首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In humans, the nocturnal fall in internal temperature is associated with increased endogenous melatonin and with a shift in the thermoregulatory control of skin blood flow (SkBF), suggesting a role for melatonin in the control of SkBF. The purpose of this study was to test whether daytime exogenous melatonin would shift control of SkBF to lower internal temperatures during heat stress, as is seen at night. Healthy male subjects (n = 8) underwent body heating with melatonin administration (Mel) or without (control), in random order at least 1 wk apart. SkBF was monitored at sites pretreated with bretylium to block vasoconstrictor nerve function and at untreated sites. Cutaneous vascular conductance, calculated from SkBF and arterial pressure, sweating rate (SR), and heart rate (HR) were monitored. Skin temperature was elevated to 38 degrees C for 35-50 min. Baseline esophageal temperature (Tes) was lower in Mel than in control (P < 0.01). The Tes threshold for cutaneous vasodilation and the slope of cutaneous vascular conductance with respect to Tes were also lower in Mel at both untreated and bretylium-treated sites (P < 0.05). The Tes threshold for the onset of sweating and the Tes for a standard HR were reduced in Mel. The slope of the relationship of HR, but not SR, to Tes was lower in Mel (P < 0.05). These findings suggest that melatonin affects the thermoregulatory control of SkBF during hyperthermia via the cutaneous active vasodilator system. Because control of SR and HR are also modified, a central action of melatonin is suggested.  相似文献   

2.
Graded cutaneous vascular responses to dynamic leg exercise   总被引:2,自引:0,他引:2  
The cutaneous vascular conductance-esophageal temperature (CVC-Tes) relationship was examined at five work loads (75-200 W) in each of four men to find whether there is a role for exercise intensity in the control of skin blood flow (SkBF). Several factors contributed to our evaluation of the CVC-Tes relationship during work. Laser-Doppler velocimetry (LDF) provided a continuous measure of SkBF that is not influenced by underlying muscle blood flow. Local warming to 39 degrees C at the site of measurement of SkBF provided a consistent skin temperature and facilitated observation of changes in LDF. Mean arterial pressure was measured noninvasively once per minute to calculate CVC. Supine exercise minimized baroreceptor-induced cutaneous vasoconstriction. Our major finding was that the internal temperature at which CVC began to rise during exercise (CVC threshold) was graded with work load beyond 125 W (P less than 0.05). In that range the CVC threshold increased by 0.16 degrees C for every increment of 25 W. The CVC threshold was never reached at the highest work load in three of the four subjects. There was no consistent effect of work load on the slope of the CVC-Tes relationship or on the internal temperature at which sweating began during exercise (sweat rate threshold). We conclude that the level of work beyond 125 W affects the CVC-Tes relationship in a graded fashion, principally through shifts in threshold.  相似文献   

3.
We investigated the effect of head-down bed rest (HDBR) for 14 days on thermoregulatory sweating and cutaneous vasodilation in humans. Fluid intake was ad libitum during HDBR. We induced whole body heating by increasing skin temperature for 1 h with a water-perfused blanket through which hot water (42 degrees C) was circulated. The experimental room was air-conditioned (27 degrees C, 30-40% relative humidity). We measured skin blood flow (chest and forearm), skin temperatures (chest, upper arm, forearm, thigh, and calf), and tympanic temperature. We also measured sweat rate by the ventilated capsule method in which the skin area for measurement was drained by dry air conditioned at 27 degrees C under similar skin temperatures in both trials. We calculated cutaneous vascular conductance (CVC) from the ratio of skin blood flow to mean blood pressure. From tympanic temperature-sweat rate and -CVC relationships, we assessed the threshold temperature and sensitivity as the slope response of variables to a given change in tympanic temperature. HDBR increased the threshold temperature for sweating by 0.31 degrees C at the chest and 0.32 degrees C at the forearm, whereas it reduced sensitivity by 40% at the chest and 31% at the forearm. HDBR increased the threshold temperature for cutaneous vasodilation, whereas it decreased sensitivity. HDBR reduced plasma volume by 11%, whereas it did not change plasma osmolarity. The increase in the threshold temperature for sweating correlated with that for cutaneous vasodilation. In conclusion, HDBR attenuated thermoregulatory sweating and cutaneous vasodilation by increasing the threshold temperature and decreasing sensitivity. HDBR increased the threshold temperature for sweating and cutaneous vasodilation by similar magnitudes, whereas it decreased their sensitivity by different magnitudes.  相似文献   

