首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用PCR定点突变方法,对HPV581L1基因中痘苗病毒早期基因转录终止信号TTTTTNT结构进行修饰,并保留氨基酸不变.选用非复制型重组痘苗病毒为载体,将修饰的L1基因1.5kb和L2基因1.4kb分别插入痘苗病毒表达载体pJSD的7.5k和H6早期启动子之后,使之与非复制型重组痘苗病毒在TK区重组.经单斑筛选纯化,获得共表达HPV58L1、L2晚期蛋白的非复制型重组痘苗病毒疫苗实验株.该病毒在CEF细胞上连续传至第15代,经斑点杂交分析,重组痘苗病毒基因组中有L1和L2基因插入;经Western blot检测,重组病毒能稳定表达HPV581L1及L2蛋白.此结果为HPV58型非复制型重组痘苗病毒疫苗人用株的研究打下了基础.  相似文献   

2.
The aim of this study was to produce gene transfer vectors consisting of plasmid DNA packaged into virus-like particles (VLPs) with different cell tropisms. For this purpose, we have fused the N-terminally truncated VP60 capsid protein of the rabbit hemorrhagic disease virus (RHDV) with sequences which are expected to be sufficient to confer DNA packaging and gene transfer properties to the chimeric VLPs. Each of the two putative DNA-binding sequences of major L1 and minor L2 capsid proteins of human papillomavirus type 16 (HPV-16) were fused at the N terminus of the truncated VP60 protein. The two recombinant chimeric proteins expressed in insect cells self-assembled into VLPs similar in size and appearance to authentic RHDV virions. The chimeric proteins had acquired the ability to bind DNA. The two chimeric VLPs were therefore able to package plasmid DNA. However, only the chimeric VLPs containing the DNA packaging signal of the L1 protein were able efficiently to transfer genes into Cos-7 cells at a rate similar to that observed with papillomavirus L1 VLPs. It was possible to transfect only a very limited number of RK13 rabbit cells with the chimeric RHDV capsids containing the L2-binding sequence. The chimeric RHDV capsids containing the L1-binding sequence transfer genes into rabbit and hare cells at a higher rate than do HPV-16 L1 VLPs. However, no gene transfer was observed in human cell lines. The findings of this study demonstrate that the insertion of a DNA packaging sequence into a VLP which is not able to encapsidate DNA transforms this capsid into an artificial virus that could be used as a gene transfer vector. This possibility opens the way to designing new vectors with different cell tropisms by inserting such DNA packaging sequences into the major capsid proteins of other viruses.  相似文献   

3.
The human papillomavirus 1 (HPV-1) virion is composed of two virally encoded proteins: a 57,000-molecular-weight polypeptide (57K polypeptide), which is the product of the L1 open reading frame (ORF), and a 78K polypeptide, which is derived from the L2 ORF. The 57K (L1) product, which represents the major structural component, appears to be disulfide cross-linked in virus particles. The 78K (L2) protein is a minor component of the virion and does not appear to be disulfide linked either to the L1 gene product or to itself. Analysis of virus particles banding at different buoyant densities revealed differences in the L2 content of heavy-full and light-full virions. Antiserum prepared against a bacterially expressed fragment of the L1 ORF was found by immunofluorescence to cross-react with HPV-2 and bovine papillomavirus 1 virions in wart sections. No cross-reactivity was observed with antisera prepared against either the N- or C-terminal halves of the L2-encoded protein. Similarly, antisera prepared against purified virus particles (disrupted and nondisrupted) reacted only with an expressed fragment of the L1 ORF and not with either L2-encoded polypeptides or proteins derived from the E1, E2, E4, E6, or E7 ORFs. This indicates that the L1 protein contains the papillomavirus common antigens.  相似文献   

