首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An Arthrobacter sp. metabolizes L-tyrosine by a pathway involving 3,4-dihydroxyphenylacetate as a key intermediate. p-Hydroxyphenylpyruvate is formed from tyrosine by an amino-transferase specifically requiring alpha-ketoglutarate for activity, and is then converted to p-hydroxyphenylacetate by an oxidative decarboxylation. p-Hydroxyphenylacetaldehyde is not an intermediate in the formation of p-hydroxyphenylacetate. Extracts of the bacterium oxidize 3,4-dihydroxyphenylacetate to delta-carboxymethyl-alpha-hydroxymuconic acid which, when supplemented with 2 mol of diphosphopyridine dinucleotide, results in the production of stoichiometric amounts of succinate and pyruvate.  相似文献   

2.
Heterotrophic Nitrification by Arthrobacter sp   总被引:9,自引:1,他引:9  
Arthrobacter sp. isolated from sewage oxidized ammonium to hydroxylamine, a bound hydroxylamine compound, a hydroxamic acid, a substance presumed to be a primary nitro compound, nitrite, and nitrate. The concentration of free hydroxylamine-nitrogen reached 15 mug/ml. The identification of hydroxylamine was verified by mass spectrometric analysis of its benzophenone oxime derivative. The bound hydroxylamine was tentatively identified as 1-nitrosoethanol on the basis of its mass spectrum, chemical reactions, and infrared and ultraviolet spectra. Hydroxylamine formation by growing cells was relatively independent of pH, but the accumulation of nitrite was strongly favored in alkaline solutions. The formation of hydroxylamine but not nitrite was regulated by the carbon to nitrogen ratio of the medium. The hydroxamic acid was the dominant product of nitrification in iron-deficient media, but hydroxylamine, nitrite, and 1-nitrosoethanol formation was favored in iron-rich solutions. Heterotrophic nitrification by Arthrobacter sp. was not inhibited by several compounds at concentrations which totally inhibited autotrophic nitrification.  相似文献   

3.
Initial reactions of xanthone biodegradation by an Arthrobacter sp.   总被引:8,自引:0,他引:8       下载免费PDF全文
This study examined the catabolism of xanthone by an Arthrobacter sp. (strain GFB100) capable of growth on xanthone as its main source of carbon and energy. An early catabolic intermediate was 3,4-dihydroxyxanthone. This compound was isolated from the growth medium of a mutant strain of the Arthrobacter sp. which lacked the xanthone-inducible dihydroxyxanthone ring-fission dioxygenase of the wild-type strain. Cell extracts from wild-type xanthone-grown cells oxidized 3,4-dihydroxyxanthone to a yellow ring-fission metabolite. The same yellow compound accumulated in xanthone-grown cultures of a spontaneous mutant which lacked an active, xanthone-inducible, NADPH-linked ring-fission metabolite reductase. The yellow ring-fission metabolite appears to be 4-hydroxy-3-(2'-oxo-3-trans-butenoate)-coumarin, based on its nuclear magnetic resonance spectrum and mass spectral fragmentation pattern, indicating that ring cleavage of 3,4-dihydroxyxanthone was by an extra-diol (meta-fission) mechanism. Enzymatic analyses indicated that growth on xanthone induced a complete gentisate pathway: dioxygenase-catalyzed cleavage of gentisate to maleylpyruvate, isomerization of maleylpyruvate to fumarylpyruvate, and hydrolysis of fumarylpyruvate to fumarate and pyruvate. 4-Hydroxycoumarin was thought to be a likely pathway intermediate linking the early xanthone catabolic steps to the gentisate pathway, since 2-hydroxyacetophenone, a byproduct of 4-hydroxycoumarin hydrolysis, was formed when wild-type cells were cultured with xanthone. Chlorinated 2-hydroxyacetophenones were also obtained from specific chloro-substituted xanthones.  相似文献   