4.
Several authors have argued that skin blood flow (SkBF) during exercise is less than during rest at the same levels of body core and whole-body skin temperatures (Tc and Tsk). Since such an effect does not prevent SkBF during exercise from rising above pre-exercise levels, it is sometimes called a relative cutaneous vasoconstriction. Such a vasoconstriction is considered to be either part of a thermoregulatory adjustment during exercise (elevated thermoregulatory "set-point") or a compensatory response to allow adequate perfusion of exercising muscle. In this paper, some of the pertinent experimental evidence is reviewed, and the following conclusions are reached: the evidence does not support a change in thermoregulatory set-point during exercise; under conditions of high physiological strain (high Tsk and intense exercise), there is quite clearly a relative cutaneous vasoconstrictor effect of exercise; the evidence does not support such an effect under more moderate conditions; and it is likely that, under mild to moderate conditions, other compensatory cardiovascular responses are sufficient to allow adequate perfusion of exercising muscle and are invoked in preference to relative cutaneous vasoconstriction, which has been demonstrated only at higher levels of strain. The thermoregulatory SkBF required during sustained exercise is thus maintained as much as possible.  相似文献   

5.
Nitric oxide (NO) contributes to active cutaneous vasodilation during a heat stress in humans. Given that acetylcholine is released from cholinergic nerves during whole body heating, coupled with evidence that acetylcholine causes vasodilation via NO mechanisms, it is possible that release of acetylcholine in the dermal space contributes to cutaneous vasodilation during a heat stress. To test this hypothesis, in seven subjects skin blood flow (SkBF) and sweat rate were simultaneously monitored over three microdialysis membranes placed in the dermal space of dorsal forearm skin. One membrane was perfused with the acetylcholinesterase inhibitor neostigmine (10 microM), the second membrane was perfused with the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME; 10 mM) dissolved in the aforementioned neostigmine solution (l-NAME(Neo)), and the third membrane was perfused with Ringer solution as a control site. Each subject was exposed to approximately 20 min of whole body heating via a water-perfused suit, which increased mean body temperature from 36.4 +/- 0.1 to 37.5 +/- 0.1 degrees C (P < 0.05). After the heat stress, SkBF at each site was normalized to its maximum value, identified by administration of 28 mM sodium nitroprusside. Mean body temperature threshold for cutaneous vasodilation was significantly lower at the neostigmine-treated site relative to the other sites (neostigmine: 36.6 +/- 0.1 degrees C, l-NAME(Neo): 37.1 +/- 0.1 degrees C, control: 36.9 +/- 0.1 degrees C), whereas no significant threshold difference was observed between the l-NAME(Neo)-treated and control sites. At the end of the heat stress, SkBF was not different between the neostigmine-treated and control sites, whereas SkBF at the l-NAME(Neo)-treated site was significantly lower than the other sites. These results suggest that acetylcholine released from cholinergic nerves is capable of modulating cutaneous vasodilation via NO synthase mechanisms early in the heat stress but not after substantial cutaneous vasodilation.  相似文献   

