首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Z Y Du  P D Boyer 《Biochemistry》1990,29(2):402-407
Washed chloroplast thylakoid membranes upon exposure to [3H]ADP retain a tightly bound [3H]ADP on a catalytic site of the ATP synthase. The presence of sufficient endogenous or added Mg2+ results in an enzyme with essentially no ATPase activity. Sulfite activates the ATPase, and many molecules of ATP per synthase can be hydrolyzed before most of the bound [3H]ADP is released, a result interpreted as indicating that the ADP is not bound at a site participating in catalysis by the sulfite-activated enzyme [Larson, E. M., Umbach, A., & Jagendorf, A. T. (1989) Biochim. Biophys. Acta 973, 75-85]. We present evidence that this is not the case. The Mg2(+)- and ADP-inhibited enzyme when exposed to MgATP and 20-100 mM sulfite shows a lag of about 1 min at 22 degrees C and of about 15 s at 37 degrees C before reaching the same steady-state rate as attained with light-activated ATPase that has not been inhibited by Mg2+ and ADP. The lag is not eliminated if the enzyme is exposed to sulfite prior to MgATP addition, indicating that ATPase turnover is necessary for the activation. The release of most of the bound [3H]ADP parallels the onset of ATPase activity, although some [3H]ADP is not released even with prolonged catalytic turnover and may be on poorly active or inactive enzyme or at noncatalytic sites. The results are consistent with most of the tightly bound [3H]ADP being at a catalytic site and being replaced as this Mg2(+)- and ADP-inhibited site regains equivalent participation with other catalytic sites on the activated enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The purified proton ATPase of chromaffin granules contains five different polypeptides denoted as subunits I to V in the order of decreasing molecular weights of 115,000, 72,000, 57,000, 39,000, and 17,000, respectively. The purified enzyme was reconstituted as a highly active proton pump, and the binding of N-ethylmaleimide and nucleotides to individual subunits was studied. N-Ethylmaleimide binds to subunits I, II, and IV, but inhibition of both ATPase and proton pumping activity correlated with binding to subunit II. In the presence of ADP, the saturation curve of ATP changed from hyperbolic to a sigmoid shape, suggesting that the proton ATPase is an allosteric enzyme. Upon illumination of the purified enzyme in the presence of micromolar concentrations of 8-azido-ATP, alpha-[35S]ATP, or alpha-[32P]ATP subunits I, II, and IV were labeled. However, at concentrations of alpha-[32P]ATP below 0.1 microM, subunit II was exclusively labeled in both the purified and reconstituted enzyme. This labeling was absolutely dependent on the presence of divalent cations, like Mg2+ and Mn2+, while Ca2+, Co2+, and Zn2+ had little or no effect. About 0.2 mM Mg2+ was required to saturate the reaction even in the presence of 50 nM alpha-[32P]ATP, suggesting a specific and separate Mg2+ binding site on the enzyme. Nitrate, sulfate, and thiocyanate at 100 mM or N-ethylmaleimide and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole at 100 microM prevented the binding of the nucleotide to subunit II. The labeling of this subunit was effectively prevented by micromolar concentrations of three phosphonucleotides including those that cannot serve as substrate for the enzyme. It is concluded that a tightly bound ADP on subunit II is necessary for the activity of the enzyme.  相似文献   

3.
Incubation of thylakoids in 33% methanol causes a release of the tightly bound nucleotides from CF1. This methanol effect is not a stimulation of nucleotide exchange, since no medium ATP or ADP is incorporated into CF1 during the methanol treatment. While the optimal conditions for stimulating the release of tightly bound ADP were similar to those for activating the ATPase, a direct relationship between the effects was not found. The tightly bound ADP does not represent a catalytic intermediate in this system, since (a) its rate of release is much slower than enzyme turnover, and (b) the substrate specificity for hydrolysis is different from that which promotes ADP release. A regulatory role for the tightly bound ADP in methanol-activated ATPase is also not indicated, since (a) activation of the ATPase occurs much more rapidly than ADP release, and (b) after the tightly bound ADP has been lost, high rates of ATP hydrolysis still require the presence of methanol, and (c) the small ATPase activity which persists after the removal of the methanol is not correlated with the loss of bound ADP. These results show that significant rates of ATP hydrolysis can occur with ADP still tightly bound to CF1. This argues against any model in which ADP regulates ATPase activity by binding directly to the catalytic site.  相似文献   

