共查询到20条相似文献,搜索用时 0 毫秒
1.
Yoshizawa M Nakamura R Yoshimatsu O Abe K Sakai S Nakagawa K Fujii R Nango M Hashimoto H 《Acta biochimica Polonica》2012,59(1):49-52
Vibrational dynamics of the excited state in the light-harvesting complex (LH1) have been investigated by femtosecond stimulated Raman spectroscopy (FSRS). The native and reconstituted LH1 complexes have same dynamics. The ν(1) (C=C stretching) vibrational mode of spirilloxanthin in LH1 shows ultrafast high-frequency shift in the S(1) excited state with a time constant of 0.3 ps. It is assigned to the vibrational relaxation of the S(1) state following the internal conversion from the photoexcited S(2) state. 相似文献
2.
The pigments of the chromophyte freshwater alga, Chrysophaera magna Belcher were analyzed by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) to reveal the presence of chlorophylls a and c, β-carotene, fucoxanthin, and antheraxanthin. The presence of antheraxanthin was verified by comparison of TLC RF values, HPLC retention times, and absorption features to those of authentic, synthetic antheraxanthin. Antheraxanthin accounted for about 15% of the total carotenoid content of C. magna. The molar ratio of the major carotenoids was antheraxanthin:fucoxanthin:β-carotene, 1:2.3:3.3. The whole-cell absorption spectrum revealed a broad band between 470 and 520 nanometers which was attributed to fucoxanthin and antheraxanthin in vivo. Upon extraction in hydrocarbon, this broad absorption region was lost. The in vivo fluorescence excitation spectrum for 680 nm emission revealed the energy transfer activities and light harvesting roles of chlorophylls a and c, and fucoxanthin. In addition, an excitation band was resolved at 487 nanometers which could be attributed only to antheraxanthin. Comparison of whole-cell fluorescence excitation spectra of C. magna with the diatom Phaeodactylum tricornutum, which possesses fucoxanthin but not antheraxanthin, supports the assignment of the 487 nm band to antheraxanthin. This is the first report of a photosynthetic light harvesting function of the xanthophyll, antheraxanthin. This carotenoid broadens the absorption cross-section for photosynthesis in C. magna and extends light harvesting into the green portion of the spectrum. 相似文献
3.
Photoprotection of the chloroplast is an important component of abiotic stress resistance in plants. Carotenoids have a central
role in photoprotection. We review here the recent evidence, derived mainly from in vitro reconstitution of recombinant Lhc proteins with different carotenoids and from carotenoid biosynthesis mutants, for the existence
of different mechanisms of photoprotection and regulation based on xanthophyll binding to Lhc proteins into multiple sites
and the exchange of chromophores between different Lhc proteins during exposure of plants to high light stress and the operation
of the xanthophyll cycle. The use of recombinant Lhc proteins has revealed up to four binding sites in members of Lhc families
with distinct selectivity for xanthophyll species which are here hypothesised to have different functions. Site L1 is selective
for lutein and is here proposed to be essential for catalysing the protection from singlet oxygen by quenching chlorophyll
triplets. Site L2 and N1 are here proposed to act as allosteric sites involved in the regulation of chlorophyll singlet excited
states by exchanging ligand during the operation of the xanthophyll cycle. Site V1 of the major antenna complex LHC II is
here hypothesised to be a deposit for readily available substrate for violaxanthin de-epoxidase rather than a light harvesting
pigment. Moreover, xanthophylls bound to Lhc proteins can be released into the lipid bilayer where they contribute to the
scavenging of reactive oxygen species produced in excess light.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
4.
Alexander V Ruban Andrew A Pascal Bruno Robert Peter Horton 《The Journal of biological chemistry》2002,277(10):7785-7789
By dynamic changes in protein structure and function, the photosynthetic membranes of plants are able to regulate the partitioning of absorbed light energy between utilization in photosynthesis and photoprotective non-radiative dissipation of the excess energy. This process is controlled by features of the intact membrane, the transmembrane pH gradient, the organization of the photosystem II antenna proteins and the reversible binding of a specific carotenoid, zeaxanthin. Resonance Raman spectroscopy has been applied for the first time to wild type and mutant Arabidopsis leaves and to intact thylakoid membranes to investigate the nature of the absorption changes obligatorily associated with the energy dissipation process. The observed changes in the carotenoid Resonance Raman spectrum proved that zeaxanthin was involved and indicated a dramatic change in zeaxanthin environment that specifically alters the pigment configuration and red-shifts the absorption spectrum. This activation of zeaxanthin is a key event in the regulation of light harvesting. 相似文献
5.
