首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dictyostelium HMX44A cells can withstand starvation under monolayer conditions for a few days without dying. They die only when the differentiation factor DIF-1 is exogenously added. Still, when HMX44A were subjected to starvation without addition of DIF-1 they showed, by electron microscopy and electron tomography, gross mitochondrial lesions including marked cristae alterations with frequent "holes" probably originating from dilated cristae. Since these cells did not die as shown for instance by FACS analysis, these results showed unexpected resilience of cells bearing markedly altered mitochondria, and thus showed that apparently destructive mitochondrial alterations may not lead to cell death. Also, these marked mitochondrial lesions could not be caused by caspases or bcl-2 family members, which these cells do not encode.  相似文献   

2.
In L929sAhFas cells, tumor necrosis factor (TNF) leads to necrotic cell death, whereas agonistic anti-Fas antibodies elicit apoptotic cell death. Apoptosis, but not necrosis, is correlated with a rapid externalization of phosphatidylserine and the appearance of a hypoploid population. During necrosis no cytosolic and organelle-associated active caspase-3 and -7 fragments are detectable. The necrotic process does not involve proteolytic generation of truncated Bid; moreover, no mitochondrial release of cytochrome c is observed. Bcl-2 overexpression slows down the onset of necrotic cell death. In the case of apoptosis, active caspases are released to the culture supernatant, coinciding with the release of lactate dehydrogenase. Following necrosis, mainly unprocessed forms of caspases are released. Both TNF-induced necrosis and necrosis induced by anti-Fas in the presence of the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone are prevented by the serine protease inhibitor N-tosyl-L-phenylalanine chloromethylketone and the oxygen radical scavenger butylated hydroxyanisole, while Fas-induced apoptosis is not affected.  相似文献   

3.
Cell death inhibition: keeping caspases in check   总被引:27,自引:0,他引:27  
Goyal L 《Cell》2001,104(6):805-808
  相似文献   

4.
Summary Oligodendrocytes are myelin-forming cells in the mammalian central nervous system. About 50% of oligodendrocytes undergo cell death in normal development. In addition, massive oligodendrocyte cell death has been observed in multiple sclerosis. Tumor necrosis factor (TNF) is thought to be one of the mediators responsible for the damage of oligodendrocytes in multiple sclerosis. The addition of TNF- to primary cultures of oligodendrocytes significantly decreased the number of live cells in 72 h. DNA fragmentation was detected in TNF-treated oligodendrocytes at 36 h by TUNEL assay. Chemical inhibitors Ac-YVAD-CHO (a specific inhibitor of caspase-1 [ICE]-like proteases) as well as Ac-DEVDCHO (a specific inhibitor of caspase-3[CPP32]-like proteases) enhanced the survival of oligodendrocytes treated with TNF-, indicating that caspase-1- and the caspase-3-mediated cell-death pathways are activated in TNF-induced oligodendrocyte cell death. Caspase-11 is involved in activation of caspase-1. Oligodendrocytes fromCASP-11-deficient mice are partially resistant to TNF-induced oligodendrocyte cell death. Our results suggest that the inhibition of caspases may be a novel approach to treat multiple sclerosis.  相似文献   

5.
Although the prevailing concept has been that mortality in sepsis results from an unbridled hyper-inflammatory cytokine-mediated response, the failure of more than 30 clinical trials to treat sepsis by controlling this cytokine response requires a 'rethink' of the molecular mechanism underpinning the development of sepsis. As we discuss here, remarkable new studies indicate that most deaths from sepsis are actually the result of a substantially impaired immune response that is due to extensive death of immune effector cells. Rectification of this apoptotic-inflammatory imbalance using modulators of caspases and other components of the cell-death pathway have shown striking efficacy in stringent animal models of sepsis, indicating an entirely novel path forward for the clinical treatment of human sepsis.  相似文献   

6.
7.
8.
Protease signalling in cell death: caspases versus cysteine cathepsins   总被引:3,自引:0,他引:3  
Turk B  Stoka V 《FEBS letters》2007,581(15):2761-2767
Proteases were, for a long time, mainly considered as protein degrading enzymes. However, in the last decade this view has changed dramatically, and the focus is now on proteases as signalling molecules. One of the best examples is apoptosis, the major mechanism used by eukaryotes to remove superfluous, damaged and potentially dangerous cells, in which a number of proteases have been found to play a central role. Of these the caspases have been considered to be the major players. However, more recently, other proteases have been increasingly suggested as being important in apoptosis, in particular the cysteine cathepsins. In this review the roles of caspases and cysteine cathepsins in apoptosis signalling are compared and discussed.  相似文献   