4.
L1 major capsid proteins of human papillomaviruses (HPVs) enter the nuclei of host cells at two times during the viral life cycle: 1) after infection and 2) later during the productive phase, when they assemble the replicated HPV genomic DNA into infectious virions. L1 proteins are stable in two oligomeric configurations: as homopentameric capsomers, and as capsids composed of 72 capsomers. We found that intact L1 capsids of HPV type 11 cannot enter the nucleus, suggesting that capsid disassembly may be required for HPV11 L1 nuclear import. We established that HPV11 L1 is imported in a receptor-mediated manner into the nuclei of digitonin-permeabilized HeLa cells. HPV11 L1 docked at the nuclear pore complexes via karyopherin alpha2beta1 heterodimers. Anti-karyopherin-beta1 and anti-karyopherin alpha2 antibodies specifically inhibited nuclear import of HPV11 L1. Moreover, nuclear import of HPV11 L1 could be reconstituted using karyopherin alpha2, beta1, RanGDP and p10. In agreement with the docking and import data, we found that HPV11 L1 binds to karyopherin alpha2 and that this interaction is inhibited by a peptide representing the classical nuclear localization signal of SV40 T antigen. These results strongly suggest that HPV11 L1 enters the nucleus of the infected host cell via the karyopherin alpha2beta1 pathway.  相似文献   

5.
The L1 major capsid protein of human papillomavirus type 11 (HPV-11) was expressed in Escherichia coli, and the soluble recombinant protein was purified to near homogeneity. The recombinant L1 protein bound DNA as determined by the Southwestern assay method, and recombinant mutant L1 proteins localized the DNA-binding domain to the carboxy-terminal 11 amino acids of L1. Trypsin digestion of the full-length L1 protein yielded a discrete 42-kDa product (trpL1), determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, resulting from cleavage at R415, 86 amino acids from the L1 carboxy terminus. Sucrose gradient sedimentation analysis demonstrated that trpL1 sedimented at 11S, while L1 proteins with amino-terminal deletions of 29 and 61 residues sedimented at 4S. Electron microscopy showed that the full-length L1 protein appeared as pentameric capsomeres which self-assembled into capsid-like particles. The trpL1 protein also had a pentameric morphology but was unable to assemble further. In an enzyme-linked immunosorbent assay, the trpL1 and L1 capsids reacted indistinguishably from virus-like particles purified after expression of HPV-11 L1 in insect cells. The carboxy terminus of L1 therefore constitutes the interpentamer linker arm responsible for HPV-11 capsid formation, much like the carboxy-terminal domain of the polyomavirus VP1 protein. The trypsin susceptibility of HPV-11 L1 capsids suggests a possible mechanism for virion disassembly.  相似文献   

6.
Lack of permissive and productive cell cultures for the human papillomaviruses (HPVs) has hindered the study of virus-neutralizing antibodies and infection. We developed a cell-free system generating infectious HPV16 pseudovirions. HPV16 L1/L2 capsids, which had been self-assembled in insect cells (Sf9) expressing virion proteins L1 and L2, were disassembled with 2-mercaptoethanol (2-ME), a reducing agent, and reassembled by removal of 2-ME in the presence of a β-galactosidase expression plasmid. Plasmid DNA purified together with the reassembled capsids was resistant to DNase I digestion. The reassembled pseudovirions mediated DNA transfer to COS-1 cells, as monitored by induced β-galactosidase activity. Transfer was inhibited by anti-HPV16 L1 antiserum but not by antisera against L1s of HPV6 and HPV18. Construction in vitro of HPV pseudovirions containing marker plasmids would be potentially useful in developing methods to assay virus-neutralizing antibodies and to transfer exogenous genes to HPV-susceptible cells.  相似文献   

7.
The L1 coat protein of human papillomavirus type 11 (HPV-11) was expressed in Sf-9 insect cells with the recombinant baculovirus vector Ac11L1. Viruslike particles (VLPs) were identified by electron microscopy in the nucleus and cytoplasm of Sf-9 cells infected with Ac11L1. The L1 protein was purified from Ac11L1-infected insect cells. The purified protein spontaneously assembled in vitro into various aggregates, including particles appearing similar to empty virions. Reaction of VLP-containing insect cell extracts with antisera directed against either denatured or nondenatured capsid epitopes in Western blot (immunoblot) and immuno-dot blot assays suggested that conformational epitopes present in native HPV-11 infectious virions were also present on the baculovirus-produced HPV-11 VLPs. Immuno-dot blot assays using human sera obtained from individuals with biopsy-proven condyloma acuminatum correlated closely with results previously obtained in HPV-11 whole virus particle-based enzyme-linked immunosorbent assays. These morphologic and immunologic similarities to native HPV-11 virions suggest that recombinant VLPs produced in the baculovirus system may be useful in seroepidemiology and pathogenesis studies of genital HPV infection and that they may also be potential candidates for vaccine development.  相似文献   

