首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polarized growth of cells as diverse as fungal hyphae, pollen tubes, algal rhizoids and root hairs is characterized by a highly localized regulation of cell expansion confined to the growing tip. In apically growing plant cells, a tip-focused [Ca2+]c gradient and the cytoskeleton have been associated with growth. Although actin has been established to be essential for the maintenance of elongation, the role of microtubules remains unclear. To address whether the microtubule cytoskeleton is involved in root hair growth and orientation, we applied microtubule antagonists to root hairs of Arabidopsis. In this report, we show that depolymerizing or stabilizing the microtubule cytoskeleton of these apically growing root hairs led to a loss of directionality of growth and the formation of multiple, independent growth points in a single root hair. Each growing point contained a tip-focused gradient of [Ca2+]c. Experimental generation of a new [Ca2+]c gradient in root hairs pre-treated with microtubule antagonists, using the caged-calcium ionophore Br-A23187, was capable of inducing the formation of a new growth point at the site of elevated calcium influx. These data indicate a role for microtubules in regulating the directionality and stability of apical growth in root hairs. In addition, these results suggest that the action of the microtubules may be mediated through interactions with the cellular machinery that maintains the [Ca2+]c gradient at the tip.  相似文献   

2.
The Arabidopsis thaliana root hair is used as a model for studying tip growth in plants. We review recent advances, made using physiological and genetic approaches, which give rise to different, yet compatible, current views of the establishment and maintenance of tip growth in epidermal cells. For example, an active calcium influx channel localized at the tip of Arabidopsis root hairs has been identified by patch-clamp measurements. Actin has been visualized in vivo in Arabidopsis root hairs by using a green-fluorescent-protein-talin reporter and shown to form a dense mesh in the apex of the growing tip. The kojak gene, which encodes a protein similar to the catalytic subunit of cellulose synthase, is needed in the first stages of hair growth. A role for LRX1, a leucine-rich repeat extensin, in determining the morphology of the cell wall of root hairs has been established using reverse genetics. The new information can be integrated into a general and more advanced view of how these specialized plant cells grow.  相似文献   

3.
Schütz I  Gus-Mayer S  Schmelzer E 《Protoplasma》2006,227(2-4):229-235
We have found 5 profilin cDNAs in cultured parsley cells, representing a small gene family of about 5 members in parsley. Specific antibodies were produced using heterologously expressed parsley profilin as antigen. Western blot analysis revealed the occurrence of similar amounts of profilin in roots and green parts of parsley plants. Immunocytochemical staining of parsley cells infected with the oomycetous plant pathogen Phytophthora infestans clearly revealed that profilin accumulates at the site on the plasma membrane subtending the oomycetous appressorium, where the actin cables focus. We also observed the accumulation of Rop GTPases around this site, which might point to a potential function in signaling to the cytoskeleton.  相似文献   

4.
Sørmo CG  Brembu T  Winge P  Bones AM 《PloS one》2011,6(4):e18530
MIRO GTPases have evolved to regulate mitochondrial trafficking and morphology in eukaryotic organisms. A previous study showed that T-DNA insertion in the Arabidopsis MIRO1 gene is lethal during embryogenesis and affects pollen tube growth and mitochondrial morphology in pollen, whereas T-DNA insertion in MIRO2 does not affect plant development visibly. Phylogenetic analysis of MIRO from plants revealed that MIRO 1 and 2 orthologs in dicots cluster in two separate groups due to a gene/genome duplication event, suggesting that functional redundancy may exists between the two MIRO genes. To investigate this possibility, we generated miro1(+/-)/miro2-2(-/-) plants. Compared to miro1(+/-) plants, the miro1(+/-)/miro2-2(-/-) plants showed increased segregation distortion. miro1(+/-)/miro2-2(-/-) siliques contained less aborted seeds, but more than 3 times the number of undeveloped ovules. In addition, reciprocal crosses showed that co-transmission through the male gametes was nearly absent, whereas co-transmission through the female gametes was severely reduced in miro1(+/-)/miro2-2(-/-) plants. Further investigations revealed that loss of MIRO2 (miro2(-/-)) function in the miro1(+/-) background enhanced pollen tube growth defects. In developing miro1(+/-)/miro2(-/-) embryo sacs, fusion of polar nuclei was further delayed or impaired compared to miro1 plants. This phenotype has not been reported previously for miro1 plants and coincides with studies showing that defects in some mitochondria-targeted genes results in the same phenotype. Our observations show that loss of function in MIRO2 in a miro1(+/-) background enhances the miro1(+/-) phenotype significantly, even though miro2(-/-) plants alone does not display any phenotypes. Based on these findings, we conclude that MIRO1 and MIRO2 are unequally redundant and that a proportion of the miro1(+/-)/miro2(-/-) plants haploid gametes displays the complete null phenotype of MIRO GTPase function at key developmental stages.  相似文献   