4.
D Wu  P D Boyer 《Biochemistry》1986,25(11):3390-3396
When the heat-activated chloroplast F1 ATPase hydrolyzes [3H, gamma-32P]ATP, followed by the removal of medium ATP, ADP, and Pi, the enzyme has labeled ATP, ADP, and Pi bound to it in about equal amounts. The total of the bound [3H]ADP and [3H]ATP approaches 1 mol/mol of enzyme. Over a 30-min period, most of the bound [32P]Pi falls off, and the bound [3H]ATP is converted to bound [3H]ADP. Enzyme with such remaining tightly bound ADP will form bound ATP from relatively high concentrations of medium Pi with either Mg2+ or Ca2+ present. The tightly bound ADP is thus at a site that retains a catalytic capacity for slow single-site ATP hydrolysis (or synthesis) and is likely the site that participates in cooperative rapid net ATP hydrolysis. During hydrolysis of 50 microM [3H]ATP in the presence of either Mg2+ or Ca2+, the enzyme has a steady-state level of about one bound [3H]ADP per mole of enzyme. Because bound [3H]ATP is also present, the [3H]ADP is regarded as being present on two cooperating catalytic sites. The formation and levels of bound ATP, ADP, and Pi show that reversal of bound ATP hydrolysis can occur with either Ca2+ or Mg2+ present. They do not reveal why no phosphate oxygen exchange accompanies cleavage of low ATP concentrations with Ca2+ in contrast to Mg2+ with the heat-activated enzyme. Phosphate oxygen exchange does occur with either Mg2+ or Ca2+ present when low ATP concentrations are hydrolyzed with the octyl glucoside activated ATPase. Ligand binding properties of Ca2+ at the catalytic site rather than lack of reversible cleavage of bound ATP may underlie lack of oxygen exchange under some conditions.  相似文献   

5.
The F1-ATPase from Micrococcus lysodeikticus is isolated in the absence of exogenous nucleotides. After removing loosely bound nucleotides from the isolated enzyme by gel permeation chromatography, analysis for tightly bound nucleotides revealed in 14 experiments 0.4 +/- 0.1 mol ADP, 0.5 +/- 0.2 mol GDP, and 0.8 +/- 0.2 mol ATP per mol of F1. Incubation of the isolated enzyme with Mg2+ or Ca2+ did not alter the endogenous nucleotide composition of the enzyme, indicating that endogenous ATP is not bound to a catalytic site. Incubation of the enzyme with P(i) decreased the amount of tightly bound ADP and GDP but did not effect the ATP content. Hydrolysis of MgATP in the presence of sulfite raised the tightly bound ADP and lowered tightly bound GDP on the enzyme. In the reciprocal experiment, hydrolysis of MgGTP in the presence of sulfite raised tightly bound GDP and lowered tightly bound ADP. Turnover did not affect the content of tightly bound ATP on the enzyme. These results suggest that endogenous ADP and GDP are bound to exchangeable catalytic sites, whereas endogenous ATP is bound to noncatalytic sites which do not exchange. The presence of endogenous GDP on catalytic sites of isolated F1 suggests that the F0F1-ATP synthase of M. lysodeikticus might synthesize both GTP and ATP under physiological conditions. In support of this hypothesis, we have found that plasma membrane vesicles derived from M. lysodeikticus synthesize [32P]GTP from [32P]P(i) using malate as electron donor for oxidative phosphorylation.  相似文献   

