首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multiple-unit-type oral floating dosage form (FDF) of 5-fluorouracil (5-FU) was developed to prolong gastric residence time, target stomach cancer, and increase drug bioavailability. The floating bead formulations were prepared by dispersing 5-FU together with calcium carbonate into a mixture of sodium alginate and hydroxypropyl methylcellulose solution and then dripping the dispersion into an acidified solution of calcium chloride. Calcium alginate beads were formed, as alginate undergoes ionotropic gelation by calcium ions and carbon dioxide develops from the reaction of carbonate salts with acid. The evolving gas permeated through the alginate matrix, leaving gas bubbles or pores, which provided the beads buoyancy. The prepared beads were evaluated for percent drug loading, drug entrapment efficiency, image, surface topography, buoyancy, and in vitro release. The formulations were optimized for different weight ratios of gas-forming agent and sodium alginate. The beads containing higher amounts of calcium carbonate demonstrated instantaneous, complete, and excellent floating ability over a period of 24 hours. The optimized formulation was subjected to in vivo antitumor studies to check the therapeutic efficacy of the floating dosage forms containing 5-FU against benzo(a)pyrene-induced stomach tumors in albino female mice (Balb/C strain). The multiple-bead FDF was found to reduce the tumor incidence in mice by 74%, while the conventional tablet dosage form reduced this incidence by only 25%. Results indicate that FDF performed significantly better than the simple tablet dosage form. Published: June 22, 2007  相似文献   

2.
RH Fahmy 《AAPS PharmSciTech》2012,13(3):990-1004
Multiparticulate floating drug delivery systems have proven potential as controlled-release gastroretentive drug delivery systems that avoid the "all or none" gastric emptying nature of single-unit floating dosage forms. An objective of the presence investigation was to develop calcium silicate (CaSi)/calcium alginate (Ca-Alg)/hydroxypropyl methylcellulose (HPMC) mucoadhesive-floating beads that provide time- and site-specific drug release of alfuzosin hydrochloride (Alf). Beads were prepared by simultaneous internal and external gelation method utilizing 3(2) factorial design as an experimental design; with two main factors evaluated for their influence on the prepared beads; the concentration of CaSi as floating aid (X (1)) and the percentage of HPMC as viscosity enhancer and mucoadhesive polymer (X (2)), each of them was tested in three levels. Developed formulations were evaluated for yield, entrapment efficiency, particle size, surface topography, and buoyancy. Differential scanning calorimetry, Fourier transform infrared spectroscopy, in vitro drug release, as well as in vitro mucoadhesion using rat stomach mucosal membrane were also conducted. Percentage yield and entrapment efficiency ranged from 57.03% to 78.51% and from 49.78% to 83.26%, respectively. Statistical analysis using ANOVA proved that increasing the concentration of either CaSi or HPMC significantly increased the beads yield. Both CaSi and HPMC concentrations were found to significantly affect Alf release from the beads. Additionally, higher CaSi concentration significantly increased the beads diameter while HPMC concentration showed significant positive effect on the beads mucoadhesive properties. CaSi/Ca-Alg/HPMC beads represent simple floating-mucoadhesive gastroretentive system that could be useful in chronopharmacotherapy of benign prostatic hyperplasia.  相似文献   

3.
In the present study, spherical beads were prepared from a water-soluble chitosan (N,O-carboxymethyl chitosan, NOCC) and alginate with ionic gelation method. Then, swollen calcium–alginate–NOCC beads were coated with chitosan. To prepare drug loaded beads, sulfasalazine (SA) was added to the initial aqueous polymer solution. The effect of coating, as well as drying procedure, on the swelling behavior of unloaded beads and SA release of drug loaded ones were evaluated in simulated gastrointestinal tract fluid. The rate of swelling and drug release were decreased for air-dried and coated beads in comparison with freeze-dried and uncoated ones, respectively. No burst release of drug was observed from whole tested beads. Chitosan coated beads released approximately 40% of encapsulated drug in simulated gastric and small intestine tract fluid. Based on these results, the chitosan coated alginate–NOCC hydrogel may be used as potential polymeric carrier for colon-specific delivery of sulfasalazine.  相似文献   