6.
Exercise induces shifts in the internal temperature threshold at which cutaneous vasodilation begins. To find whether this shift is accomplished through the vasoconstrictor system or the cutaneous active vasodilator system, two forearm sites (0.64 cm2) in each of 11 subjects were iontophoretically treated with bretylium tosylate to locally block adrenergic vasoconstrictor control. Skin blood flow was monitored by laser-Doppler flowmetry (LDF) at those sites and at two adjacent untreated sites. Mean arterial pressure (MAP) was measured noninvasively. Cutaneous vascular conductance was calculated as LDF/MAP. Forearm sweat rate was also measured in seven of the subjects by dew point hygrometry. Whole body skin temperature was raised to 38 degrees C, and supine bicycle ergometer exercise was then performed for 7-10 min. The internal temperature at which cutaneous vasodilation began was recorded for all sites, as was the temperature at which sweating began. The same subjects also participated in studies of heat stress without exercise to obtain vasodilator and sudomotor thresholds from rest. The internal temperature thresholds for cutaneous vasodilation were higher during exercise at both bretylium-treated (36.95 +/- 0.07 degrees C rest, 37.20 +/- 0.04 degrees C exercise, P less than 0.05) and untreated sites (36.95 +/- 0.06 degrees C rest, 37.23 +/- 0.05 degrees C exercise, P less than 0.05). The thresholds for cutaneous vasodilation during rest or during exercise were not statistically different between untreated and bretylium-treated sites (P greater than 0.05). The threshold for the onset of sweating was not affected by exercise (P greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Spaceflight and its bed rest analog [6 degrees head-down tilt (HDT)] decrease plasma and blood volume and aerobic capacity. These responses may be associated with impaired thermoregulatory responses observed during exercise and passive heating after HDT exposure. This project tested the hypothesis that dynamic exercise during 13 days of HDT bed rest preserves thermoregulatory responses. Throughout HDT bed rest, 10 subjects exercised for 90 min/day (75% of pre-HDT maximum heart rate; supine). Before and after HDT bed rest, each subject exercised in the supine position at the same workload in a 28 degrees C room. The internal temperature (Tcore) threshold for the onset of sweating and cutaneous vasodilation, as well as the slope of the relationship between the elevation in Tcore relative to the elevation in sweat rate (SR) and cutaneous vascular conductance (CVC; normalized to local heating maximum), were quantified pre- and post-HDT. Tcore thresholds for the onset of cutaneous vasodilation on the chest and forearm (chest: 36.79 +/- 0.12 to 36.94 +/- 0.13 degrees C, P = 0.28; forearm: 36.76 +/- 0.12 to 36.91 +/- 0.11 degrees C, P = 0.16) and slope of the elevation in CVC relative to Tcore (chest: 77.9 +/- 14.2 to 80.6 +/- 17.2%max/ degrees C; P = 0.75; forearm: 76.3 +/- 11.8 to 67.5 +/- 14.3%max/ degrees C, P = 0.39) were preserved post-HDT. Moreover, the Tcore threshold for the onset of SR (36.66 +/- 0.12 to 36.74 +/- 0.10 degrees C; P = 0.36) and the slope of the relationship between the elevation in SR and the elevation in Tcore (1.23 +/- 0.19 to 1.01 +/- 0.14 mg x cm(-2) x min(-1) x degrees C(-1); P = 0.16) were also maintained. Finally, after HDT bed rest, peak oxygen uptake and plasma and blood volumes were not different relative to pre-HDT bed rest values. These data suggest that dynamic exercise during this short period of HDT bed rest preserves thermoregulatory responses.  相似文献   

8.
Epidemiological evidence suggests decreased heat tolerance in patients with Type 2 diabetes mellitus (T2DM), but it is not known whether the mechanisms involved in thermoregulatory control of skin blood flow are altered in these patients. We tested the hypothesis that individuals with T2DM have a delayed internal temperature threshold for active cutaneous vasodilation during whole body heating compared with healthy control subjects. We measured skin blood flow using laser-Doppler flowmetry (LDF), internal temperature (T or) via sublingual thermocouple, and mean arterial pressure via Finometer at baseline and during whole body heating in 9 T2DM patients and 10 control subjects of similar age, height, and weight. At one LDF site, sympathetic noradrenergic neurotransmission was blocked by local pretreatment with bretylium tosylate (BT) to isolate the cutaneous active vasodilator system. Whole body heating was conducted using a water-perfused suit. There were no differences in preheating T(or) between groups (P > 0.10). Patients with T2DM exhibited an increased internal temperature threshold for the onset of vasodilation at both untreated and BT-treated sites. At BT-treated sites, T or thresholds were 36.28 +/- 0.07 degrees C in controls and 36.55 +/- 0.05 degrees C in T2DM patients (P < 0.05), indicating delayed onset of active vasodilation in patients. Sensitivity of vasodilation was variable in both groups, with no consistent difference between groups (P > 0.05). We conclude that altered control of active cutaneous vasodilation may contribute to impaired thermoregulation in patients with T2DM.  相似文献   