6.
The recent finding that the presence of ATP at non-catalytic sites of chloroplast F1-ATPase (CF1) is necessary for ATPase activity (Milgrom, Y. M., Ehler, L. L., and Boyer, P. D. (1990) J. Biol. Chem. 265,18725-18728) prompted more detailed studies of the effect of noncatalytic site nucleotides on catalysis. CF1 containing at noncatalytic sites less than one ADP or about two ATP was prepared by heat activation in the absence of Mg2+ and in the presence of ADP or ATP, respectively. After removal of medium nucleotides, the CF1 preparations were used for measurement of the time course of nucleotide binding from 10 to 100 microM concentrations of 3H-labeled ADP, ATP, or GTP. The presence of Mg2+ strongly promotes the tight binding of ADP and ATP at noncatalytic sites. For example, the ADP-heat-activated enzyme in presence of 1 mM Mg2+ binds ADP with a rate constant of 0.5 x 10(6) M-1 min-1 to give an enzyme with two ADP at noncatalytic sites with a Kd of about 0.1 microM. Upon exposure to Mg2+ and ATP the vacant noncatalytic site binds an ATP rapidly and, as an ADP slowly dissociates, a second ATP binds. The binding correlates with an increase in the ATPase activity. In contrast the tight binding of [3H]GTP to noncatalytic sites gives an enzyme with no ATPase activity. The three noncatalytic sites differ in their binding properties. The noncatalytic site that remains vacant after the ADP-heat-activated CF1 is exposed to Mg2+ and ADP and that can bind ATP rapidly is designated as site A; the site that fills with ATP as ADP dissociates when this enzyme is exposed to Mg2+ and ATP is called site B, and the site to which ADP remains bound is called site C. Procedures are given for attaining CF1 with ADP at sites B and C, with GTP at sites A and/or B, and with ATP at sites A, B, and/or C, and catalytic activities of such preparations are measured. For example, little or no ATPase activity is found unless ATP is at site A, but ADP can remain at site C with no effect on ATPase. Maximal GTPase activity requires ATP at site A but about one-fifth of maximal GTPase is attained when GTP is at sites A and B and ATP at site C. Noncatalytic site occupancy can thus have profound effects on the ATPase and GTPase activities of CF1.  相似文献   

7.
The role of tightly bound ADP on chloroplast ATPase   总被引:1,自引:0,他引:1  
Isolated chloroplast coupling factor 1 ATPase is known to retain about 1 mol of tightly bound ADP/mol of enzyme. Some experimental results have given evidence that the bound ADP is at catalytic sites, but this view has not been supported by observations of a slow replacement of the bound ADP when CaATP or MgATP is added. The experiments reported in this paper show why a slow replacement of ADP bound at a catalytic site can occur. When coupling factor 1, labeled with tightly bound [3H]ADP, is exposed to Mg2+ or Ca2+ prior to the addition of MgATP or CaATP, a pronounced lag in the onset of ATP hydrolysis is observed, and only slow replacement of the [3H]ADP occurs. Mg2+ or Ca2+ can induce inhibition very rapidly, as if an inhibited form of the enzyme results whenever the enzyme with tightly bound ADP encounters Mg2+ or Ca2+ prior to ATP. The inhibited form can be slowly reactivated by incubation with EDTA, although some irreversible loss in activity is encountered. In contrast, when MgATP or CaATP is added to enzyme depleted of Mg2+ and Ca2+ by incubation with EDTA, a rapid onset of ATP hydrolysis occurs and most of the tightly bound [3H]ADP is released within a few seconds, as expected for binding at a catalytic site. The Mg2+-induced inhibition of both the ATPase activity and the lack of replacement of tightly bound [3H] ADP can be largely prevented by incubation with Pi under conditions favoring Pi addition to the site containing the tightly bound ADP. Our and other results can be explained if enzyme catalysis is greatly hindered when MgADP or CaADP without accompanying Pi is tightly bound at one of the three catalytic sites on the enzyme in a high affinity conformation.  相似文献   