4.
Bovine serum albumin-loaded beads were prepared by ionotropic gelation of alginate with calcium chloride and chitosan. The effect of sodium alginate concentration and chitosan concentration on the particle size and loading efficacy was studied. The diameter of the beads formed is dependent on the size of the needle used. The optimum condition for preparation alginate–chitosan beads was alginate concentration of 3% and chitosan concentration of 0.25% at pH 5. The resulting bead formulation had a loading efficacy of 98.5% and average size of 1,501 μm, and scanning electron microscopy images showed spherical and smooth particles. Chitosan concentration significantly influenced particle size and encapsulation efficiency of chitosan–alginate beads (p < 0.05). Decreasing the alginate concentration resulted in an increased release of albumin in acidic media. The rapid dissolution of chitosan–alginate matrices in the higher pH resulted in burst release of protein drug.  相似文献   

5.
The effects of mixing, the sodium alginate concentration, and calcium chloride concentration on the release of sulphamethoxazole (model drug) impregnated in calcium alginate beads were investigated and evaluated. The release behaviour of the sulphamethoxazole from the calcium alginate beads was studied in a 0.1N HCl aqueous solution at 37v°C. The release rate of the sulphamethoxazole depends heavily on the type of mixers during the formation of the drug-alginate beads. The highest release rate was achieved when four-bladed rectangular agitator was used while the lowest release was achieved when magnetic stirrer was used. The amount of the released sulphamethoxazole varies slightly with the variation of the alginate concentration. The total release of sulphamethoxazole when 1% w/v solution of sodium alginate was used found to be 80% of the total drug content while 72% and 68% of the total drug content for 1.5% and 2% sodium alginate solutions. Three different calcium chloride concentrations were used (i.e., 5%, 10%, and 15% CaCl2). The effect of the calcium chloride concentration on the release of the sulphamethoxazole is very pronounced.  相似文献   

6.
A series of pH-sensitive composite hydrogel beads composed of chitosan-g-poly (acrylic acid)/attapulgite/sodium alginate (CTS-g-PAA/APT/SA) was prepared as drug delivery matrices crosslinked by Ca2+ owing to the ionic gelation of SA. The structure and surface morphology of the composite hydrogel beads were characterized by FTIR and SEM, respectively. pH-sensitivity of these composite hydrogels beads and the release behaviors of drug from them were investigated. The results showed that the composite hydrogel beads had good pH-sensitivity. The cumulative release ratios of diclofenac sodium (DS) from the composite hydrogel beads were 3.76% in pH 2.1 solution and 100% in pH 6.8 solutions within 24 h, respectively. However, the cumulative release ratio of DS in pH 7.4 solution reached 100% within 2 h. The DS cumulative release ratio reduced with increasing APT content from 0 to 50 wt%. The drug release was swelling-controlled at pH 6.8.  相似文献   

7.
The effect of a small molecule (e.g., sodium fluorescein, SF) on the swelling properties of and diffusion from calcium polysaccharide (alginate or pectin) gel beads was investigated. The gel beads were prepared by ionotropic gelation, soaked in different concentrations of SF solution, and then dried. The swelling behavior and release of SF from the dried beads were investigated. After soaking in SF, the beads swelled to sizes that depended on the initial concentration of SF. However, the size of the dried beads was independent of the SF concentration. The swelling of the beads occurred quite rapidly and reached a maximum within 2 h. Although most beads swelled to a size which was less than their original size of wet beads, some of them swelled much more than their original wet size. Higher concentration of SF and lower concentration of sodium alginate provided a greater increase in weight. The release profile of SF from dried gel beads in water consists of a burst or a very rapid release phase during the first 60 min followed by a much slower release phase. The similarity of the relative weight increase and release profiles of SF, suggests that swelling might contribute to release of SF, particularly during the burst phase.  相似文献   

8.
Context: Drotaverine hydrochloride (DRT) is used to treat gastrointestinal spasms accompanied with diarrhoea. Hence, the drug suffers from brief residence in the highly moving intestine during diarrhoea which leads to poor bioavailability and frequent dosing.

Objective: This study aimed to extend DRT residence in the stomach.

Methods: Calcium alginate floating beads were prepared using sodium alginate, isopropylmyristate (oil), and Gelucire® 43/01 (lipid) adopting emulsion gelation technique. The beads were evaluated for their floating ability, DRT entrapment efficiency and in-vitro release. Gelucire® 43/01 /oil-based beads of the selected formula were coated using ethylcellulose and different plasticizers as polyethylene glycol 400 and triethyl citrate to retard the drug release. The coated beads were re-characterized. Finally, the best formulae were investigated for their in-vivo floating ability in dogs besides their delivery to the systemic circulation compared to drug powder in human volunteers.