9.
Control of skin blood flow (SkBF) is on the efferent arm of both thermoregulatory and nonthermoregulatory reflexes. To what extent aging may affect the SkBF response when these two reflex systems interact is unknown. To determine the response of aged skin to the unloading of baroreceptors in thermoneutral, cold stress, and heat stress conditions, sequential bouts of nonhypotensive lower body negative pressure (LBNP) were applied at -10, -20, and -30 mmHg in 14 young (18-25 yr) and 14 older (63-78 yr) men. SkBF was measured by laser-Doppler velocimetry (averaged over 2 forearm sites), and data are expressed as percentage of maximal cutaneous vascular conductance (%CVC(max)). Total forearm blood flow was measured by venous occlusion plethysmography, and forearm vascular conductance (FVC) was calculated as the ratio of forearm blood flow to mean arterial pressure. In young men, all three intensities of LBNP in thermoneutrality decreased FVC significantly (P < 0.05), but FVC at -10 mmHg did not change in the older men. There were no significant LBNP effects on %CVC(max). Application of LBNP during cold stress did not significantly change %CVC(max) or FVC in either age group. During heat stress, -10 to -30 mmHg of LBNP decreased FVC significantly (P < 0.05) in both age groups, but these decreases were attenuated in the older men (P < 0.05). %CVC(max) decreased at -30 mmHg in the younger men only. These results suggest that older men have an attenuated skin vasoconstrictor response to the unloading of baroreceptors in heat stress conditions. Furthermore, the forearm vasoconstriction elicited by LBNP in older men reflects that of underlying tissue (i.e., muscle) rather than that of skin, whereas -30 mmHg LBNP also decreases SkBF in young hyperthermic men.  相似文献   

10.
Regulation of the cutaneous circulation   总被引:2,自引:0,他引:2  
In this symposium, a diversity of perspectives was focused on how blood flow to the skin is controlled. Thus, control of the cutaneous circulation by reflexes aimed at body temperature regulation, blood pressure regulation, and the reflexes attending muscular exercise was discussed in detail, as were the similarities and differences between control of cutaneous arterioles and arteriovenous anastomoses. A mechanistic treatment of interaction between adrenergic control of cutaneous blood vessels and their temperature brought physical factors and pharmacological approaches to the consideration of reflex control. Finally, the more slowly developing changes in the control of the skin circulation that accompany circadian rhythms, changes in blood volume or its distribution, physical training, and acclimatization were discussed. Because the cutaneous circulation has potentially large vascular conductance, blood flow, and blood volume, control of the resistance and compliance vessels within the skin has an importance well beyond that of tissue nutrition. Indeed, overall hemodynamics are dependent on how much blood flow and how much blood volume are distributed to skin. Consequently, reflex factors, physical factors, and their interaction all have roles of importance with respect to exchange of heat with environment as well as maintenance of blood pressure, cardiac output, and blood flow to other tissues.  相似文献   

11.
To test for a diurnal difference in the vasoconstrictor control of the cutaneous circulation, we performed whole body skin cooling (water-perfused suits) at 0600 (AM) and 1600 (PM). After whole body skin temperature (T(sk)) was controlled at 35 degrees C for 10 min, it was progressively lowered to 32 degrees C over 18-20 min. Skin blood flow (SkBF) was monitored by laser-Doppler flowmetry at three control sites and at a site that had been pretreated with bretylium by iontophoresis to block noradrenergic vasoconstriction. After whole body skin cooling, maximal cutaneous vascular conductance (CVC) was measured by locally warming the sites of SkBF measurement to 42 degrees C for 30 min. Before whole body skin cooling, sublingual temperature (T(or)) in the PM was significantly higher than that in the AM (P < 0.05), but CVC, expressed as a percentage of maximal CVC (%CVC(max)), was not statistically different between AM and PM. During whole body skin cooling, %CVC(max) levels at bretylium-treated sites in AM or PM were not significantly reduced from baseline. In the PM, %CVC(max) at control sites fell significantly at T(sk) of 34.3 +/- 0.01 degrees C and lower (P < 0.05). In contrast, in the AM %CVC(max) at control sites was not significantly reduced from baseline until T(sk) reached 32.3 +/- 0.01 degrees C and lower (P < 0.05). Furthermore, the decrease in %CVC(max) in the PM was significantly greater than that in AM at T(sk) of 33.3 +/- 0.01 degrees C and lower (P < 0.05). Integrative analysis of the CVC response with respect to both T(or) and T(sk) showed that the cutaneous vasoconstrictor response was shifted to higher internal temperatures in the PM. These findings suggest that during whole body skin cooling the reflex control of the cutaneous vasoconstrictor system is shifted to a higher internal temperature in the PM. Furthermore, the slope of the relationship between CVC and T(sk) is steeper in the PM compared with that in the AM.  相似文献   