8.
Mg2+ is known to be a potent inhibitor of F1 ATPases from various sources. Such inhibition requires the presence of a tightly bound ADP at a catalytic site. Results with the spinach chloroplast F1 ATPase (CF1) show that the time delays of up to 1 min or more in the induction or the relief of the inhibition are best explained by a slow binding and slow release of Mg2+ rather than by slow enzyme conformational changes. CF1 is known to have multiple Mg2+ binding sites with Kd values in the micromolar range. The inhibitory Mg2+ and ADP can bind independently to CF1. When Mg2+ and ATP are added to the uninhibited enzyme, a relatively fast rate of hydrolysis attained soon after the addition is followed by a much slower steady-state rate. The inhibited steady-state rate results from a slowly attained equilibrium of binding of medium Mg2+. The Kd for the binding of the inhibitory Mg2+ is in the range of 1-8 microM, in the presence or absence of added ATP, as based on the extent of rate inhibition induced by Mg2+. Assessments from 18O exchange experiments show that the binding of Mg2+ is accompanied by a relatively rapid change to an enzyme form that is incapable of hydrolyzing MgATP. When ATP is added to the Mg2+- and ADP-inhibited enzyme, the resulting reactivation can be explained by MgATP binding to an alternate catalytic site which results in a displacement of the tightly bound ADP after a slow release of Mg2+. Both an increase in temperature (to 50 degrees C) and the presence of activating anions such as bicarbonate or sulfite reduce the extent of the Mg2+ inhibition markedly. The activating anions may bind to CF1 in place of Pi near the ADP. Whether the inhibitory Mg2+ binds at catalytic or noncatalytic nucleotide binding sites or at another location is not known. The Mg2(+)- and ADP-induced inhibition appears to be a general property of F1 ATPases, which show considerable differences in affinity for ADP, Mg2+, and Pi. These differences may reflect physiological control functions.  相似文献   

9.
A membrane-bound ATPase from the archaebacterium Halobacterium saccharovorum is inhibited by N-ethylmaleimide in a nucleotide-protectable manner (Stan-Lotter et al., 1991, Arch. Biochem. Biophys. 284, 116-119). When the enzyme was incubated with N-[14C]ethylmaleimide, the bulk of radioactivity was associated with the 87,000-Da subunit (subunit I). ATP, ADP, or AMP reduced incorporation of the inhibitor. No charge shift of subunit I was detected following labeling with N-ethylmaleimide, indicating an electroneutral reaction. The results are consistent with the selective modification of sulfhydryl groups in subunit I at or near the catalytic site and are further evidence of a resemblance between this archaebacterial ATPase and the vacuolar-type ATPases.  相似文献   

10.
On the soluble part of the coupling factor (CF1), extracted from spinach chloroplasts, three nucleotide-binding sites are identified. Three ADP are bound per CF1 when the enzyme is incubated with ADP either with or without Mg2+. Two ADP and one ATP are bound per CF1 when the enzyme is incubated with a limiting concentration of ATP, in the presence of Mg2+. At high ATP concentration, in the presence of Mg2+, one free ATP exchanges with one bound ADP and two ATP and one ADP remain bound per CF1. When Mg2+ is omitted from the incubation medium of ATP and CF1, only two ADP and around 0.5 ATP are bound per CF1. The three nucleotide binding sites of CF1 fall into two different and independent categories according to the ability of the bound nucleotides to be exchanged with free nucleotides. On one site the bound ADP is difficult to exchange. On the other two sites, the bound nucleotides. ADP or ATP, are readily exchangable. We propose that the two exchangeable sites form the catalytic part of the enzyme where ATP is hydrolyzed. When ATP concentration is high enough, in the presence of Mg2+, one ATP displaces one bound ADP and allows the ATP hydrolysis to proceed. We propose too that the site where ADP is difficult to exchange may represent the 'tight' ADP-binding site, different from the catalytic ones, which becomes exchangeable on the CF1 in vivo when the thylakoid membranes are energized by light, as stressed by Bickel-Sandk?tter and Strotman [(1976) FEBS Lett. 65, 102-106].  相似文献   

11.
1. Tightly bound ATP and ADP, found on the isolated mitochondrial ATPase, exchange only slowly at pH 8, but the exchange is increased as the pH is reduced. At pH 5.5, more than 60% of the bound nucleotide exchanges within 2.5 min. 2. Preincubation of the isolated ATPase with ADP leads to about 50% inhibition of ATP hydrolysis when the enzyme is subsequently assayed in the absence of free ADP. This effect, which is reversed by preincubation with ATP, is absent on the membrane-bound ATPase. This inhibition seems to involve the replacement of tightly bound ATP by ADP. 3. Using these two findings, the binding specificity of the tight nucleotide binding sites was determined. iso-Guanosine, 2'-deoxyadenosine and formycin nucleotides displaced ATP from the tight binding sites, while all other nucleotides tested did not. The specificities of the tight sites of the isolated and membrane-bound ATPase were similar, and higher than that of the hydrolytic site. 4. The nucleotide specificities of 'coupled processes' nucleoside triphosphate-driven reversal of electron transfer, nucleoside triphosphate-32Pi exchange and phosphorylation were higher than that of the hydrolytic site of the ATPase and similar to that of the tight nucleotide binding sites.  相似文献   