Results: Incorporation of Gelucire® 43/01 to oil-based beads enhanced the in-vitro performance of the beads. Coated beads prepared using drug:sodium alginate ratio of 1:3 (w/w), 20% (w/v) isopropylmyristate, 20% (w/v) Gelucire® 43/01 showed promising in-vitro performance. The beads floated for 12?h in the dogs’ stomach and produced three-fold increase of the total amount of DRT absorbed within 24?h compared to that of DRT powder.

Conclusions: Gelucire® 43/01 /isopropylmyristate-based calcium alginate floating beads coated with ethylcellulose using either PEG 400 or TEC as plasticizers proved to be a successful dosage form in extending DRT release.  相似文献   

9.
A technique has been described for the stabilization of calcium alginate beads using radiation polymerized acrylamide. The technique involved dropping a mixture containing the cells (20%), sodium alginate (2%), acrylamide (2.5%) and N-N'-methylene-bis-acrylamide (0.1%) through a syringe needle into cold (-75 degrees C) toluene. The frozen beads obtained were exposed to 60Co gamma-rays (0.5 KGy) and were then thawed in 0.1 M CaCl2 solution. Unlike the calcium alginate beads the conjugate beads were not found to be dissolved when incubated in 3% trisodium citrate solution. Stabilized beads containing entrapped yeast cells could be reused for over 15 batches for the inversion of sucrose without loss in activity or chemical integrity of the beads.  相似文献   

10.
Summary A procedure which does not involve the use of an immiscible organic solvent phase is described for the entrapment of yeast cells in porous beads of polyacrylamide gel. The cells are rapidly dispersed at 4° C in an aqueous solution containing sodium alginate and acrylamide-N,Nmethylene-bis-acrylamide monomer, and the suspension is immediately dropped into a solution of calcium formate to give calcium alginate coated beads. Polyacrylamide gel forms within the bead. The calcium alginate is subsequently leached out of the composite bead with either sodium citrate or potassium phosphate buffer solution. Cells of Saccharomyces uvarum ATCC 26 602 entrapped in such polyacrylamide beads ferment cane molasses in batch mode at higher specific ethanol productivity than a free cell suspension. Their volumetric productivity in continuous fermentation is higher than that of Ca2+-alginate immobilized cells.NCL Communication No. 4383  相似文献   

11.
Floating famotidine loaded mineral oil-entrapped emulsion gel (MOEG) beads were prepared by the emulsion–gelation method. Different polysaccharides (sodium alginate and pectin), oil concentrations (10%, 20% and 30% w/w) and drug:polymer (D:P) ratios (1:1, 2:1 and 3:1) were used and their influence on beads uniformity, drug entrapment efficiency (DEE) and in vitro drug release, was studied. The results clearly indicated that retardation of drug release for 4 h was achieved by the oil hydrophobic diffusional barrier, especially in the presence of the compact network of alginate beads. Calcium alginate beads containing 20% oil and 2:1 D:P ratio, showed an optimum DEE of 88.32%. When evaluated in vivo, this formula displayed superior antiulcer activity (>2) over drug suspension or marketed conventional tablets.  相似文献   

12.
Alginate microspheres were produced by emulsification/internal gelation of alginate sol dispersed within vegetable oil. Gelification was initiated within the alginate sol by a reduction in pH (7.5 to 6.5), releasing calcium from an insoluble complex. Smooth, spherical beads with the narrowest size dispersion were obtained when using low-guluronic-acid and low-viscosity alginate and a carbonate complex as the calcium vector. A more finely dispersed form of the complexed calcium within the alginate sol promotes a more homogeneous gelification. Microsphere mean diameters ranging from 50 m to 1000 m were obtained with standard deviations ranging from 35% to 45% of the mean.  相似文献   