12.
The hypothesis that exercise causes an increase in the postexercise esophageal temperature threshold for onset of cutaneous vasodilation through an alteration of active vasodilator activity was tested in nine subjects. Increases in forearm skin blood flow and arterial blood pressure were measured and used to calculate cutaneous vascular conductance at two superficial forearm sites: one with intact alpha-adrenergic vasoconstrictor activity (untreated) and one infused with bretylium tosylate (bretylium treated). Subjects remained seated resting for 15 min (no-exercise) or performed 15 min of treadmill running at either 55, 70, or 85% of peak oxygen consumption followed by 20 min of seated recovery. A liquid-conditioned suit was used to increase mean skin temperature ( approximately 4.0 degrees C/h), while local forearm temperature was clamped at 34 degrees C, until cutaneous vasodilation. No differences in the postexercise threshold for cutaneous vasodilation between untreated and bretylium-treated sites were observed for either the no-exercise or exercise trials. Exercise resulted in an increase in the postexercise threshold for cutaneous vasodilation of 0.19 +/- 0.01, 0.39 +/- 0.02, and 0.53 +/- 0.02 degrees C above those of the no-exercise resting values for the untreated site (P < 0.05). Similarly, there was an increase of 0.20 +/- 0.01, 0.37 +/- 0.02, and 0.53 +/- 0.02 degrees C for the treated site for the 55, 70, and 85% exercise trials, respectively (P < 0.05). It is concluded that reflex activity associated with the postexercise increase in the onset threshold for cutaneous vasodilation is more likely mediated through an alteration of active vasodilator activity rather than through adrenergic vasoconstrictor activity.  相似文献   

13.
To examine the role of nitric oxide (NO) in cutaneous active vasodilation, we measured the NO concentration from skin before and during whole body heat stress in nine healthy subjects. A forearm site was instrumented with a NO-selective, amperometric electrode and an adjacent intradermal microdialysis probe. Skin blood flow (SkBF) was monitored by laser-Doppler flowmetry (LDF). NO concentrations and LDF were measured in normothermia and heat stress. After heat stress, a solution of ACh was perfused through the microdialysis probe to pharmacologically generate NO and verify the electrode's function. During whole body warming, both SkBF and NO concentrations began to increase at the same internal temperature. Both SkBF and NO concentrations increased during heat stress (402 +/- 76% change from LDF baseline, P < 0.05; 22 +/- 5% change from NO baseline, P < 0.05). During a second baseline condition after heat stress, ACh perfusion led to increases in both SkBF and NO concentrations (496 +/- 119% change from LDF baseline, P < 0.05; 16 +/- 10% change from NO baseline, P < 0.05). We conclude that NO does increase in skin during heat stress in humans, attendant to active vasodilation. This result suggests that NO has a role beyond that of a permissive factor in the process; rather, NO may well be an effector of cutaneous vasodilation during heat stress.  相似文献   

14.
We examined whether enhanced cardiovascular and thermoregulatory responses during exercise after short-term aerobic training in a warm environment were reversed when plasma volume (PV) expansion was reversed by acute isotonic hypohydration. Seven young men performed aerobic training at the 70% peak oxygen consumption rate (Vo(?peak)) at 30°C atmospheric temperature and 50% relative humidity, 30 min/day for 5 days. Before and after training, we performed the thermoregulatory response test while measuring esophageal temperature (T(es)), forearm skin vascular conductance, sweat rate (SR), and PV during 30 min exercise at the metabolic rate equivalent to pretraining 65% Vo(?peak) in euhydration under the same environment as during training in four trials (euhydration and hypohydration, respectively). Hypohydration targeting 3% body mass was attained by combined treatment with low-salt meals to subjects from ~48 h before the test and administration of a diuretic ~4 h before the test. After training, the T(es) thresholds for cutaneous vasodilation and sweating decreased by 0.3 and 0.2°C (P = 0.008 and 0.012, respectively) when PV increased by ~10%. When PV before and after training was reduced to a similar level, ~10% reduction from that in euhydration before training, the training-induced reduction in the threshold for cutaneous vasodilation increased to a level similar to hypohydration before training (P = 0.093) while that for sweating remained significantly lower than that before training (P = 0.004). Thus the enhanced cutaneous vasodilation response after aerobic training in a warm environment was reversed when PV expansion was reversed while the enhanced SR response remained partially.  相似文献   

