment. Jasmonic acid (JA) and abscisic acid (ABA) levels in xylem sap were not affected by infection with V. longisporum. SA and SAG extend the list of phytohormones potentially transported from root to shoot with the transpiration stream. The physiological relevance of this transport and its contribution to the distribution of SA in plants remain to be elucidated.  相似文献   

15.
Plant aquaporins are believed to facilitate water transport across cell membranes. However, the relationship between aquaporins and drought resistance in plants remains unclear. VfPIP1, a putative aquaporin gene, was isolated from Vicia faba leaf epidermis, and its expression was induced by abscisic acid (ABA). Our results indicated that the VfPIP1 protein was localized in the plasma membrane, and its expression in V. faba was induced by 20% polyethylene glycol 6000. To further understand the function of VfPIP1, we obtained VfPIP1-expressing transgenic Arabidopsis thaliana plants under the control of the CaMV35S promoter. As compared to the wild-type control plants, the transgenic plants exhibited a faster growth rate, a lower transpiration rate, and greater drought tolerance. In addition, the stomata of the transgenic plants closed significantly faster than those of the control plants under ABA or dark treatment. These results suggest that VfPIP1 expression may improve drought resistance of the transgenic plants by promoting stomatal closure under drought stress.  相似文献   

16.
17.
A Sebacinales species was recovered from a clone library made from a pooled rhizosphere sample of Nicotiana attenuata plants from 14 native populations. Axenic cultures of the related species, Piriformospora indica and Sebacina vermifera, were used to examine their effects on plant performance. Inoculation of N. attenuata seeds with either fungus species stimulated seed germination and increased growth and stalk elongation. S. vermifera inoculated plants flowered earlier, produced more flowers and matured more seed capsules than did non-inoculated plants. Jasmonate treatment during rosette-stage growth, which slows growth and elicits herbivore resistance traits, erased differences in vegetative, but not reproductive performance resulting from S. vermifera inoculation. Total nitrogen and phosphorous contents did not differ between inoculated and control plants, suggesting that the performance benefits of fungal inoculation did not result from improvements in nutritional status. Since the expression of trypsin proteinase inhibitors (TPI), defensive proteins which confer resistance to attack from Manduca sexta larvae, incur significant growth and fitness costs for the plant, we examined the effect of S. vermifera inoculation on herbivore resistance and TPI activity. After 10 days of feeding on S. vermifera-inoculated plants, larval mass was 46% higher and TPI activity was 48% lower than that on non-inoculated plants. These results suggest that Sebacina spp. may interfere with defense signaling and allow plants to increase growth rates at the expense of herbivore resistance mediated by TPIs.  相似文献   

18.
The genetic regulation of programmed cell death (PCD) is well characterized in animal systems, but largely unresolved in plants. This research was designed to identify plant genes that can suppress PCD triggered in plants by Fumonisin B1 (FB1). Agrobacterium rhizogenes was used to transform individual members of a cDNA library into tomato roots, which were then screened for resistance to FB1. Cellular changes elicited during FB1-induced PCD include chromatin condensation, fragmentation into pycnotic DNA bodies, TUNEL positive reactions, ROS accumulation, and eventual loss of membrane integrity. Several cDNA library members collectively overexpressed in a transformed root population revealed PCD suppressive action and were recovered by PCR. One of the FB1 suppressive genes was homologous to metallothionein, and shared sequence homology to the animal ortholog reported to suppress PCD through interference with formation or activity of reactive oxygen species (ROS). The metallothionein recovered in this screen suppressed ROS accumulation in FB1-treated roots and prevented symptoms of PCD. Anti-PCD genes recovered by this screen represent potential sources of resistance to PCD-dependent plant diseases, while the screen should be useful to identify genes capable of suppressing PCD triggered by other effectors, including those expressed by root pathogens during infection.  相似文献   

19.
In angiosperm flower development the identity of the floral organs is determined by the A, B and C factors. Here we present the characterisation of three homologues of the A class gene APETALA2 (AP2) from the conifer Picea abies (Norway spruce), Picea abies APETALA2 LIKE1 (PaAP2L1), PaAP2L2 and PaAP2L3. Similar to AP2 these genes contain sequence motifs complementary to miRNA172 that has been shown to regulate AP2 in Arabidopsis. The genes display distinct expression patterns during plant development; in the female-cone bud PaAP2L1 and PaAP2L3 are expressed in the seed-bearing ovuliferous scale in a pattern complementary to each other, and overlapping with the expression of the C class-related gene DAL2. To study the function of PaAP2L1 and PaAP2L2 the genes were expressed in Arabidopsis. The transgenic PaAP2L2 plants were stunted and flowered later than control plants. Flowers were indeterminate and produced an excess of floral organs most severely in the two inner whorls, associated with an ectopic expression of the meristem-regulating gene WUSCHEL. No homeotic changes in floral-organ identities occurred, but in the ap2-1 mutant background PaAP2L2 was able to promote petal identity, indicating that the spruce AP2 gene has the capacity to substitute for an A class gene in Arabidopsis. In spite of the long evolutionary distance between angiosperms and gymnosperms and the fact that gymnosperms lack structures homologous to sepals and petals our data supports a functional conservation of AP2 genes among the seed plants.  相似文献   

20.
Coleus forskohlii hairy root cultures were found to produce forskolin and rosmarinic acid (RA) as the main metabolites. The growth and RA production by C. forskohlii hairy root cultures in various liquid media were examined. The hairy root cultures showed good growth in hormone-free Murashige and Skoog medium containing 3% (w/v) sucrose (MS medium), and Gamborg B5 medium containing 2% (w/v) sucrose (B5 medium). RA yield reached 4.0 mg (MS medium) and 4.4 mg (B5 medium) after 5 weeks of culture in a 100 ml flask containing 20 ml of each medium. Hairy root growth and RA were also investigated after treatment with various concentrations of yeast extract (YE), salicylic acid (SA) and methyl jasmonic acid (MJA). RA production in a 100 ml flask containing 20 ml B5 medium reached 5.4 mg (1.9 times more than control) with treatment of 0.01 or 1% (w/v) YE, 5.5 mg (2.0 times more than control) with treatment of 0.1 mM SA, and the maximum RA content with 9.5 mg per flask (3.4 times more than control) was obtained in the hairy roots treated with 0.1 mM MJA. These results suggest that MJA is an effective elicitor for production of RA in C. forskohlii hairy root cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号