13.
Summary Sodium alginate, which gels in the presence of calcium ions, is commonly used for culture of anchorage-independent cells, such as chondrocytes. Normally, the gel appears microscopically homogeneous but, depending on the conditions of gelation, it may contain a varying number of small channels that extend inward from the surface. We have examined the influence of these channels on the morphology of cultured chondrocytes entrapped in alginate beads. Growth-plate or articular chondrocytes cultured in alginate normally proliferate and form rounded cell clusters but, in alginate beads containing numerous channels, many chondrocytes become aligned and form columns similar to those in the growth plate in vivo. As the pattern of cellular growth and morphology in alginate is profoundly influenced by the presence of channels in the gel, further studies were conducted to determine what specific conditions of gelation affect their formation. The channels are especially numerous when both the alginate and the gelling solutions lack sodium ions or other monovalent cations. The channels are cavities in the gel formed by particulate blocking of the rapid diffusion of calcium ions from the gelling solution into the boundary of the calcium alginate solution, and hence they extend inward from cells at the surface of the alginate gel. An understanding of the conditions under which these channels develop makes it possible either to avoid their formation or, alternatively, to enhance the number of channels in order to encourage proliferating cells to grow in radial columns, rather than in a less organized pattern characteristic of most culture systems.  相似文献   

14.
A novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate blended with distinct salts (CaCl2, Na2HPO4, or NaCl), as a pH-sensitive hydrogel was developed for protein drug delivery. It was noted that the salts blended in hydrogels may affect the structures of an entangled network of methylcellulose and alginate and have an effect on their swelling characteristics. The methylcellulose/alginate hydrogel blended with 0.7 M NaCl (with a gelation temperature of 32 degrees C) demonstrated excellent pH sensitivity and was selected for the study of release profiles of a model protein drug (bovine serum albumin, BSA). In the preparation of drug-loaded hydrogels, BSA was well-mixed to the dissolved aqueous methylcellulose/alginate blended with salts at 4 degrees C and then gelled by elevating the temperature to 37 degrees C. This drug-loading procedure in aqueous environment at low temperature may minimize degradation of the protein drug while achieving a high loading efficiency (95-98%). The amount of BSA released from test hydrogels was a function of the amount of alginate used in the hydrogels. The amount of BSA released at pH 1.2 from the test hydrogel with 2.5% alginate was relatively low (20%), while that released at pH 7.4 increased significantly (86%). In conclusion, the methylcellulose/alginate hydrogel blended with NaCl could be a suitable carrier for site-specific protein drug delivery in the intestine.  相似文献   

15.
It has been previously demonstrated that calcium alginate gels prepared by dialysis often exhibit a concentration inhomogeneity being the polymer concentration considerably lower in the center of the gel than at the edges. Inhomogeneity may be a preferred structure in microcapsules due to low porosity and higher stability so that it is interesting to evaluate the polymer gradient in spherically symmetrical small alginate beads (1.0-0.7 mm diameter) obtained in different conditions. In this paper, two complementary techniques have been used to investigate this aspect. The concentration gradient of alginate has been analyzed by measuring both the spatial distribution of calcium ions in sections of alginate gel spheres, by means of x-ray fluorescence spectroscopy, and the T2 relaxation behavior on intact gel beads using magnetic resonance microimaging. The experimentally determined gradients from three-dimensional gels provide data to reevaluate the parameter estimates in the recently reported mathematical model for alginate gel formation (A. Mikkaelsen and A. Elgsaeter, Biopolymers, 1995, Vol. 36, pp. 17-41). The model may account for the gels being less inhomogeneous when nongelling sodium or magnesium ions are added during gelation.  相似文献   

16.
The effect of the concentration of hydrophilic (hydroxypropyl methylcellulose [HPMC]) and hydrophobic (hydrogenated castor oil [HCO]) products, fillers (lactose and dibasic calcium phosphate), and buffers (sodium bicarbonate, calcium carbonate, and sodium citrate) on naproxen release rate was studied. Matrix tablets were prepared by double compression, andIn vitro dissolution tests were performed. The dissolution results showed that an increased amount of HPMC or hydrogenated castor oil resulted in reduced drug release. The inclusion of buffers in the HPMC matrix tablets enhanced naproxen release. For HCO tablets, only sodium bicarbonate enhanced naproxen release. The presence of lactose on HPMC matrix tablets did not show a significantly different result from that obtained with the formulation containing dibasic calcium phosphate as a filler. However, for the tablets containing HCO, the presence of lactose significantly enhanced the naproxen release rate. The matrix-forming materials in this study were suitable for use in sustained-release tablets containing naproxen. The drug release can be modulated by adding suitable amounts of diluents and buffers.  相似文献   