Improvement of microalgal photosynthetic productivity by reducing the content of light harvesting pigment 总被引:3,自引:0,他引:3
Microalgal productivity was examined using both a wild type and a phycocyanin-deficient mutant of Synechocystis PCC 6714 (PD-1).
The culture was conducted at various light intensities under low and high cell densities in a continuous culture system. At
low light intensity, photosynthetic productivity was almost the same for both low and high cell densities. However, at higher
light intensities photosynthetic productivity was higher in mutant PD-1 than in the wild type. At 2000 μmol photon m−2 s−1 the productivity was 50% higher in mutant PD-1. This result is consistent with our first report (Nakajima & Ueda, 1997),
which showed that photosynthetic productivity can be improved by reducing the light harvesting pigment content in high cell
density cultures at high light intensities. It is concluded that the technology for reducing LHP content is a useful method
for improving photosynthetic productivity in algal mass production.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
6.
Li XP Gilmore AM Caffarri S Bassi R Golan T Kramer D Niyogi KK 《The Journal of biological chemistry》2004,279(22):22866-22874
The biochemical, biophysical, and physiological properties of the PsbS protein were studied in relation to mutations of two symmetry-related, lumen-exposed glutamate residues, Glu-122 and Glu-226. These two glutamates are targets for protonation during lumen acidification in excess light. Mutation of PsbS did not affect xanthophyll cycle pigment conversion or pool size. Plants containing PsbS mutations of both glutamates did not have any rapidly inducible nonphotochemical quenching (qE) and had similar chlorophyll fluorescence lifetime components as npq4-1, a psbS deletion mutant. The double mutant also lacked a characteristic leaf absorbance change at 535 nm (DeltaA535), and PsbS from these plants did not bind dicyclohexylcarbodiimide (DCCD), a known inhibitor of qE. Mutation of only one of the glutamates had intermediate effects on qE, chlorophyll fluorescence lifetime component amplitudes, DCCD binding, and DeltaA535. Little if any differences were observed comparing the two single mutants, suggesting that the glutamates are chemically and functionally equivalent. Based on these results a bifacial model for the functional interaction of PsbS with photosystem II is proposed. Furthermore, based on the extent of qE inhibition in the mutants, photochemical and nonphotochemical quenching processes of photosystem II were associated with distinct chlorophyll fluorescence life-time distribution components. 相似文献
7.
Niedzwiedzki DM Fuciman M Frank HA Blankenship RE 《Biochimica et biophysica acta》2011,1807(5):518-528
A peripheral light-harvesting complex from the aerobic purple bacterium Roseobacter (R.) denitrificans was purified and its photophysical properties characterized. The complex contains two types of pigments, bacteriochlorophyll (BChl) a and the carotenoid (Car) spheroidenone and possesses unique spectroscopic properties. It appears to lack the B850 bacteriochlorophyll a Q(y) band that is typical for similar light-harvesting complex 2 antennas. Circular dichroism and low temperature steady-state absorption spectroscopy revealed that the B850 band is present but is shifted significantly to shorter wavelengths and overlaps with the B800 band at room temperature. Such a spectral signature classifies this protein as a member of the light-harvesting complex 4 class of peripheral light-harvesting complexes, along with the previously known light-harvesting complex 4 from Rhodopseudomonas palustris. The influence of the spectral change on the light-harvesting ability was studied using steady-state absorption, fluorescence, circular dichroism, femtosecond and microsecond time-resolved absorption and time-resolved fluorescence spectroscopies. The results were compared to the properties of the similar (in pigment composition) light-harvesting complex 2 from aerobically grown Rhodobacter sphaeroides and are understood within the context of shared similarities and differences and the putative influence of the pigments on the protein structure and its properties. 相似文献
8.
Suzuki M Kobayashi H Tanaka Y Hirashima Y Kanayama N Takei Y Saga Y Suzuki M Itoh H Terao T 《The Journal of biological chemistry》2003,278(17):14640-14646
9.