4.
Arthrobacter sp. strain NO-18 was first isolated from soil as a bacterium which could degrade the sodium acrylate oligomer and utilize it as the sole source of carbon. When 0.2% (wt/wt) oligomer was added to the culture medium, the acrylate oligomer was found to be degraded by 70 to 80% in 2 weeks, using gel permeation chromatography. To determine the maximum molecular weight for biodegradation, the degradation test was done with the hexamer, heptamer, and octamer, which were separated from the oligomer mixture by fractional gel permeation chromatography. The hexamer and heptamer were consumed to the extents of 58 and 36%, respectively, in 2 weeks, but the octamer was not degraded. Oligomers with three different terminal groups were synthesized to examine the effect of the different terminal groups on biodegradation, but few differences were found. Arthrobacter sp. NO-18 assimilated acrylic acid, propionic acid, glutaric acid, 2-methylglutaric acid, and 1,3,5-pentanetricarboxylic acid. Degradation of the acrylic unit structure by this strain is discussed.  相似文献   

5.
Mechanism of Nitrification by Arthrobacter sp   总被引:5,自引:0,他引:5  
Resting cells of Arthrobacter sp. excrete as much as 60 mug of hydroxylamine-nitrogen per ml when supplied with ammonium. An organic carbon source in abundant supply is necessary for the oxidation. Resting cells oxidize hydroxylamine to nitrite and 1-nitrosoethanol, the former accumulating only when an exogenous carbon source is available. Cell-free extracts contain an enzyme catalyzing the formation of hydroxylamine from acetohydroxamic acid, a hydroxylamine-nitrite oxido-reductase, and an enzyme producing nitrite and nitrate from various primary nitro compounds. Nitrite is not produced from hydroxylamine by the extracts, but 1-nitrosoethanol is formed from hydroxylamine in the presence of acetate. 1-Nitrosoethanol is also produced from acetohydroxamic acid by these preparations. Nitrite was formed from hydroxylamine, however, by extracellular enzymes excreted by the bacterium.  相似文献   

6.
The degradation of p-nitrophenol (PNP) by Moraxella and Pseudomonas spp. involves an initial monooxygenase-catalyzed removal of the nitro group. The resultant hydroquinone is subject to ring fission catalyzed by a dioxygenase enzyme. We have isolated a strain of an Arthrobacter sp., JS443, capable of degrading PNP with stoichiometric release of nitrite. During induction of the enzymes required for growth on PNP, 1,2,4-benzenetriol was identified as an intermediate by gas chromatography-mass spectroscopy (GC-MS) and radiotracer studies. 1,2,4-Benzenetriol was converted to maleylacetic acid, which was further degraded by the beta-ketoadipate pathway. Conversion of PNP to 1,2,4-benzenetriol is catalyzed by a monooxygenase system in strain JS443 through the formation of 4-nitrocatechol, 4-nitroresorcinol, or both. Our results clearly indicate the existence of an alternative pathway for the biodegradation of PNP.  相似文献   

7.
Of nine authentic Arthrobacter strains tested, only A. atrocyaneus ATCC 13752 was capable of using the herbicide glyphosate [N-(phosphonomethyl)glycine] as its sole source of phosphorus. Contrary to the previously isolated Arthrobacter sp. strain GLP-1, which degrades glyphosate via sarcosine, A. atrocyaneus metabolized glyphosate to aminomethylphosphonic acid. The carbon of aminomethylphosphonic acid was entirely converted to CO2. This is the first report on glyphosate degradation by a bacterial strain without previous selection for glyphosate utilization as a source of phosphorus.  相似文献   

8.
李敏  王桂莲  马璐  张琇 《微生物学通报》2021,48(5):1550-1559
[背景]蓄积在土壤中的阿魏酸类化感自毒物质对农作物生长产生危害,利用有益微生物分解该类物质是一项有效的治理措施.[目的]从自然界土壤分离获得能高效降解阿魏酸的菌株,并评估典型环境因子对降解效能的影响,以期为该菌在阿魏酸类自毒物质降解领域中的应用提供理论依据.[方法]采用一次性投加高浓度化合物的驯化方法分离筛选得到能有效...  相似文献   

9.
Purification and properties of an endo-inulinase from an Arthrobacter sp.   总被引:2,自引:0,他引:2  
Extracellular endo-inulinase of Arthrobacter sp. S37 was purified 63-fold, giving a single band on PAGE with activity staining. The Mr was estimated as 75 kDa by SDS-PAGE. The first 31 amino acids of the N-terminal sequence was determined. The endo-inulinase hydrolyzed inulin mainly into inulo-triose (F3), inulo-tetraose (F4) and inulo-pentaose (F5) optimally at pH 7.5 and 50°C. © Rapid Science Ltd. 1998  相似文献   