5.
Phosphatidylinositol (PtdIns) transfer proteins (PITPs) regulate signaling interfaces between lipid metabolism and membrane trafficking. Herein, we demonstrate that AtSfh1p, a member of a large and uncharacterized Arabidopsis thaliana Sec14p-nodulin domain family, is a PITP that regulates a specific stage in root hair development. AtSfh1p localizes along the root hair plasma membrane and is enriched in discrete plasma membrane domains and in the root hair tip cytoplasm. This localization pattern recapitulates that visualized for PtdIns(4,5)P2 in developing root hairs. Gene ablation experiments show AtSfh1p nullizygosity compromises polarized root hair expansion in a manner that coincides with loss of tip-directed PtdIns(4,5)P2, dispersal of secretory vesicles from the tip cytoplasm, loss of the tip f-actin network, and manifest disorganization of the root hair microtubule cytoskeleton. Derangement of tip-directed Ca2+ gradients is also apparent and results from isotropic influx of Ca2+ from the extracellular milieu. We propose AtSfh1p regulates intracellular and plasma membrane phosphoinositide polarity landmarks that focus membrane trafficking, Ca2+ signaling, and cytoskeleton functions to the growing root hair apex. We further suggest that Sec14p-nodulin domain proteins represent a family of regulators of polarized membrane growth in plants.  相似文献   

6.
Membrane trafficking and polar growth in root hairs and pollen tubes   总被引:9,自引:0,他引:9  
Root hairs and pollen tubes extend by rapid elongation that occurs exclusively at the tip. Fundamental for such local, tip-focused growth (so-called 'tip growth') is the polarization of the cytoplasm that directs secretory events to the tip, and the presence of internal gradients and transmembrane flux of ions, notably Ca2+, H+, K+, and Cl-. Electrophysiological and imaging studies using fluorescent markers have sought to link ion gradients with growth and membrane trafficking. Current models recognize membrane trafficking as fundamental to tip growth, notably its role in supplying lipid and protein to the new plasma membrane and cell wall that extend the apex of the cell, and a complementary role for endocytosis in retrieving excess membrane and in recycling various protein fractions. The current state of knowledge is reviewed here in order to highlight the major gaps in the present understanding of trafficking as it contributes to polar growth in these cells and recent results, that suggest a role for membrane trafficking in the active regulation of ion channel turnover and activity during polar tip growth, are discussed.  相似文献   

7.
In this study, confocal ratio analysis was used to image the relationship between cytoplasmic free calcium concentration ([Ca2+]c) and the development of root hairs of Arabidopsis thaliana. Although a localized change in [Ca2+]c that preceded or predicted the site of root hair initiation could not be detected, once initiated the majority of emerging root hairs showed an elevated [Ca2+]c (>1 μM) in their apical cytoplasm, compared with 100– 200 nM in the rest of the cell. These emerging root hairs then moved into a 3–5 h phase of sustained elongation during which they showed variable growth rates. Root hairs that were rapidly elongating exhibited a highly localized, elevated [Ca2+]c at the tip. Non-growing root hairs did not exhibit the [Ca2+]c gradient. The rhd-2 mutant, which is defective in sustained root hair growth, showed an altered [Ca2+]c distribution compared with wild-type. These results implicate [Ca2+]c in regulating the tip growth process. Treatment of elongating wild-type root hairs with the Ca2+ channel blocker verapamil (50 μM) caused dissipation of the elevated [Ca2+]c at the tip and cessation of growth, suggesting a requirement for Ca2+ channel activity at the root hair tip to maintain growth. Manganese treatment also preferentially quenched Indo-1 fluorescence in the apical cytoplasm of the root hair. As manganese is thought to enter cells through Ca2+-permeable channels, this result also suggests increased Ca2+ channel activity at the tip of the growing hair. Taken together, these data suggest that although Ca2+ does not trigger the initiation of root hairs, Ca2+ influx at the tip of the root hair leads to an elevated [Ca2+]c that may be required to sustain root hair elongation.  相似文献   

