首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Microsatellite markers are widely used for genetic studies, but the relationship between microsatellite slippage mutation rate and the number of repeat units remains unclear. In this study, microsatellite distributions in the human genome are collected from public sequence databases. We observe that there is a threshold size for slippage mutations. We consider a model of microsatellite mutation consisting of point mutations and single stepwise slippage mutations. From two sets of equations based on two stochastic processes and equilibrium assumptions, we estimate microsatellite slippage mutation rates without assuming any relationship between microsatellite slippage mutation rate and the number of repeat units. We use the least squares method with constraints to estimate expansion and contraction mutation rates. The estimated slippage mutation rate increases exponentially as the number of repeat units increases. When slippage mutations happen, expansion occurs more frequently for short microsatellites and contraction occurs more frequently for long microsatellites. Our results agree with the length-dependent mutation pattern observed from experimental data, and they explain the scarcity of long microsatellites.  相似文献   

2.
Within recent years, microsatellite have become one of the most powerful genetic markers in biology. For several mammalian species, microsatellite mutation rates have been estimated on the order of 10(- 3)-10(-5). A recent study, however, demonstrated mutation rates in Drosophila melanogaster of at least one order of magnitude lower than those in mammals. To further test this result, we examined mutation rates of different microsatellite loci using a larger sample size. We screened 24 microsatellite loci in 119 D. melanogaster lines maintained for approximately 250 generations and detected 9 microsatellite mutations. The average mutation rate of 6.3 x 10(-6) is identical to the mutation rate from a previous study. Most interestingly, all nine mutations occurred at the same allele of one locus (DROYANETSB). This hypermutable allele has 28 dinucleotide repeats and is among the longest microsatellite reported in D. melanogaster. The allele-specific mutation rate of 3.0 x 10(-4) per generation is within the range of mammalian mutation rates. Future microsatellite analyses will have to account for the dramatic differences in allele-specific mutation rates.   相似文献   

3.
Likelihood-based estimation of microsatellite mutation rates   总被引:6,自引:0,他引:6  
Microsatellites are widely used in genetic analyses, many of which require reliable estimates of microsatellite mutation rates, yet the factors determining mutation rates are uncertain. The most straightforward and conclusive method by which to study mutation is direct observation of allele transmissions in parent-child pairs, and studies of this type suggest a positive, possibly exponential, relationship between mutation rate and allele size, together with a bias toward length increase. Except for microsatellites on the Y chromosome, however, previous analyses have not made full use of available data and may have introduced bias: mutations have been identified only where child genotypes could not be generated by transmission from parents' genotypes, so that the probability that a mutation is detected depends on the distribution of allele lengths and varies with allele length. We introduce a likelihood-based approach that has two key advantages over existing methods. First, we can make formal comparisons between competing models of microsatellite evolution; second, we obtain asymptotically unbiased and efficient parameter estimates. Application to data composed of 118,866 parent-offspring transmissions of AC microsatellites supports the hypothesis that mutation rate increases exponentially with microsatellite length, with a suggestion that contractions become more likely than expansions as length increases. This would lead to a stationary distribution for allele length maintained by mutational balance. There is no evidence that contractions and expansions differ in their step size distributions.  相似文献   

4.
Populations of parthenogenetic lizards of the genus Darevskia consist of genetically identical animals, and represent a unique model for studying the molecular mechanisms underlying the variability and evolution of hypervariable DNA repeats. As unisexual lineages, parthenogenetic lizards are characterized by some level of genetic diversity at microsatellite loci. We cloned and sequenced a number of (GATA)n microsatellite loci of Darevskia unisexualis. PCR products from these loci were also sequenced and the degree of intraspecific polymorphism was assessed. Among the five (GATA)n loci analysed, two (Du215 and Du281) were polymorphic. Cross-species analysis of Du215 and Du281 indicate that the priming sites at the D. unisexualis loci are conserved in the bisexual parental species, D. raddei and D. valentini. Sequencing the PCR products amplified from Du215 and Du281 and from monomorphic Du323 showed that allelic differences at the polymorphic loci are caused by microsatellite mutations and by point mutations in the flanking regions. The haplotypes identified among the allelic variants of Du281 and among its orthologues in the parental species provide new evidence of the cross-species origin of D. unisexualis. To our knowledge, these data are the first to characterize the nucleotide sequences of allelic variants at microsatellite loci within parthenogenetic vertebrate animals.  相似文献   