10.
Propenylbenzenes are often used as starting materials in the chemical synthesis of aroma compounds and fine chemicals. In the present study, we demonstrate the ability of an Arthrobacter sp. to transform various structures of propenylbenzenes derived from essential oils to flavor, fragrance, and fine chemicals. Arthrobacter strain TA13 and its t-anethole blocked mutants (incapable of growing on t-anethole) converted isoeugenol to vanillin and vanillic acid; and safrole to hydroxychavicol. High conversion efficiencies were achieved in the biotransformations of isosafrole to piperonylic acid, and eugenol to a mixture of ferulic acid and vanillic acid. In addition, anisic acid was produced in high yields from t-anethole, anisyl alcohol, or anisaldehyde. The accumulation of the corresponding aromatic acids from the tested propenylbenzenes is due to the lack of m-demethylase activity in strain TA13 that prevents further cleavage of the benzene ring. Interestingly, in the transformation of eugenol (a 2-propenylbenzene) the side chain was initially oxidized to the corresponding cinamic acid derivative (ferulic acid) while the 1-propenylbenzenes gave substituted benzoic acids, suggesting two different chain shortening mechanisms.  相似文献   

11.
Degradation of 4-Chlorobenzoic Acid by Arthrobacter sp   总被引:6,自引:14,他引:6       下载免费PDF全文
A mixed population, enriched and established in a defined medium, from a sewage sludge inoculum was capable of complete mineralization of 4-chlorobenzoate. An organism, identified as Arthrobacter sp., was isolated from the consortium and shown to be capable of utilizing 4-chlorobenzoate as the sole carbon and energy source in pure culture. This organism (strain TM-1), dehalogenated 4-chlorobenzoate as the initial step in the degradative pathway. The product, 4-hydroxybenzoate, was further metabolized via protocatechuate. The ability of strain TM-1 to degrade 4-chlorobenzoate in liquid medium at 25°C was improved by the use of continuous culture and repeated sequential subculturing. Other chlorinated benzoates and the parent compound benzoate did not support growth of strain TM-1. An active cell extract was prepared and shown to dehalogenate 4-chloro-, 4-fluoro-, and 4-bromobenzoate. Dehalogenase activity had an optimum pH of 6.8 and an optimum temperature of 20°C and was inhibited by dissolved oxygen and stimulated by manganese (Mn2+). Strain improvement resulted in an increase in the specific activity of the cell extract from 0.09 to 0.85 nmol of 4-hydroxybenzoate per min per mg of protein and a decrease in the doubling time of the organism from 50 to 1.6 h.  相似文献   

12.
The trans-anethole degradation pathway in an Arthrobacter sp.   总被引:2,自引:0,他引:2  
A bacterial strain (TA13) capable of utilizing t-anethole as the sole carbon source was isolated from soil. The strain was identified as Arthrobacter aurescens based on its 16 S rRNA gene sequence. Key steps of the degradation pathway of t-anethole were identified by the use of t-anethole-blocked mutants and specific inducible enzymatic activities. In addition to t-anethole, strain TA13 is capable of utilizing anisic acid, anisaldehyde, and anisic alcohol as the sole carbon source. t-Anethole-blocked mutants were obtained following mutagenesis and penicillin enrichment. Some of these blocked mutants, accumulated in the presence of t-anethole quantitative amounts of t-anethole-diol, anisic acid, and 4,6-dicarboxy-2-pyrone and traces of anisic alcohol and anisaldehyde. Enzymatic activities induced by t-anethole included: 4-methoxybenzoate O-demethylase, p-hydroxybenzoate 3-hydroxylase, and protocatechuate-4,5-dioxygenase. These findings indicate that t-anethole is metabolized to protocatechuic acid through t-anethole-diol, anisaldehyde, anisic acid, and p-hydroxybenzoic acid. The protocatechuic acid is then cleaved by protocatechuate-4,5-dioxygenase to yield 2-hydroxy-4-carboxy muconate-semialdehyde. Results from inducible uptake ability and enzymatic assays indicate that at least three regulatory units are involved in the t-anethole degradation pathway. These findings provide new routes for environmental friendly production processes of valuable aromatic chemicals via bioconversion of phenylpropenoids.  相似文献   