8.
Arabidopsis thaliana root hairs grow longer and denser in response to low-phosphorus availability. In addition, plants with the root hair response acquire more phosphorus than mutants that have root hairs that do not respond to phosphorus limiting conditions. The purpose of this experiment was to determine the efficiency of root hairs in phosphorus acquisition at high- and low-phosphorus availability. Root hair growth, root growth, root respiration, plant phosphorus uptake, and plant phosphorus content of 3-wk-old wild-type Arabidopsis (WS) were compared to two root hair mutants (rhd6 and rhd2) under high (54 mmol/m) and low (0.4 mmol/m) phosphorus availability. A cost-benefit analysis was constructed from the measurements to determine root hair efficiency. Under high-phosphorus availability, root hairs did not have an effect on any of the parameters measured. Under low-phosphorus availability, wild-type Arabidopsis had greater total root surface area, shoot biomass, phosphorus per root length, and specific phosphorus uptake. The cost-benefit analysis shows that under low phosphorus, wild-type roots acquire more phosphorus for every unit of carbon respired or unit of phosphorus invested into the roots than the mutants. We conclude that the response of root hairs to low-phosphorus availability is an efficient strategy for phosphorus acquisition.  相似文献   

9.
Membrane currents were recorded under voltage clamp from roothairs of Arabidopsis thaliana L. using the two-electrode method.Concurrent measurements of membrane voltage distal to the pointof current injection were also carried out to assess the extentof current dissipation along the root hair axis. Estimates ofthe characteristic cable length,  相似文献   

10.
Coumarin is a highly active allelopathic compound which plays a key role in plant–plant interactions and communications. It affects root growth and development of many species, but its mode of action has not been clarified yet. It has been hypothesized that auxin could mediate coumarin-induced effects on root system. Through morphological and pharmacological approaches together with the use of Arabidopsis auxin mutants, a possible interaction between coumarin and auxin in driving root system development has been investigated in Arabidopsis thaliana (Col-0). Coumarin strongly affected primary root elongation and lateral root development of Arabidopsis seedlings. In particular, 10?4 M coumarin significantly inhibited primary root elongation increasing lateral root number and root hairs length. Further, coumarin addition was able to restore the negative effects of TIBA and NPA, two auxin transport inhibitors, which caused a complete inhibition of lateral root formation. Arabidopsis auxin mutants differently responded to coumarin compared to wild type (Col-0). In particular, lax3 mutant showed the lowest (42 %) inhibition of primary root length, whereas, eir1-4 mutant had higher inhibition (53 %) compared to Col-0; conversely, aux1-22 mutant did not show any effect in response to coumarin. An increase of lateral root number was observed in pin1 mutant only. Finally, coumarin increased the root hairs length in eir1-4, lax3, pin1 and pin3-5 mutants, but not in aux1-22. These results suggested a functional interaction between coumarin and auxin polar transport in driving root development in A. thaliana.  相似文献   

11.
? All living organisms on Earth are continually exposed to diurnal variations in the gravitational tidal force due to the Sun and Moon. ? Elongation of primary roots of Arabidopsis thaliana seedlings maintained at a constant temperature was monitored for periods of up to 14 d using high temporal- and spatial-resolution video imaging. The time-course of the half-hourly elongation rates exhibited an oscillation which was maintained when the roots were placed in the free-running condition of continuous illumination. ? Correlation between the root growth kinetics collected from seedlings initially raised under several light protocols but whose roots were subsequently in the free-running condition and the lunisolar tidal profiles enabled us to identify that the latter is the probable exogenous determinant of the rhythmic variation in root elongation rate. Similar observations and correlations using roots of Arabidopsis starch mutants suggest a central function of starch metabolism in the response to the lunisolar tide. The periodicity of the lunisolar tidal signal and the concomitant adjustments in root growth rate indicate that an exogenous timer exists for the modulation of root growth and development. ? We propose that, in addition to the sensitivity to Earthly 1G gravity, which is inherent to all animals and plants, there is another type of responsiveness which is attuned to the natural diurnal variations of the lunisolar tidal force.  相似文献   

12.