Irina Grouneva Peter J. Gollan Saijaliisa Kangasjärvi Marjaana Suorsa Mikko Tikkanen Eva-Mari Aro 《Planta》2013,237(2):399-412
The comparative study of photosynthetic regulation in the thylakoid membrane of different phylogenetic groups can yield valuable insights into mechanisms, genetic requirements and redundancy of regulatory processes. This review offers a brief summary on the current understanding of light harvesting and photosynthetic electron transport regulation in different photosynthetic eukaryotes, with a special focus on the comparison between higher plants and unicellular algae of secondary endosymbiotic origin. The foundations of thylakoid structure, light harvesting, reversible protein phosphorylation and PSI-mediated cyclic electron transport are traced not only from green algae to vascular plants but also at the branching point between the “green” and the “red” lineage of photosynthetic organisms. This approach was particularly valuable in revealing processes that (1) are highly conserved between phylogenetic groups, (2) serve a common physiological role but nevertheless originate in divergent genetic backgrounds or (3) are missing in one phylogenetic branch despite their unequivocal importance in another, necessitating a search for alternative regulatory mechanisms and interactions. 相似文献
10.
11.
Michael Wormit 《BBA》2009,1787(6):738-9506
Light harvesting complexes have been identified in all chlorophyll-based photosynthetic organisms. Their major function is the absorption of light and its transport to the reaction centers, however, they are also involved in excess energy quenching, the so-called non-photochemical quenching (NPQ). In particular, electron transfer and the resulting formation of carotenoid radical cations have recently been discovered to play an important role during NPQ in green plants. Here, the results of our theoretical investigations of carotenoid radical cation formation in the major light harvesting complex LHC-II of green plants are reported. The carotenoids violaxanthin, zeaxanthin and lutein are considered as potential quenchers. In agreement with experimental results, it is shown that zeaxanthin cannot quench isolated LHC-II complexes. Furthermore, subtle structural differences in the two lutein binding pockets lead to substantial differences in the excited state properties of the two luteins. In addition, the formation mechanism of carotenoid radical cations in light harvesting complexes LH2 and LH1 of purple bacteria is studied. Here, the energetic position of the S1 state of the involved carotenoids neurosporene, spheroidene, spheroidenone and spirilloxanthin seems to determine the occurrence of radical cations in these LHCs upon photo-excitation. An elaborate pump-deplete-probe experiment is suggested to challenge the proposed mechanism. 相似文献
12.
The photosynthetic unit of Rhodopseudomonas viridis contains a reaction centre (P960) and a light harvesting complex (B1015). Immune electron microscopy combined with image processing has allowed the central core of the photosynthetic unit to be identified as the reaction centre and the surrounding protein ring as the light harvesting complex. This light harvesting complex, subdivided into twelve subunits was shown to contain 24 bacteriochlorophyll b molecules. A model is presented which may account for the far red shift of the Qy absorption of the bacteriochlorophyll b molecules in vivo. 相似文献
13.
Daniel Emlyn-Jones Mark K. Ashby & Conrad W. Mullineaux 《Molecular microbiology》1999,33(5):1050-1058
A gene required for the short-term regulation of photosynthetic light harvesting (the state transition) has been identified in the cyanobacterium Synechocystis sp. PCC6803. The open reading frame is designated sll1926 in the complete Synechocystis gene sequence. The deduced amino acid sequence has no homologues in current sequence databases and no recognizable sequence motifs. It encodes a putative integral membrane protein of 16 kDa, which we have designated RpaC (regulator of phycobilisome association C). Fluorescence measurements of an insertional inactivation mutant of rpaC (Deltasll1926) show that it is specifically unable to perform state transitions. Deltasll1926 has approximately wild-type levels of PS1, PS2 and phycobilisomes. Measurements of oxygen evolution and uptake show Deltasll1926 to have no deficiency in electron transport rates. In vitro [gamma-32P]-ATP labelling experiments suggest that RpaC is not the 15 kDa membrane phosphoprotein previously implicated in state transitions. Deltasll1926 grows more slowly than the wild type only at very low light intensities. 相似文献
14.
Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria
下载免费PDF全文

Psencík J Ikonen TP Laurinmäki P Merckel MC Butcher SJ Serimaa RE Tuma R 《Biophysical journal》2004,87(2):1165-1172
Chlorosomes of green photosynthetic bacteria constitute the most efficient light harvesting complexes found in nature. In addition, the chlorosome is the only known photosynthetic system where the majority of pigments (BChl) is not organized in pigment-protein complexes but instead is assembled into aggregates. Because of the unusual organization, the chlorosome structure has not been resolved and only models, in which BChl pigments were organized into large rods, were proposed on the basis of freeze-fracture electron microscopy and spectroscopic constraints. We have obtained the first high-resolution images of chlorosomes from the green sulfur bacterium Chlorobium tepidum by cryoelectron microscopy. Cryoelectron microscopy images revealed dense striations approximately 20 A apart. X-ray scattering from chlorosomes exhibited a feature with the same approximately 20 A spacing. No evidence for the rod models was obtained. The observed spacing and tilt-series cryoelectron microscopy projections are compatible with a lamellar model, in which BChl molecules aggregate into semicrystalline lateral arrays. The diffraction data further indicate that arrays are built from BChl dimers. The arrays form undulating lamellae, which, in turn, are held together by interdigitated esterifying alcohol tails, carotenoids, and lipids. The lamellar model is consistent with earlier spectroscopic data and provides insight into chlorosome self-assembly. 相似文献
15.
Elasticity analysis estimates the proportional change in the population growth rate for a proportional change in a vital rate (i.e. survival, growth or reproduction). It can be used to pinpoint those parts of an organism’s life history that should be the focus of management effort, or those that contribute most to fitness. Recent theoretical work has emphasized some limitations of the technique, has overcome other problems, and has shown that it is robust to some violations of its underlying assumptions. Thus, although care is needed, elasticity analysis is a simple first step in answering important questions in evolutionary and population ecology. 相似文献
16.
Novikov AA Taisova AS Fetisova ZG 《Journal of bioinformatics and computational biology》2006,4(4):887-909
This work continues a series of our investigations on efficient strategies of functioning of natural light-harvesting antennae, initiated by a concept of rigorous optimization of photosynthetic apparatus by functional criterion, and deals with the problem of an optimal spectral coordination of subantennae in photosynthetic superantenna of the green bacterium Oscillochloris trichoides from a new family of green bacteria Oscillochloridaceae based in 2000. At present, two subantennae were identified surely: chlorosomal BChl c subantenna B750 and membrane BChl a subantennae B805-860. Some indirect experiments indicated on the presence of minor amounts of BChl a in isolated chlorosomes which allowed us to propose on the existence of an intermediate-energy subantenna which can connect the chlorosomal BChl c and the membrane BChl a ones. However, in the absorption spectra of isolated chlorosomes, this BChl a subantenna was not visually identified. This promoted us to perform a theoretical analysis of the optimality of spectral coordination of Oscillochloris trichoides subantennae. Using mathematical modeling for the functioning of the natural superantenna, we showed that an intermediate-energy subantenna, connecting B750 and B805-860 ones, allows one to control superantenna efficiency, i.e. to optimize the excitation energy transfer from B750 to B805 by functional criterion, and hence, the existence of such intermediate-energy subantenna is biologically expedient. 相似文献
17.
Etiolated bean plants were grown in intermittent light with dark intervals of shorter or longer duration, to modulate the rate of chlorophyll accumulation, relative to that of the other thylakoid components formed. We thus produced conditions under which chlorophyll becomes more or less a limiting factor. We then tested whether LHC complexes can be incorporated in the thylakoid. It was found that an equal amount of chlorophyll, formed under the same total irradiation received, may be used for the stabilization of few and large-in-size PS units containing LHC components (short dark-interval intermittent light), or for the stabilization of many and small-in-size PS units with no LHC components (long dark-interval intermittent light). The size of the PS units diminishes as the dark-interval duration is increased, with no further change after 98 minutes. The PSII/cytf ratio remains constant throughout development in intermittent light and equal to that of mature chloroplasts (PSII/cytf = 1) except in the case of very long dark-interval regimes, where about half PSII units per cytf are present. The PSII/PSI ratio was found to be correlated with the PSII unit size (the larger the size, the lower the ratio). The number of PSI units operating on the same electron transfer chain varied depending on the size of the PSII unit (the larger the PSII unit size, the more the PSI units per chain). The results suggest that it is not the chlorophyll content per se which regulates the stabilization of LHC in developing thylakoids and consequently the size of the PS units, but rather the rate by which it is accumulated, relative to that of the other thylakoid components.Abbreviations Chl
Chlorophyll
- CL
Continuous light
- CPa
the reaction center complex of PSII
- CPI
the reaction center complex of PSI
- CPIa
Chlorophyll protein complex containing the CPI and the light harvesting complex of PSI
- fr w
fresh weight
- LDC
Light dark cycles
- LHC-I
Light-harvesting complex of PSI
- LHC-II
Light harvesting complex of PSII
- PS
photosystem
- PSI
photosystem I
- PSII
photosystem II 相似文献
18.