15.
To clarify the influence of internal and skin temperature on the active cutaneous vasodilation during exercise, the body temperature thresholds for the onset of active vasodilation during light or moderate exercise under different ambient temperature conditions were compared. Seven male subjects performed 30 min of a cycling exercise at 20 % or 50 % of peak oxygen uptake in a room maintained at 20, 24, or 28 °C. Esophageal (Tes) and mean skin temperature (Tsk) as measured by a thermocouple, deep thigh temperature (Tdt) by the zero-heat-flow (ZHF) method, and forearm skin blood flow by laser-Doppler flowmetry (LDF) were monitored. The mean arterial pressure (MAP) was also monitored non-invasively, and the cutaneous vascular conductance (CVC) was calculated as the LDF/MAP. Throughout the experiment, the Tsk at ambient temperatures of 20, 24, and 28 °C were approximately 30, 32, and 34 °C, respectively, for both 20 % and 50 % exercise. During 50 % exercise, the Tes or Tdt thresholds for the onset of the increase in CVC were observed to be similar among the 20, 24, and 28 °C ambient conditions. During 20 % exercise, the increase in Tes and Tdt was significantly lower than those found at 50 %, and the onset of the increase in CVC was only observed at 28 °C. These results suggest that the onset of active vasodilation was affected more strongly by the internal or exercising tissue temperatures than by the skin temperatures during exercise performed at a moderate load in comparison to a light load under Tsk variations ranging from 30 °C to 34 °C. Therefore, the modification by skin temperature of the central control on cutaneous vasomotor tone during exercise may differ between different exercise loads.  相似文献   

16.
We examined the effect of high local forearm skin temperature (Tloc) on reflex cutaneous vasodilator responses to elevated whole-body skin (Tsk) and internal temperatures. One forearm was locally warmed to 42 degrees C while the other was left at ambient conditions to determine if a high Tloc could attenuate or abolish reflex vasodilation. Forearm blood flow (FBF) was monitored in both arms, increases being indicative of increases in skin blood flow (SkBF). In one protocol, Tsk was raised to 39-40 degrees C 30 min after Tloc in one arm had been raised to 42 degrees C. In a second protocol, Tsk and Tloc were elevated simultaneously. In protocol 1, the locally warmed arm showed little or no change in blood flow in response to increasing Tsk and esophageal temperature (average rise = 0.76 +/- 1.18 ml X 100 ml-1 X min-1), whereas FBF in the normothermic arm rose by an average of 8.84 +/- 3.85 ml X 100 ml-1 X min-1. In protocol 2, FBF in the normothermic arm converged with that in the warmed arm in three of four cases but did not surpass it. We conclude that local warming to 42 degrees C for 35-55 min prevents reflex forearm cutaneous vasodilator responses to whole-body heat stress. The data strongly suggest that this attenuation is via reduction or abolition of basal tone in the cutaneous arteriolar smooth muscle and that at a Tloc of 42 degrees C a maximum forearm SkBF has been achieved. Implicit in this conclusion is that local warming has been applied for a duration sufficient to achieve a plateau in FBF.  相似文献   