13.
The uptake of the aminoacid biosynthesis inhibitor, used as the broad-spectrum herbicide ingredient, glyphosate (N-[phosphonomethyl]-glycine) was investigated in E. coli as a model to study mechanisms of cell resistance to antimetabolites as drugs and pesticides. Unlike the glyphosate-degrading Arthrobacter sp. strain for which the first successful measurement of glyphosate uptake and its inhibition by orthophosphate was reported [15], E. coli K-12 cannot take up this inhibitor either in the presence of orthophosphate, or after a prolonged starvation for it. However, cells made competent after an overnight cold CaCl2 exposure followed by dimethyl sulfoxide (DMSO) treatment could take up this compound (K m for glyphosate uptake, 274 M). Neither amino acids, belonging to a single transport system, nor orthophosphate gave essential inhibition of glyphosate uptake by these cells.  相似文献   

14.
15.
Metabolism of glyphosate in an Arthrobacter sp. GLP-1   总被引:9,自引:0,他引:9  
The metabolism of glyphosate [N-(phosphonomethyl)glycine] in a bacterium tentatively identified as an Arthrobacter sp., capable of growth on this herbicide as its sole phosphorus source, has been investigated using solid-state NMR techniques as well as radiotracer analysis. The pathway involves the conversion of glyphosate to glycine, a C1 unit and phosphate. The phosphonomethyl carbon is specifically incorporated into the amino acids serine, cysteine, methionine, and histidine, as well as into purine bases and thymine, indicating the involvement of tetrahydrofolate in single-carbon transfer reactions. Glycine derived from glyphosate is utilized in purine and protein biosynthesis. This pathway for glyphosate degradation in a gram-positive bacterium is similar to that previously reported for Pseudomonas sp. PG2982 [Jacob et al. (1985) J. Biol. Chem. 260, 5899-5905] and is distinct from that reported for soil metabolism of glyphosate where aminomethylphosphonic acid has been shown to be a major metabolite. Preliminary evidence is presented which indicates that the conversion of glyphosate to glycine and the C1 unit involves the intermediate formation of sarcosine. Thus, the primary event in glyphosate degradation by Arthrobacter sp. GLP-1 is the cleavage of its C-P bound. This report constitutes the first demonstration of the metabolism of glyphosate in a gram-positive bacterium.  相似文献   

16.
trans-Stilbene degradation was examined by the reaction using resting cells of microorganisms isolated through the enrichment culture using trans-stilbene. The strain SL3, showing the highest trans-stilbene-degrading activity, was identified as Arthrobacter sp. One of the reaction products was identified to be cis,cis-muconic acid. Arthrobacter sp. SL3 cells also transformed benzaldehyde, benzoic acid and catechol into cis,cis-muconic acid, suggesting that one benzene ring of trans-stilbene was converted into cis,cis-muconic acid via benzaldehyde formed by its Cα=Cβ bond cleavage.  相似文献   

17.
Cells of the amylolytic bacterium KB-1 (thought to be an Arthrobacter sp.) adhered (~70%) to the surface of plastic films composed of starch-poly (methylacrylate) graft copolymer (starch-PMA), but did not adhere (<10%) to films composed of polymethylacrylate (PMA), polyethylene (PE), carboxymethyl cellulose, or a mixture of PE plus poly (ethylene-coacrylic acid) (EAA), starch plus PE, or starch plus PE and EAA. About 30% of the cells adhered to gelatinized insoluble starch. Dithiothreitol (5 mM), EDTA (5 mM), and soluble starch (1%, wt/vol) had little effect on the adhesion of KB-1 cells to starch-PMA films. However, glutaraldehyde-fixed cells, azide-treated cells, and heat-killed cells did not bind to starch-PMA plastic, suggesting that the observed adhesion required cell viability. Culture supernatant from 5-day-old KB-1 cultures contained a proteolytic enzyme that inhibited cell adhesion to starch-PMA plastics. Trypsin-treated KB-1 cells also lost their ability to bind to starch-PMA plastic. When washed free of trypsin and suspended in fresh medium, trypsin-treated bacteria were able to recover adhesion activity in the absence, but not in the presence, of the protein synthesis inhibitor chloramphenicol. These results suggested that adhesion of KB-1 to starch-PMA plastic may be mediated by a cell surface protein. Although KB-1 bacteria bound to starch-PMA plastic, they did not appear to degrade starch in these films. Evidence of starch degradation was observed for starch-PE-EAA plastics, where <10% of the bacteria was bound, suggesting that cell adhesion may not be a prerequisite for degradation of some starch-containing plastics.  相似文献   