12.
To localize and characterize the regulatory nucleotide site of skeletal muscle sarcoplasmic reticulum Ca2+-ATPase, we have investigated the effects of ADP, ATP, and analogues of these nucleotides on the rate of dephosphorylation of both native ATPase and ATPase modified with fluorescein 5'-isothiocyanate (FITC), a reagent which hinders access of nucleotides to the ATPase catalytic site without affecting phosphorylation from Pi. Dephosphorylation of the phosphoenzyme formed from Pi was monitored by rapid filtration or stopped-flow fluorescence, mostly at 20 degrees C, pH 6.0, and in the absence of potassium. Fluorescence measurements were made possible through the use of 8-bromo-ATP, which selectively quenched certain tryptophan residues of the ATPase, thereby allowing the intrinsic fluorescence changes associated with dephosphorylation to be measured in the presence of bound nucleotide. ATP, 8-bromo-ATP, and trinitrophenyladenosine diand triphosphate, but not ADP, enhanced the rate of dephosphorylation of native ATPase 2-3-fold when added in the absence of divalent cations. Millimolar concentrations of Mg2+ eliminated the accelerating effects. Acceleration in the absence of Mg2+ was observed at relatively low concentrations of ATP and 8-bromo-ATP (0.01-0.1 mM) and binding of metal-free ATP and ADP, but not Mg.ATP, to the phosphoenzyme in this concentration range was demonstrated directly. Modification of the ATPase with FITC blocked nucleotide binding in the submillimolar concentration range and eliminated the nucleotide-induced acceleration of dephosphorylation. These results show that dephosphorylation, under these conditions, is regulated by ATP but not by Mg.ATP or ADP, and that the catalytic site is the locus of this "regulatory" ATP binding site.  相似文献   

13.
F1-ATPase was treated so that it contained three tightly bound nucleotides per molecule. One of these was bound at a catalytic site and was rapidly exchangeable, the two remaining nucleotides were nonexchangeable. Incubation of this preparation with ADP in the presence of Mg2+ results in 40-45% inhibition of the ATPase activity. With 2-azido-ADP instead of ADP, the ligand was covalently bound to F1 by illumination, in the presence or absence of turnover of the enzyme, and the site of binding was determined. In this way, one site could be identified, which induces the inhibition. The attachment of the covalently bound 2-nitreno-ADP is at Tyr-368 of a beta-subunit, characterized in the literature as a non-catalytic site. A second, non-catalytic site also binds 2-azido-ADP, but this binding is partially reversed by the addition of ATP and does not cause further inhibition of the ATPase activity. It is concluded that the slowly exchangeable non-catalytic site is the site of inhibition by ADP.  相似文献   