9.
Mechanisms of cell death in pancreatitis remain unknown. Parenchymal necrosis is a major complication of pancreatitis; also, the severity of experimental pancreatitis correlates directly with necrosis and inversely with apoptosis. Thus, shifting death responses from necrosis to apoptosis may have a therapeutic value. To determine cell death pathways in pancreatitis and the possibility of necrosis/apoptosis switch, we utilized the differences between the rat model of cerulein pancreatitis, with relatively high apoptosis and low necrosis, and the mouse model, with little apoptosis and high necrosis. We found that caspases were greatly activated during cerulein pancreatitis in the rat but not mouse. Endogenous caspase inhibitor X-linked inhibitor of apoptosis protein (XIAP) underwent complete degradation in the rat but remained intact in the mouse model. Furthermore, XIAP inhibition with embelin triggered caspase activation in the mouse model, implicating XIAP in caspase blockade in pancreatitis. Caspase inhibitors decreased apoptosis and markedly stimulated necrosis in the rat model, worsening pancreatitis parameters. Conversely, caspase induction with embelin stimulated apoptosis and decreased necrosis in mouse model. Thus, caspases not only mediate apoptosis but also protect from necrosis in pancreatitis. One protective mechanism is through degradation of receptor-interacting protein (RIP), a key mediator of "programmed" necrosis. We found that RIP was cleaved (i.e. inactivated) in the rat but not the mouse model. Caspase inhibition restored RIP levels; conversely, caspase induction with embelin triggered RIP cleavage. Our results indicate key roles for caspases, XIAP, and RIP in the regulation of cell death in pancreatitis. Manipulating these signals to change the pattern of death responses presents a therapeutic strategy for treatment of pancreatitis.  相似文献   

10.
11.
《Molecular cell》2022,82(10):1806-1820.e8
  1. Download : Download high-res image (220KB)
  2. Download : Download full-size image
  相似文献   

12.
The homeostatic control of beta-cell mass in normal and pathological conditions is based on the balance of proliferation, differentiation, and death of the insulin-secreting cells. A considerable body of evidence, accumulated during the last decade, has emphasized the significance of the disregulation of the mechanisms regulating the apoptosis of beta-cells in the sequence of events that lead to the development of diabetes. The identification of agents capable of interfering with this process needs to be based on a better understanding of the beta-cell specific pathways that are activated during apoptosis. The aim of this article is fivefold: (1) a review of the evidence for beta-cell apoptosis in Type I diabetes, Type II diabetes, and islet transplantation, (2) to review the common stimuli and their mechanisms in pancreatic beta-cell apoptosis, (3) to review the role of caspases and their activation pathway in beta-cell apoptosis, (4) to review the caspase cascade and morphological cellular changes in apoptotic beta-cells, and (5) to highlight the putative strategies for preventing pancreatic beta-cells from apoptosis.  相似文献   

13.
Since molecular cloning of the C. elegans ced-3 gene revealed its homology with mammalian IL-1beta-converting enzyme,1 14 members of the caspase family have been identified, which have often been involved as mediators of one or more phases of the apoptotic process. 2,3 However, an over-simplified role of these proteases may be insufficient to explain the usually constitutive expression of such a large and complex family of enzymes, many of which display overlapping specificity. In addition to the well-established role of caspase-1 in the production of active IL-1beta and IL-18 in inflammation,4 an increasing number of reports has recently suggested that caspases may have a function outside of apoptosis. In this review, the situations in which cells survive despite the presence of activated caspases in their cytoplasm will be examined and discussed, with the intent to gather all recent advances in this new field that promises to be a focus for caspase research in the near future.  相似文献   

14.
It is becoming clear that "apoptotic" caspases can effect cellular processes other than cell death. A recent paper in Cell points to a novel role of the Drosophila caspase inhibitor DIAP1 as a determinant of cell migration.  相似文献   

15.
Cisplatin is a platinum-containing chemotherapeutic drug that has been widely used to treat various human cancers. It acts by forming inter- and intracross-links of DNA, which is believed to be a major cause for its therapeutic efficacy. However, little attention has been paid to the effect of cisplatin on death ligand-induced cell death. Here we demonstrate that cisplatin inhibits death ligand-induced cell death in cell lines in a p53-independent manner. This inhibitory effect of cisplatin on cell death is direct, whereby cisplatin forms a complex with caspases leading to their inactivation. The cisplatin-caspase complex is reversed by the addition of reducing agent dithiothreitol, and caspase activity is regained. In addition, cisplatin shows a death-inhibition effect in in vivo animal models of fulminant liver damage induced by Fas activation and lipopolysaccharide-induced liver shock mediated by tumor necrosis factor-alpha. Together, we demonstrate that cisplatin inhibits cell death induced by death ligands in cell lines and in mice through caspase inactivation.  相似文献   