18.
Cometabolism of m-Chlorobenzoate by an Arthrobacter   总被引:13,自引:11,他引:2       下载免费PDF全文
Swabbing skin to collect bacteria for enumeration revealed that a single washing or rinsing of the swab in buffer removed between 90 and 95% of the bacteria collected. Further removal of the remaining bacteria from the initial swab by repeated washings of the swab produced plate counts that showed nearly proportional decreases in the numbers and types of bacteria retained or eluted from the swab. None of the commonly isolated cutaneous bacteria was retained or eluted from the single swab in numbers that misrepresented measurement of their proportions present in the sample. Populations of nonlipophilic bacteria on skin when present were mainly gram-positive catalase-producing cocci. Diphtheroids when present were chiefly lipophilic. Media containing furoxone were selective for cutaneous diphtheroids. The concentration of furoxone used affected isolation and enumeration of the diphtheroids. Lipophilic diphtheroids from the stratum corneum were basically aerobic and anaerobic incubation reduced or eliminated this group from enumeration studies. Lipophilic furoxone-resistant aerobic diphtheroids from several areas, particularly the nasal passages, occurred in numbers inversely proportional to the numbers of staphylococci for periods up to 11 months. The cocci-diphtheroid relationships occurred independently of the total number of aerobic bacteria present, the transient appearance of yeasts or gram-negative bacilli, the required use of certain antibiotics by the subjects, climate, age, and sex.  相似文献   

19.
Glyphosate catabolism by Pseudomonas sp. strain PG2982.   总被引:7,自引:0,他引:7       下载免费PDF全文
The pathway for the degradation of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. PG2982 has been determined by using metabolic radiolabeling experiments. Radiorespirometry experiments utilizing [3-14C]glyphosate revealed that approximately 50 to 59% of the C-3 carbon was oxidized to CO2. Fractionation of stationary-phase cells labeled with [3-14C]glyphosate revealed that from 45 to 47% of the assimilated label is distributed to proteins and that the amino acids methionine and serine are highly labeled. Adenine and guanine received 90% of the C-3 label found in the nucleic acid fraction, and the only pyrimidine base labeled was thymine. These results indicated that C-3 of glyphosate was at some point metabolized to a C-1 compound whose ultimate fate could be both oxidation to CO2 and distribution to amino acids and nucleic acid bases that receive a C-1 group from the C-1-donating coenzyme tetrahydrofolate. Pulse-labeling of PG2982 cells with [3-14C]glyphosate resulted in the isolation of [3-14C]sarcosine as an intermediate in glyphosate degradation. Examination of crude extracts prepared from PG2982 cells revealed the presence of a sarcosine-oxidizing enzyme that oxidizes sarcosine to glycine and formaldehyde. These results indicate that the first step in glyphosate degradation by PG2982 is cleavage of the carbon-phosphorus bond, resulting in the release of sarcosine and a phosphate group. The phosphate group is utilized as a source of phosphorus, and the sarcosine is degraded to glycine and formaldehyde. This pathway is supported by the results of [1,2-14C]glyphosate metabolism studies, which show that radioactivity in the proteins of labeled cells is found only in the glycine and serine residues.  相似文献   

20.
An Arthrobacter species, which utilized thiocyanate (SCN-) as a nitrogen source, was isolated from soil by the enrichment culture method. The organism tolerated SCN- concentrations up to 0.1 M. On addition of nitrate or ammonium ion to cultures of the isolate growing in the presence of SCN-, the organism continued to degrade SCN-. Degradation could be followed by release of 14CO2 from SCN-(14C). The SCN- -degrading activity diminished to low levels as the stationary phase of growth was appraoched.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号