Background and aims

The role of root hairs in intraspecific competition for Phosporus (P) is well examined, but their importance during interaction with other plant species is unknown, as is the differential meaning for competitive effect and response. This study aims to fill this gap of knowledge.

Methods

Competitive abilities of Arabidopsis thaliana wildtype and mutants with aberrant root hair phynotypes (root hair deficient, rhd2-1 or excessive root hair density, prc1-1) were examined in a pot-experiment with P-deficient sand. Competitive effects on a phytometer (Hieracium pilosella) or on A. thaliana itself were assessed as well as competitive responses to species mixtures.

Results

In intraspecific interaction, the competitive effect of wildtype was superior to that of rhd2-1 or prc1-1. This was much less pronounced in interspecific interaction. Competitive response was entirely uniform between Arabidopsis root phenotypes.

Conclusions

The notion that root hairs are important for competition for P should be differentiated. With A. thaliana root hairs less important in inter- than in intraspecific interaction and with root hairs entirely unimportant for competitive response, functional mechanisms of competition for P appear quite complex. Such differential importance of root traits in different facets of competition might well be more common than previously thought.  相似文献   

13.
14.
15.
Radial expansion of root cells and elongation of root hairs were induced within 3 d of a massive dose (3 kGy) of gamma irradiation to Arabidopsis thaliana. Because treatment with the antioxidant n-propyl gallate before irradiation suppressed these changes, gamma irradiation partially rescued the rhd2 mutant (defective in NADPH oxidase); the superoxide-generating reagent paraquat induced similar root morphogenesis. These responses appeared to be induced by the active oxygen species (AOS) generated by water radiolysis. Ethylene production was induced immediately after gamma irradiation and reached a steady level after about 2 h. Addition of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid partly induced a similar expansion of root cells and elongation of root hairs. Addition of an inhibitor of ethylene biosynthesis, aminoethoxyvinylglycine, before gamma irradiation completely suppressed the formation of abnormal structures. These results suggest that the AOS is involved in the root morphological changes through the ethylene biosynthesis induced by gamma irradiation in Arabidopsis.  相似文献   

16.
The effects of salinity (NaCl) stress on growth, cytosolic Ca(2+) gradients and cytosolic pH homeostasis of root hairs of Arabidopsis thaliana are assessed here. Neither cytosolic Ca(2+) nor pH at the hair apex were significantly affected by 20 min exposure of up to 90 mM NaCl or of up to 5 mM extracellular Ca(2+). Exposure to increasing NaCl concentrations, up to 90 mM, for 2 d or 6 d reduced hair extension, and this inhibition was relieved by supplemental extracellular Ca(2+). Such extended salinity stress reduced the magnitude of the Ca(2+) gradient in the apical 12 microm of hairs at all NaCl concentrations tested (up to 90 mM), including NaCl concentrations that did not reduce hair extension. The magnitude of the tip-focused gradient was also reduced in root hairs of plants grown with low (0.5 mM) extracellular Ca(2+) when compared to those in 5 mM extracellular Ca(2+), regardless of the presence of NaCl. Up to 90 mM NaCl did not affect cytosolic pH of root hairs in any of the treatments. It is concluded that NaCl inhibition of root hair extension in the long term may operate via alterations in the tip-focused Ca(2+) gradient that regulates root hair growth. However, NaCl-induced alterations in this gradient do not always lead to detectably altered growth kinetics. Short-term signalling events in response to NaCl may operate by a means other than altering Ca(2+) at the root hair apex. Salinity stress in root hairs does not appear to be mediated by effects on cytosolic pH.  相似文献   