5.
6.
We investigated genetic variation at six microsatellite (simple sequence repeat) loci in yellow baboons (Papio hamadryas cynocephalus) at two localities: the Tana River Primate Reserve in eastern Kenya and Mikumi National Park, central Tanzania. The six loci (D1S158, D2S144, D4S243, D5S1466, D16S508, and D17S804) were all originally cloned from and characterized in the human genome. These microsatellites are polymorphic in both baboon populations, with the average heterozygosity across loci equal to 0.731 in the Tana River sample and 0.787 in the Mikumi sample. The genetic differentiation between the two populations is substantial. Kolmogornov–Smirnov tests indicate that five of the six loci are significantly different in allele frequencies in the two populations. The mean F ST across loci is 0.069, and Shriver's measure of genetic distance, which was developed for microsatellite loci (Shriver et al., 1995), is 0.255. This genetic distance is larger than corresponding distances among human populations residing in different continents. We conclude that (a) the arrays of alleles present at these six microsatellite loci in two geographically separated populations of yellow baboons are quite similar, but (b) the two populations exhibit significant differences in allele frequencies. This study illustrates the potential value of human microsatellite loci for analyses of population genetic structure in baboons and suggests that this approach will be useful in studies of other Old World monkeys.  相似文献   

7.
Unisexual all-female lizards of the genus Darevskia that are well adapted to various habitats are known to reproduce normally by true parthenogenesis. Although they consist of unisexual lineages and lack effective genetic recombination, they are characterized by some level of genetic polymorphism. To reveal the mutational contribution to overall genetic variability, the most straightforward and conclusive way is the direct detection of mutation events in pedigree genotyping. Earlier we selected from genomic library of D. unisexualis two polymorphic microsatellite containing loci Du281 and Du215. In this study, these two loci were analyzed to detect possible de novo mutations in 168 parthenogenetic offspring of 49 D. unisexualis mothers and in 147 offspring of 50 D. armeniaca mothers. No mutant alleles were detected in D. armeniaca offspring at both loci, and in D. unisexualis offspring at the Du215 locus. There were a total of seven mutational events in the germ lines of four of the 49 D. unisexualis mothers at the Du281 locus, yielding the mutation rate of 0.1428 events per germ line tissue. Sequencing of the mutant alleles has shown that most mutations occur via deletion or insertion of single microsatellite repeat being identical in all offspring of the family. This indicates that such mutations emerge at the early stages of embryogenesis. In this study we characterized single highly unstable (GATA)(n) containing locus in parthenogenetic lizard species D. unisexualis. Besides, we characterized various types of mutant alleles of this locus found in the D. unisexualis offspring of the first generation. Our data has shown that microsatellite mutations at highly unstable loci can make a significant contribution to population variability of parthenogenetic lizards.  相似文献   

8.
Harr B  Schlötterer C 《Genetics》2000,155(3):1213-1220
Microsatellites are short tandemly repeated DNA sequence motifs that are highly variable in most organisms. In contrast to mammals, long microsatellites (>15 repeats) are extremely rare in the Drosophila melanogaster genome. To investigate this paucity of long microsatellites in Drosophila, we studied 19 loci with exceptionally long microsatellite alleles. Inter- and intraspecific analysis showed that long microsatellite alleles arose in D. melanogaster only very recently. This lack of old alleles with many repeats indicated that long microsatellite alleles have short persistence times. The size distribution of microsatellite mutations in mutation-accumulation lines suggests that long alleles have a mutation bias toward a reduction in the number of repeat units. This bias causes the short persistence times of long microsatellite alleles. We propose that species-specific, size-dependent mutation spectra of microsatellite alleles may provide a general mechanism to account for the observed differences in microsatellite length between species.  相似文献   