17.
In the present study, grafting technology has been used to develop novel grafted hydrogel beads as controlled drug delivery carriers. The chemical crosslinking and grafting of polyacrylamide onto sodium alginate has been found to be efficient method for the development of new polymeric carrier. The successful crosslinking has been confirmed by Fourier transformed infrared spectroscopy, thermogravimetric analysis, and elemental analysis. The polymeric network of sodium alginate–co-polyacrylamide (NaAlg-g-PAM) has been interlinked by covalent and hydrogen bonds which also strength the gel network. Simple ionotropic gelation method has been used for the preparation of NaAlg-g-PAM hydrogel beads. Its swelling and gelation were dependent on monomer and crosslinker concentrations. Entrapment of the drug moiety (famotidine; an antiulcer drug) within the grafted beads has been confirmed by X-ray powder diffraction and differential scanning calorimetry. More than 75% of drug loading in beads occurred with the increase of monomer and crosslinker concentration. In vitro drug release was found to be sustained up to the 12 h with 80% drug release.Key words: crosslinking, grafting, hydrogel beads, mechanical strength, polyacrylamide  相似文献   

18.
The present study deals with the development of novel pH-sensitive tamarind seed polysaccharide (TSP)-alginate composite beads for controlled diclofenac sodium delivery using response surface methodology by full 32 factorial design. The effect of polymer-blend ratio (sodium alginate:TSP) and cross-linker (CaCl2) concentration on the drug encapsulation efficiency (DEE, %) and drug release from diclofenac sodium loaded TSP-alginate composite beads prepared by ionotropic gelation was optimized. The observed responses were coincided well with the predicted values by the experimental design. The DEE (%) of these beads containing diclofenac sodium was within the range between 72.23 ± 2.14 and 97.32 ± 4.03% with sustained in vitro drug release (69.08 ± 2.36-96.07 ± 3.54% in 10 h). The in vitro drug release from TSP-alginate composite beads containing diclofenac sodium was followed by controlled-release pattern (zero-order kinetics) with case-II transport mechanism. Particle size range of these beads was 0.71 ± 0.03-1.33 ± 0.04 mm. The swelling and degradation of the developed beads were influenced by different pH of the test medium. The FTIR and NMR analyses confirmed the compatibility of the diclofenac sodium with TSP and sodium alginate used to prepare the diclofenac sodium loaded TSP-alginate composite beads. The newly developed TSP-alginate composite beads are suitable for controlled delivery of diclofenac sodium for prolonged period.  相似文献   

19.
The purpose of this work was to prepare sodium alginate beads as a device for the controlled release of essential oil for oral administration as an antiviral agent. Different formulations were prepared with sodium alginate as a natural polymer and calcium chloride or glutaraldehyde as a cross-linking agent. Loading capacities of between 86% and 100% were obtained in freshly prepared beads by changing exposure time to the cross-linking agent. Drying of the calcium alginate beads caused only a slight decrease in the loading efficiency. The surface morphology of the different bead formulations were studied using scanning electron microscopy (SEM). Stability studies over a 3-month period showed that glutaraldehyde reacted with some components ofArtemisia arborescens L essential oil, changing its composition. Calcium alginate beads showed an in vitro controlled release of the essential oil for the investigated 24 hours, while the use of glutaraldehyde as a cross-linking agent was found not appropriate because of the interactions with azulene derivatives and the low degree of matrix cross-linkage. Published: August 24, 2007  相似文献   

20.
Alginate gels produced by an external or internal gelation technique were studied so as to determine the optimal bead matrix within which DNA can be immobilized for in vivo application. Alginates were characterized for guluronic/mannuronic acid (G/M) content and average molecular weight using 1H-NMR and LALLS analysis, respectively. Nonhomogeneous calcium, alginate, and DNA distributions were found within gels made by the external gelation method because of the external calcium source used. In contrast, the internal gelation method produces more uniform gels. Sodium was determined to exchange for calcium ions at a ratio of 2:1 and the levels of calcium complexation with alginate appears related to bead strength and integrity. The encapsulation yield of double-stranded DNA was over 97% and 80%, respectively, for beads formed using external and internal calcium gelation methods, regardless of the composition of alginate. Homogeneous gels formed by internal gelation absorbed half as much DNAse as compared with heterogeneous gels formed by external gelation. Testing of bead weight changes during formation, storage, and simulated gastrointestinal (GI) conditions (pH 1.2 and 7.0) showed that high alginate concentration, high G content, and homogeneous gels (internal gelation) result in the lowest bead shrinkage and alginate leakage. These characteristics appear best suited for stabilizing DNA during GI transit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号