17.
Roger R. Lew 《Planta》1994,193(1):67-73
Voltage clamp was used to measure the voltage dependence of cell-to-cell coupling via plasmodesmata between higher-plant cells (root hairs of Arabidopsis thaliana (L.) Heynh.). In addition, ionophoresis was used to introduce a variety of ions [Ca2+, inositol-trisphosphate, Li+, K+, Mg2+, ethylene glycol-bis(-aminoethyl ether)-N,N,N, N-tetraacetic acid (EGTA), 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid (BAPTA), H+, and OH] to examine whether they regulate cell-to-cell coupling. Electrical coupling showed high variability in this single cell type at the same developmental stage; the coupling ratio ranged from near 0% to about 90% with a mean value of 32%. It was voltage independent for intracellular voltage gradients (transplasmodesmatal) of -163 to 212 mV. While Ca2+ closes the plasmodesmatal connections (at concentrations higher than those causing cessation of cytoplasmic streaming), inositol-trisphosphate and lithium are without effect. Apparently, inositol-trisphosphate may not cause increased cytosolic Ca2+ in root hairs. Alkalinization by OH ionophoresis caused a modest decline in cell-to-cell coupling, as did acidification by H+ ionophoresis (to an extent causing the cell to become flacid). Increases in cytosolic K+, Mg2+, and the calcium chelator BAPTA by ionophoresis had no effect on cell-to-cell coupling. The regulation (and lack thereof) reported here for plant plasmodesmata is quite similar to that of gap junctions.Abbreviations BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N, N-tetraacetic acid  相似文献   

18.
Jasmonic acid (JA) is a crucial plant defence signalling substance that has recently been shown to mediate herbivory-induced root growth reduction in the ecological model species Nicotiana attenuata . To clarify whether JA-induced reduction of root growth might be a general response increasing plant fitness under biotic stress, a suite of experiments was performed with the model plant Arabidopsis thaliana . JA bursts were elicited in leaves of A. thaliana in different ways. Root growth reduction was neither induced by foliar application of herbivore oral secretions nor by direct application of methyl jasmonate to leaves. Root growth reduction was observed when leaves were infected with the pathogen Pseudomonas syringae pv. tomato, which persistently induces the JA signalling pathway. Yet, high resolution growth analyses of this effect in wild type and JA biosynthesis knock-out mutants showed that it was elicited by the bacterial toxin coronatine that suggests ethylene- but not JA-induced root growth reduction in A. thaliana . Overall, the results demonstrate that the reaction of root growth to herbivore-induced JA signalling differs among species, which is discussed in the context of different ecological defence strategies among species.  相似文献   

19.
Jones MA  Shen JJ  Fu Y  Li H  Yang Z  Grierson CS 《The Plant cell》2002,14(4):763-776
Root hairs provide a model system for the study of cell polarity. We examined the possibility that one or more members of the distinct plant subfamily of RHO monomeric GTPases, termed Rop, may function as molecular switches regulating root hair growth. Specific Rops are known to control polar growth in pollen tubes. Overexpressing Rop2 (Rop2 OX) resulted in a strong root hair phenotype, whereas overexpressing Rop7 appeared to inhibit root hair tip growth. Overexpressing Rops from other phylogenetic subgroups of Rop did not give a root hair phenotype. We confirmed that Rop2 was expressed throughout hair development. Rop2 OX and constitutively active GTP-bound rop2 (CA-rop2) led to additional and misplaced hairs on the cell surface as well as longer hairs. Furthermore, CA-rop2 depolarized root hair tip growth, whereas Rop2 OX resulted in hairs with multiple tips. Dominant negative GDP-bound Rop2 reduced the number of hair-forming sites and led to shorter and wavy hairs. Green fluorescent protein-Rop2 localized to the future site of hair formation well before swelling formation and to the tip throughout hair development. We conclude that the Arabidopsis Rop2 GTPase acts as a positive regulatory switch in the earliest visible stage in hair development, swelling formation, and in tip growth.  相似文献   

20.
In growing Arabidopsis root hairs, the nucleus locates at a fixed distance from the apex, migrates to a random position during growth arrest, and moves from branch to branch in a mutant with branched hairs. Consistently, an artificial increase of the distance between the nucleus and the apex, achieved by entrapment of the nucleus in a laser beam, stops cell growth. Drug studies show that microtubules are not involved in the positioning of the nucleus but that subapical fine F-actin between the nucleus and the hair apex is required to maintain the nuclear position with respect to the growing apex. Injection of an antibody against plant villin, an actin filament-bundling protein, leads to actin filament unbundling and movement of the nucleus closer to the apex. Thus, the bundled actin at the tip side of the nucleus prevents the nucleus from approaching the apex. In addition, we show that the basipetal movement of the nucleus at root hair growth arrest requires protein synthesis and a functional actin cytoskeleton in the root hair tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号