9.
Yao Y  Kovalchuk I 《Mutation research》2011,707(1-2):61-66
In earlier studies, we showed that abiotic stresses, such as ionizing radiation, heavy metals, temperature and water, trigger an increase in homologous recombination frequency (HRF). We also demonstrated that many of these stresses led to inheritance of high-frequency homologous recombination, HRF. Although an increase in recombination frequency is an important indicator of genome rearrangements, it only represents a minor portion of possible stress-induced mutations. Here, we analyzed the influence of heat, cold, drought, flood and UVC abiotic stresses on two major types of mutations in the genome, point mutations and small deletions/insertions. We used two transgenic lines of Arabidopsis thaliana, one allowing an analysis of reversions in a stop codon-containing inactivated β-glucuronidase transgene and another one allowing an analysis of repeat stability in a microsatellite-interrupted β-glucuronidase transgene. The transgenic Arabidopsis line carrying the β-glucuronidase-based homologous recombination substrate was used as a positive control. We showed that the majority of stresses increased the frequency of point mutations, homologous recombination and microsatellite instability in somatic cells, with the frequency of homologous recombination being affected the most. The analysis of transgenerational changes showed an increase in HRF to be the most prominent effect observed in progeny. Significant changes in recombination frequency were observed upon exposure to all types of stress except drought, whereas changes in microsatellite instability were observed upon exposure to UVC, heat and cold. The frequency of point mutations in the progeny of stress-exposed plants was the least affected; an increase in mutation frequency was observed only in the progeny of plants exposed to UVC. We thus conclude that transgenerational changes in genome stability in response to stress primarily involve an increase in recombination frequency.  相似文献   

10.
Rare plant species are vulnerable to genetic erosion and inbreeding associated with small population size and isolation due to increasing habitat fragmentation. The degree to which these problems undermine population viability remains debated. We explore genetic and reproductive processes in the critically endangered long-lived tropical tree Medusagyne oppositifolia, an endemic to the Seychelles with a naturally patchy distribution. This species is failing to recruit in three of its four populations. We evaluate whether recruitment failure is linked to genetic problems associated with fragmentation, and if genetic rescue can mitigate such problems. Medusagyne oppositifolia comprises 90 extant trees in four populations, with only the largest (78 trees) having successful recruitment. Using 10 microsatellite loci, we demonstrated that genetic diversity is high (H(E) : 0.48-0.63; H(O) : 0.56-0.78) in three populations, with only the smallest population having relatively low diversity (H(E) : 0.26 and H(O) : 0.30). All populations have unique alleles, high genetic differentiation, and significant within population structure. Pollen and seed dispersal distances were mostly less than 100 m. Individuals in small populations were more related than individuals in the large population, thus inbreeding might explain recruitment failure in small populations. Indeed, inter-population pollination crosses from the large donor population to a small recipient population resulted in higher reproductive success relative to within-population crosses. Our study highlights the importance of maintaining gene flow between populations even in species that have naturally patchy distributions. We demonstrate the potential for genetic and ecological rescue to support conservation of plant species with limited gene flow.  相似文献   

11.
T. Lehmann  W. A. Hawley    F. H. Collins 《Genetics》1996,144(3):1155-1163
A test to evaluate constraints on the evolution of single microsatellite loci is described. The test assumes that microsatellite alleles that share the same flanking sequence constitute a series of alleles with a common descent that is distinct from alleles with a mutation in the flanking sequence. Thus two or more different series of alleles at a given locus represent the outcomes of different evolutionary processes. The higher rate of mutations within the repeat region (10(-3) or 10(-4)) compared with that of insertion/deletion or point mutations in adjacent flanking regions (10(-9)) or with that of recombination between the repeat and the point mutation (10(-6) for sequences 100 bp long) provides the rationale for this assumption. Using a two-phase, stepwise mutation model we simulated the evolution of a number of independent series of alleles and constructed the distributions of two similarity indices between pairs of these allele series. Applying this approach to empirical data from locus AG2H46 of Anopheles gambiae resulted in a significant excess of similarity between the main and the null series, indicating that constraints affect allele distribution in this locus. Practical considerations of the test are discussed.  相似文献   