蓝光诱导的胶孢炭疽菌(Colletotrichum gloeosporioides)类胡萝卜素积累 总被引:1,自引:0,他引:1
胶孢炭疽菌(Colletotrichumgloeosporioides)为一种丝状真菌,蓝光照射可诱导类胡萝卜素的积累。光镜下观察表明,蓝光可诱导胶孢炭疽菌菌丝积累色素颗粒,而黑暗和红光处理却无此现象。类胡萝卜素的积累受蓝光光照强度的影响。28℃且蓝光为6.5μmol.m-2.s-1时,类胡萝卜素积累量可随光照时间延长呈增长趋势,在第5天达到最高峰为71.8μg/g FW,随后含量下降。此外,胶孢炭疽菌在黑暗中预培养的时间也影响蓝光的诱导反应。 相似文献
19.
Regulation of photosynthetic carbon metabolism in cucumber by light intensity and photosynthetic period 总被引:2,自引:1,他引:2
下载免费PDF全文

The effects of photosynthetic periods and light intensity on cucumber (Cucumis sativus L.) carbon exchange rates and photoassimilate partitioning were determined in relation to the activities of galactinol synthase and sucrose-phosphate synthase. Carbon assimilation and partitioning appeared to be controlled by different mechanisms. Carbon exchange rates were influenced by total photon flux density, but were nearly constant over the entire photoperiod for given photoperiod lengths. Length of the photosynthetic periods did influence photoassimilate partitioning. Assimilate export rate was decreased by more than 60% during the latter part of the short photoperiod treatment. This decrease in export rate was associated with a sharp increase in leaf starch acccumulation rate. Results were consistent with the hypothesis that starch accumulation occurs at the expense of export under short photoperiods. Galactinol synthase activities did not appear to influence the partitioning of photoassimilates between starch and transport carbohydrates. Sucrose phosphate synthase activities correlated highly with sugar formation rates (sucrose, raffinose, stachyose + assimilate export rate, r = 0.93, α = 0.007). Cucumber leaf sucrose phosphate synthase fluctuated diurnally in a similar pattern to that observed in vegetative soybean plants. 相似文献
20.
AplA, a member of a new class of phycobiliproteins lacking a traditional role in photosynthetic light harvesting
下载免费PDF全文

All known phycobiliproteins have light-harvesting roles during photosynthesis and are found in water-soluble phycobilisomes, the light-harvesting complexes of cyanobacteria, cyanelles, and red algae. Phycobiliproteins are chromophore-bearing proteins that exist as heterodimers of alpha and beta subunits, possess a number of highly conserved amino acid residues important for dimerization and chromophore binding, and are invariably 160 to 180 amino acids long. A new and unusual group of proteins that is most closely related to the allophycocyanin members of the phycobiliprotein superfamily has been identified. Each of these proteins, which have been named allophycocyanin-like (Apl) proteins, apparently contains a 28-amino-acid extension at its amino terminus relative to allophycocyanins. Apl family members possess the residues critical for chromophore interactions, but substitutions are present at positions implicated in maintaining the proper alpha-beta subunit interactions and tertiary structure of phycobiliproteins, suggesting that Apl proteins are able to bind chromophores but fail to adopt typical allophycocyanin conformations. AplA isolated from the cyanobacterium Fremyella diplosiphon contained a covalently attached chromophore and, although present in the cell under a number of conditions, was not detected in phycobilisomes. Thus, Apl proteins are a new class of photoreceptors with a different cellular location and structure than any previously described members of the phycobiliprotein superfamily. 相似文献