16.
Early schisis cavities in the retinal bipolar cell layer accompanied by progressive loss of cone and rod photoreceptor cells are the hallmark of the retinoschisin-deficient (Rs1h(-/Y)) murine retina. With this study we aimed at elucidating the molecular events underlying the photoreceptor cell death in this established murine model of X-linked juvenile retinoschisis. We show that photoreceptor degeneration in the Rs1h(-/Y) mouse is due to apoptotic events peaking around postnatal day 18. Cell death is accompanied by increased expression of initiator and inflammatory caspases but not by downstream effector caspases. The strong induction of caspase-1 (Casp1) prompted us to explore its involvement in the apoptotic process. We therefore generated double knock-out mice deficient for both retinoschisin and Casp1. No direct influence of the Casp1 genotype on apoptosis could be identified although striking differences in the overall number of resident microglia were observed independent of the Rs1h genotype.  相似文献   

17.
18.
Death receptor-induced cell death in prostate cancer   总被引:2,自引:0,他引:2  
Prostate cancer mortality results from metastasis and is often coupled with progression from androgen-dependent to androgen-independent growth. Unfortunately, no effective treatment for metastatic prostate cancer increasing patient survival is available. The absence of effective therapies reflects in part a lack of knowledge about the molecular mechanisms involved in the development and progression of this disease. Apoptosis, or programmed cell death, is a cell suicide mechanism that enables multicellular organisms to regulate cell number in tissues. Inhibition of apoptosis appears to be a critical pathophysiological factor contributing to the development and progression of prostate cancer. Understanding the mechanism(s) of apoptosis inhibition may be the basis for developing more effective therapeutic approaches. Our understanding of apoptosis in prostate cancer is relatively limited when compared to other malignancies, in particular, hematopoietic tumors. Thus, a clear need for a better understanding of apoptosis in this malignancy remains. In this review we have focused on what is known about apoptosis in prostate cancer and, more specifically, the receptor/ligand-mediated pathways of apoptosis as potential therapeutic targets.  相似文献   

19.
HAMLET (Human α-lactalbumin Made Lethal to Tumor cells) triggers selective tumor cell death in vitro and limits tumor progression in vivo. Dying cells show features of apoptosis but it is not clear if the apoptotic response explains tumor cell death. This study examined the contribution of apoptosis to cell death in response to HAMLET. Apoptotic changes like caspase activation, phosphatidyl serine externalization, chromatin condensation were detected in HAMLET-treated tumor cells, but caspase inhibition or Bcl-2 over-expression did not prolong cell survival and the caspase response was Bcl-2 independent. HAMLET translocates to the nuclei and binds directly to chromatin, but the death response was unrelated to the p53 status of the tumor cells. p53 deletions or gain of function mutations did not influence the HAMLET sensitivity of tumor cells. Chromatin condensation was partly caspase dependent, but apoptosis-like marginalization of chromatin was also observed. The results show that tumor cell death in response to HAMLET is independent of caspases, p53 and Bcl-2 even though HAMLET activates an apoptotic response. The use of other cell death pathways allows HAMLET to successfully circumvent fundamental anti-apoptotic strategies that are present in many tumor cells.  相似文献   

20.
Neurotrophins support neuronal survival and differentiation via Trk receptors, yet can also induce cell death via the p75 receptor. In these studies, we investigated signaling mechanisms governing p75-mediated death of hippocampal neurons, specifically the role of caspases. Although p75 is structurally a member of the Fas/TNFR1 receptor family, caspase-8 was not required for p75-mediated death, unlike other members of this receptor family. In contrast, p75-mediated neuronal death was associated with mitochondrial loss of cytochrome c and required Apaf-1 and caspase-9, -6, and -3. In particular, caspase-6 plays a central role in mediating neurotrophin-induced death, illuminating a novel role for this caspase. Inhibition of DIABLO/Smac, which blocks inhibitor of apoptosis proteins, protected cells from death, whereas simultaneous inhibition of both DIABLO/Smac and MIAP3 allowed trophin-induced death to proceed. In vivo, pilocarpine-induced seizures, previously shown to up-regulate p75 expression and increase neurotrophin production, caused activation of caspase-6 and -3 and cleavage of poly(ADP-ribose) polymerase in p75-expressing hippocampal neurons. In p75(-/-) mice, no activated caspase-3 was detected, and there was a marked reduction in the number of dying neurons after pilocarpine treatment compared with wild type mice. Neurotrophin-induced p75-mediated death is likely to play an important role in mediating neuronal loss consequent to brain injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号