14.
The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked inhibition.  相似文献   

15.
J Mendel-Hartvig  R A Capaldi 《Biochemistry》1991,30(45):10987-10991
The rate of trypsin cleavage of the epsilon subunit of Escherichia coli F1F0 (ECF1F0) is shown to be ligand-dependent as measured by Western analysis using monoclonal antibodies. The cleavage of the epsilon subunit was rapid in the presence of ADP alone, ATP + EDTA, or AMP-PNP + Mg2+, but slow when Pi was added along with ADP + Mg2+ or when ATP + Mg2+ was added to generate ADP + Pi (+Mg2+) in the catalytic site. Trypsin treatment of ECF1Fo was also shown to increase enzymic activity on a time scale corresponding to that of the cleavage of the epsilon subunit, indicating that the epsilon subunit inhibits ATPase activity in ECF1Fo. The ligand-dependent conformational changes in the epsilon subunit were also examined in cross-linking experiments using the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide (EDC). In the presence of ATP + Mg2+ or ADP + Pi + Mg2+, the epsilon subunit cross-linked product was much reduced. Prior reaction of ECF1Fo with dicyclohexylcarbodiimide (DCCD), under conditions in which only the Fo part was modified, blocked the conformational changes induced by ligand binding. When the enzyme complex was reacted with DCCD in ATP + EDTA, the cleavage of the epsilon subunit was rapid and yield of cross-linking of beta to epsilon subunit low, whether trypsin cleavage was conducted in ATP + EDTA or ATP + Mg2+. When enzyme was reacted with DCCD in ATP + Mg2+, cleavage of the epsilon subunit was slow and yield of cross-linking of beta to epsilon high, under all nucleotide conditions for proteolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Z X Xue  J M Zhou  T Melese  R L Cross  P D Boyer 《Biochemistry》1987,26(13):3749-3753
The photolabeling of chloroplast F1 ATPase, following exposure to Mg2+ and 2-azido-ATP and separation from medium nucleotides, results in derivatization of two separate peptide regions of the beta subunit. Up to 3 mol of the analogue can be incorporated per mole of CF1, with covalent binding of one moiety or two moieties per beta subunit that can be either AMP, ADP, or ATP derivatives. These results, the demonstration of noncovalent tight binding of at least four [3H]adenine nucleotides to the enzyme and the presence of three beta subunits per enzyme, point to six potential adenine nucleotide binding sites per molecule. The tightly bound 2-azido nucleotides on CF1, found after exposure of the heat-activated and EDTA-treated enzyme to Mg2+ and 2-azido-ATP, differ in their ease of replacement during subsequent hydrolysis of ATP. Some of the bound nucleotides are not readily replaced during catalytic turnover and covalently label one peptide region of the beta subunit. They are on noncatalytic sites. Other tightly bound nucleotides are readily replaced during catalytic turnover and label another peptide region of the beta subunit. They are at catalytic sites. No alpha-subunit labeling is detected upon photolysis of the bound 2-azido nucleotides. However, one or both of the sites could be at an alpha-beta-subunit interface with the 2-azido region close to the beta subunit, or both binding sites may be largely or entirely on the beta subunit.  相似文献   

17.
M F Bruist  G G Hammes 《Biochemistry》1981,20(22):6298-6305
The solubilized coupling factor from spinach chloroplasts (CF1) contains one nondissociable ADP/CF1 which exchanges slowly with medium ADP in the presence of Ca2+, Mg2+, or EDTA; medium ATP also exchanges in the presence of Ca2+ or EDTA, but it is hydrolyzed, and only ADP is found bound to CF1. The rate of ATP exchange with heat-activated CF1 is approximately 1000 times slower than the rate of ATP hydrolysis. In the presence of Mg2+, both latent CF1 and heat-activated CF1 bind one ATP/CF1, in addition to the ADP. This MgATP is not removed by dialysis, by gel filtration, or by the substrate CaATP during catalytic turnover; however, it is released when the enzyme is stored several days as an ammonium sulfate precipitate. The photoaffinity label 3'-O-[3-[N-(4-azido-2-nitrophenyl)amino]-propionyl]-ATP binds to the MgATP site, and photolysis results in labeling of the beta subunit of CF1. Equilibrium binding measurements indicate that CF1 has two identical binding sites for ADP with a dissociation constant of 3.9 microM (in addition to the nondissociable ADP site). When MgATP is bound to CF1, one ADP binding site with a dissociation constant of 2.9 microM is found. One ATP binding site is found in addition to the MgATP site with a dissociation constant of 2.9 microM. Reaction of CF1 with the photoaffinity label 3'-O-[3-[N-(4-azido-2-nitrophenyl)amino]propionyl]-ADP indicates that the ADP binding site which is not blocked by MgATP is located near the interface of alpha and beta subunits. No additional binding sites with dissociation constants less than 200 micro M are observed for MgATP with latent CF1 and for CaADP with heat-activated CF1. Thus, three distinct nucleotide binding sites can be identified on CF1, and the tightly bound ADP and MgATP are not at the catalytic site. The active site is either the third ADP and ATP binding site or a site not yet detected.  相似文献   