12.
Hoehn M  Sarre SD  Henle K 《Molecular ecology》2007,16(16):3299-3312
Although habitat loss and fragmentation threaten species throughout the world and are a major threat to biodiversity, it is apparent that some species are at greater risk of extinction in fragmented landscapes than others. Identification of these species and the characteristics that make them sensitive to habitat fragmentation has important implications for conservation management. Here, we present a comparative study of the population genetic structure of two arboreal gecko species (Oedura reticulata and Gehyra variegata) in fragmented and continuous woodlands. The species differ in their level of persistence in remnant vegetation patches (the former exhibiting a higher extinction rate than the latter). Previous demographic and modelling studies of these two species have suggested that their difference in persistence levels may be due, in part, to differences in dispersal abilities with G. variegata expected to have higher dispersal rates than O. reticulata. We tested this hypothesis and genotyped a total of 345 O. reticulata from 12 sites and 353 G. variegata from 13 sites at nine microsatellite loci. We showed that O. reticulata exhibits elevated levels of structure (FST=0.102 vs. 0.044), lower levels of genetic diversity (HE=0.79 vs. 0.88), and fewer misassignments (20% vs. 30%) than similarly fragmented populations of G. variegata, while all these parameters were fairly similar for the two species in the continuous forest populations (FST=0.003 vs. 0.004, HE=0.89 vs. 0.89, misassignments: 58% vs. 53%, respectively). For both species, genetic structure was higher and genetic diversity was lower among fragmented populations than among those in the nature reserves. In addition, assignment tests and spatial autocorrelation revealed that small distances of about 500 m through fragmented landscapes are a barrier to O. reticulata but not for G. variegata. These data support our hypothesis that G. variegata disperse more readily and more frequently than O. reticulata and that dispersal and habitat specialization are critical factors in the persistence of species in habitat remnants.  相似文献   

13.
The effective use of microsatellite loci as tools for microevolutionary analysis requires knowledge of the factors influencing the rate and pattern of mutation, much of which is derived from indirect inference from population samples. Interspecific variation in microsatellite stability also provides a glimpse into aspects of phylogenetic constancy of mutational processes. Using long-term series of mutation-accumulation lines, we have obtained direct estimates of the spectrum of microsatellite mutations in two model systems: the nematode Caenorhabditis elegans and the microcrustacean Daphnia pulex. Although the scaling of the mutation rate with the number of tandem repeats is highly consistent across distantly related species, including yeast and human, the per-cell-division mutation rate appears to be elevated in multicellular species. Contrary to the expectations under the stepwise mutation model, most microsatellite mutations in C. elegans and D. pulex involve changes of multiple repeat units, with expansions being much more common than contractions.  相似文献   

14.
《Fly》2013,7(6):300-302
Mutagenesis with ethylmethanesulfonate (EMS) has been the standard for traditional genetic screens, and in recent years has been applied to reverse genetics. However, reverse-genetic strategies require maintaining a viable germline library so that mutations that are discovered can subsequently be recovered. In applying our TILLING (Targeting Induced Local Lesions IN Genomes) method to establish a Drosophila reverse-genetic service (Fly-TILL), we chose to screen the Zuker lines, a large collection of EMS-mutagenized second- and third-chromosome balanced lines that had been established for forward-genetic screening. For the past four years, our Fly-TILL service has screened this collection to provide ~150 allelic series of point mutations for the fly community. Our analysis of >2000 point mutations and indels has provided a glimpse into the population dynamics of this valuable genetic resource. We found evidence for selection and differential recovery of mutations, depending on distance from balancer breakpoints. Although this process led to variable mutational densities, we have nevertheless been able to deliver valuable mutations in genes selected by Fly-TILL users. We anticipate that our findings will help guide the future implementation of point-mutation resources for the Drosophila community.  相似文献   

15.
Although all genetic variation ultimately stems from mutations, their properties are difficult to study directly. Here, we used multiple mutation accumulation (MA) lines derived from five genetic backgrounds of the green algae Chlamydomonas reinhardtii that have been previously subjected to whole genome sequencing to investigate the relationship between the number of spontaneous mutations and change in fitness from a nonevolved ancestor. MA lines were on average less fit than their ancestors and we detected a significantly negative correlation between the change in fitness and the total number of accumulated mutations in the genome. Likewise, the number of mutations located within coding regions significantly and negatively impacted MA line fitness. We used the fitness data to parameterize a maximum likelihood model to estimate discrete categories of mutational effects, and found that models containing one to two mutational effect categories (one neutral and one deleterious category) fitted the data best. However, the best‐fitting mutational effects models were highly dependent on the genetic background of the ancestral strain.  相似文献   

16.
Using genomic data from homologous microsatellite loci of pure AC repeats in humans and chimpanzees, several models of microsatellite evolution are tested and compared using likelihood-ratio tests and the Akaike information criterion. A proportional-rate, linear-biased, one-phase model emerges as the best model. A focal length toward which the mutational and/or substitutional process is linearly biased is a crucial feature of microsatellite evolution. We find that two-phase models do not lead to a significantly better fit than their one-phase counterparts. The performance of models based on the fit of their stationary distributions to the empirical distribution of microsatellite lengths in the human genome is consistent with that based on the human-chimp comparison. Microsatellites interrupted by even a single point mutation exhibit a twofold decrease in their mutation rate when compared to pure AC repeats. In general, models that allow chimps to have a larger per-repeat unit slippage rate and/or a shorter focal length compared to humans give a better fit to the human-chimp data as well as the human genomic data.  相似文献   