17.
To test the hypothesis that bradykinin effects cutaneous active vasodilation during hyperthermia, we examined whether the increase in skin blood flow (SkBF) during heat stress was affected by blockade of bradykinin B(2) receptors with the receptor antagonist HOE-140. Two adjacent sites on the forearm were instrumented with intradermal microdialysis probes for local delivery of drugs in eight healthy subjects. HOE-140 was dissolved in Ringer solution (40 microM) and perfused at one site, whereas the second site was perfused with Ringer alone. SkBF was monitored by laser-Doppler flowmetry (LDF) at both sites. Mean arterial pressure (MAP) was monitored from a finger, and cutaneous vascular conductance (CVC) was calculated (CVC = LDF/MAP). Water-perfused suits were used to control body temperature and evoke hyperthermia. After hyperthermia, both microdialysis sites were perfused with 28 mM nitroprusside to effect maximal vasodilation. During hyperthermia, CVC increased at HOE-140 (69 +/- 2% maximal CVC, P < 0.01) and untreated sites (65 +/- 2% maximal CVC, P < 0.01). These responses did not differ between sites (P > 0.05). Because the bradykinin B(2)-receptor antagonist HOE-140 did not alter SkBF responses to heat stress, we conclude that bradykinin does not mediate cutaneous active vasodilation.  相似文献   

18.
Three subjects with lowered internal body temperatures performed brief bouts of bicycle ergometer exercise at 150 and 200 W. Oxygen uptake during exercise was consistently greater than that required by the working muscles, the increase being the result of the additional cost of shivering. Increases in metabolism during exercise above control levels were inversely proportional to internal temperature (with skin temperature constant) below a given internal temperature threshold. Observations of intense shivering during exercise which is proportional to lowered internal temperature in the same manner as during rest provides further evidence against the concept of a decrease in the thermoregulatory set point during exercise in man.  相似文献   

19.
Age-related changes in neurogenic vasodilation mediated by sensory nerves may alter local skin blood flow (SkBF) responses in older individuals. The purpose of this study was to determine the age-specific modification of cutaneous vasodilation by capsaicin-sensitive primary afferent (CSPA) nerves during local heating. Nine young (18-30 yr), eight middle-aged (40-55 yr), and eight older (65-80 yr) healthy men participated in the experiments. Two local-heating protocols (rapid and slow) were performed before and after 1 wk of capsaicin pretreatment (CP), used to desensitize CSPAs. All temperatures were below those that elicit pain. SkBF was measured with a laser-Doppler imager and indexed to percentage of maximal cutaneous vascular conductance (%CVCmax). CP caused a significant reduction in %CVCmax in the middle-aged and older groups during slow heating (P < 0.05), without affecting %CVCmax in the young group. During rapid heating, CP significantly reduced (53.9 +/- 4.4 vs. 74.4 +/- 7.4% CVCmax, P < 0.05), but did not abolish, the initial sensory nerve-mediated rise in SkBF in the young group. No significant effects of CP on SkBF were observed during rapid heating in the middle-aged or older groups. These results indicate that, with advanced age, CSPA activity is more important to the maximal SkBF response during prolonged local heating, whereas it has a reduced role in the initial SkBF peak elicited by rapid local heating. In summary, CSPA activity contributes modestly to the overall SkBF response to local heating in an age-specific manner.  相似文献   

20.
To test the hypothesis that cutaneous active vasodilation in heat stress is mediated by a redundant cholinergic cotransmitter system, we examined the effects of atropine on skin blood flow (SkBF) increases during heat stress in persons with (CF) and without cystic fibrosis (non-CF). Vasoactive intestinal peptide (VIP) has been implicated as a mediator of cutaneous vasodilation in heat stress. VIP-containing cutaneous neurons are sparse in CF, yet SkBF increases during heat stress are normal. In CF, augmented ACh release or muscarinic receptor sensitivity could compensate for decreased VIP; if so, active vasodilation would be attenuated by atropine in CF relative to non-CF. Atropine was administered into skin by iontophoresis in seven CF and seven matched non-CF subjects. SkBF was monitored by laser-Doppler flowmetry (LDF) at atropine treated and untreated sites. Blood pressure [mean arterial pressure (MAP)] was monitored (Finapres), and cutaneous vascular conductance was calculated (CVC = LDF/MAP). The protocol began with a normothermic period followed by a 3-min cold stress and 30-45 min of heat stress. Finally, LDF sites were warmed to 42 degrees C to effect maximal vasodilation. CVC was normalized to its site-specific maximum. During heat stress, CVC increased in both CF and non-CF (P < 0.01). CVC increases were attenuated by atropine in both groups (P < 0.01); however, the responses did not differ between groups (P = 0.99). We conclude that in CF there is not greater dependence on redundant cholinergic mechanisms for cutaneous active vasodilation than in non-CF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号