18.
Three types of assays were used to characterize adenine nucleotide binding sites on the Ca2+, Mg2+-activated ATPase of normal Escherichia coli and its unc A 401 and unc D 412 mutants. ADP was bound mainly at a single site in normal and mutant ATPase. In the absence of divalent cations ATP was bound at a single high-affinity and three low-affinity sites in normal and unc D ATPases. The 2′,3′-dialdehyde (oADP) obtained by periodate oxidation of ADP reacted with both low- and high-affinity sites whereas oATP was bound primarily at a low-affinity site. Two types of adenine nucleotide binding sites, a high-affinity site reacting with ATP and ADP and a low-affinity site for ATP, were detected by the effects of these nucleotides on the fluorescence of the aurovertin D-ATPase complex. This high-affinity site(s) was present in normal and mutant ATPases. However, the fluorescence response at both high- and low-affinity sites was modified in the unc D ATPase as a consequence of the abnormal β subunit in this enzyme. Normal fluorescence responses were not induced by the binding of oADP or oATP to the ATPases. ATP was bound at a single site on isolated α subunits of the enzyme. Since this site was not detected in the unc A ATPase, it is unlikely to be the high-affinity site detected in the intact enzyme or the binding site for the endogenous tightly bound adenine nucleotides found in the purified ATPase. It is more probable that the site detected on the isolated α subunit from the normal enzyme is that which binds oADP since this site was absent in the unc A ATPase. Pretreatment of the normal ATPase with either N, N′-dicyclohexyl-carbodiimide (DCCD) or with 4-chloro-7-nitrobenzofurazan (NbfCl), reagents which inhibit ATPase activity by reacting with a β subunit, affected binding of oADP to α subunit(s) but had less effect with oATP. Inhibition of oADP binding could be due to conformational changes induced in the α subunit by the reaction of DCCD and NbfCl with a β subunit, or to steric reasons. If the latter hypothesis is correct, the active site of the ATPase would be at the interface between α and β subunits of the enzyme.  相似文献   

19.
Soluble mitochondrial ATPase (F1) from beef heart prepared in this laboratory contained approximately 1.8 mol of ADP and 0 mol of ATP/mol of F1 which were not removed by repeated precipitation of the enzyme with ammonium sulfate solution or by gel filtration in low ionic strength buffer containing EDTA. This enzyme had full coupling activity. Treatment of the enzyme with trypsin (5 mug/mg of F1 for 3 min) reduced the "tightly bound" ADP to zero, abolished coupling activity, but had no effect on the ATPase activity, stability, or membrane-binding capability of the F1. When the trypsin concentration was varied between 0 and 5 mug/mg of F1, tightly bound ADP was removed to varying degrees, and a correlation was seen between amount of residual tightly bound ADP and residual coupling activity. Gel filtration of the native F1 in high ionic strength buffer containing EDTA also caused complete loss of tightly bound ADP and coupling ability, whereas ATPase activity, stability, and membrane-binding capability were retained. The ADP-depleted F1 preparations were unable to rebind normal amounts of ADP or any ATP in simple reloading experiments. The results strongly suggest that tightly bound ADP is required for ATP synthesis and for energy-coupled ATP hydrolysis on F1. The results also suggest that ATP synthesis and energy-linked ATP hydrolysis rather than involving one nucleotide binding site on F1, involve a series or "cluster" of sites. The ATP hydrolysis site may represent one component of this cluster. The results show that nonenergy-coupled ATP hydrolysis on F1 can occur in the absence of tightly bound ADP or ATP.  相似文献   

20.
Beef-heart mitochondrial F1 ATPase can be induced to synthesize ATP from ADP and inorganic phosphate in 30% Me2SO. We have analyzed the adenine nucleotide content of the F1 ATPase during the time-course of ATP synthesis, in the absence of added medium nucleotide, and in the absence and presence of 10 mM inorganic phosphate. The enzyme used in these investigations was either pretreated or not pretreated with ATP to produce F1 with a defined nucleotide content and catalytic or noncatalytic nucleotide-binding site occupancy. We show that the mechanism of ATP synthesis in Me2SO involves (i) an initial rapid loss of bound nucleotide(s), this process being strongly influenced by inorganic phosphate; (ii) a rebinding of lost nucleotide; and (iii) synthesis of ATP from bound ADP and inorganic phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号