17.
N. Takezaki  M. Nei 《Genetics》1996,144(1):389-399
Recently many investigators have used microsatellite DNA loci for studying the evolutionary relationships of closely related populations or species, and some authors proposed new genetic distance measures for this purpose. However, the efficiencies of these distance measures in obtaining the correct tree topology remains unclear. We therefore investigated the probability of obtaining the correct topology (P(C)) for these new distances as well as traditional distance measures by using computer simulation. We used both the infinite-allele model (IAM) and the stepwise mutation model (SMM), which seem to be appropriate for classical markers and microsatellite loci, respectively. The results show that in both the IAM and SMM CAVALLI-SFORZA and EDWARDS'' chord distance (D(C)) and NEI et al.''s D(A) distance generally show higher P(C) values than other distance measures, whether the bottleneck effect exists or not. For estimating evolutionary times, however, NEI''s standard distance and GOLDSTEIN et al.''s (δ μ)(2) are more appropriate than other distances. Microsatellite DNA seems to be very useful for clarifying the evolutionary relationships of closely related populations.  相似文献   

18.

Background

Colorectal cancer (CRC) is with approximately 1 million cases the third most common cancer worldwide. Extensive research is ongoing to decipher the underlying genetic patterns with the hope to improve early cancer diagnosis and treatment. In this direction, the recent progress in next generation sequencing technologies has revolutionized the field of cancer genomics. However, one caveat of these studies remains the large amount of genetic variations identified and their interpretation.

Methodology/Principal Findings

Here we present the first work on whole exome NGS of primary colon cancers. We performed 454 whole exome pyrosequencing of tumor as well as adjacent not affected normal colonic tissue from microsatellite stable (MSS) and microsatellite instable (MSI) colon cancer patients and identified more than 50,000 small nucleotide variations for each tissue. According to predictions based on MSS and MSI pathomechanisms we identified eight times more somatic non-synonymous variations in MSI cancers than in MSS and we were able to reproduce the result in four additional CRCs. Our bioinformatics filtering approach narrowed down the rate of most significant mutations to 359 for MSI and 45 for MSS CRCs with predicted altered protein functions. In both CRCs, MSI and MSS, we found somatic mutations in the intracellular kinase domain of bone morphogenetic protein receptor 1A, BMPR1A, a gene where so far germline mutations are associated with juvenile polyposis syndrome, and show that the mutations functionally impair the protein function.

Conclusions/Significance

We conclude that with deep sequencing of tumor exomes one may be able to predict the microsatellite status of CRC and in addition identify potentially clinically relevant mutations.  相似文献   

19.
20.
Using a transgenic mouse model harboring chromosomally integrated lacZ mutational target genes, we previously demonstrated that mutations accumulate with age much more rapidly in the small intestine than in the brain. Here it is shown that in the small intestine point mutations preferentially accumulate in epithelial cells of the mucosa scraped off the underlying serosa. The mucosal cells are the differentiated villus cells that have undergone multiple cell divisions. A smaller age-related increase, also involving genome rearrangements, was observed in the serosa, which consists mainly of the remaining crypts and non-dividing smooth muscle cells. In the brain we observed an accumulation of only point mutations in no other areas than hypothalamus and hippocampus. To directly test for cell division as the determining factor in the generation of point mutations we compared mutation induction between mitotically active and quiescent embryonic fibroblasts from the same lacZ mice, treated with either UV (a point mutagen) or hydrogen peroxide (a clastogen). The results indicate that while point mutations are highly replication-dependent, genome rearrangements are as easily induced in non-dividing cells as in mitotically active ones. This strongly suggests that the point mutations found to have accumulated in the mucosal part of the small intestine are the consequence of replication errors. The same is likely true for point mutations accumulating in hippocampus and hypothalamus of the brain since neurogenesis in these two areas continues throughout life. The observed intra-organ variation in mutation susceptibility as well as the variation in replication dependency of different types of mutations indicates the need to not only extend observations made on whole organs to their sub-structures but also take the type of mutations and mitotic activity of the cells into consideration. This should help elucidating the impact of genome instability and its consequences on aging and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号