8.
To characterize epitopes on human papillomavirus (HPV) virus-like particles (VLPs), a panel of mutated HPV-16 VLPs was created. Each mutated VLP had residues substituted from HPV-31 or HPV-52 L1 sequences to the HPV-16 L1 backbone. Mutations were created on the HPV-31 and -52 L1 proteins to determine if HPV-16 type-specific recognition could be transferred. Correct folding of the mutated proteins was verified by resistance to trypsin digestion and by binding to one or more conformation-dependent monoclonal antibodies. Several of the antibodies tested were found to bind to regions already identified as being important for HPV VLP recognition (loops DE, EF, FG, and HI). Sequences at both ends of the long FG loop (amino acids 260 to 290) were required for both H16.V5 and H16.E70 reactivity. A new antibody-binding site was discovered on the C-terminal arm of L1 between positions 427 and 445. Recognition of these residues by the H16.U4 antibody suggests that this region is surface exposed and supports a recently proposed molecular model of HPV VLPs.  相似文献   

9.
J Zhou  X Y Sun  K Louis    I H Frazer 《Journal of virology》1994,68(2):619-625
Encapsidation of papillomavirus DNA involves DNA-protein and protein-protein interactions. We sought to define the role of each human papillomavirus (HPV) capsid protein in HPV DNA encapsidation. HPV16 major (L1) and minor (L2) capsid proteins purified from recombinant vaccinia virus-infected cells were compared for their ability to bind nucleic acids. L2 protein, but not L1 protein, could bind HPV DNA. To map the DNA-binding region of L2, a series of truncated or point-mutated L2 protein open reading frames were used to show that only the N terminal of L2 was required for L2-DNA binding. This interaction depends critically on charged amino acids (Lys or Arg) in the first 12 amino acids of the N terminal of the protein. Several techniques were used to show that L2 interaction with DNA did not require specific DNA sequences. We propose that HPV L2 protein may play a major role in papillomavirus capsid assembly by introducing HPV DNA to the virus particles formed by the self assembly of the L1 major structural protein.  相似文献   

10.
We report a system for generating infectious papillomaviruses in vitro that facilitates the analysis of papillomavirus assembly, infectivity, and serologic relatedness. Cultured hamster BPHE-1 cells harboring autonomously replicating bovine papillomavirus type 1 (BPV1) genomes were infected with recombinant Semliki Forest viruses that express the structural proteins of BPV1. When plated on C127 cells, extracts from cells expressing L1 and L2 together induced numerous transformed foci that could be specifically prevented by BPV neutralizing antibodies, demonstrating that BPV infection was responsible for the focal transformation. Extracts from BPHE-1 cells expressing L1 or L2 separately were not infectious. Although Semliki Forest virus-expressed L1 self-assembled into virus-like particles (VLPs), viral DNA was detected in particles only when L2 was coexpressed with L1, indicating that genome encapsidation requires L2. Expression of human papillomavirus type 16 (HPV16) L1 and L2 together in BPHE-1 cells also yielded infectious virus. These pseudotyped virions were neutralized by antiserum to HPV16 VLPs derived from European (114/K) or African (Z-1194) HPV16 variants but not by antisera to BPV VLPs, to a poorly assembling mutant HPV16 L1 protein, or to VLPs of closely related genital HPV types. Extracts from BPHE-1 cells coexpressing BPV L1 and HPV16 L2 or HPV16 L1 and BPV L2 were not infectious. We conclude that (i) mouse C127 cells express the cell surface receptor for HPV16 and are able to uncoat HPV16 capsids; (ii) if a papillomavirus DNA packaging signal exists, then it is conserved between the BPV and HPV16 genomes; (iii) functional L1-L2 interaction exhibits type specificity; and (iv) protection by HPV virus-like particle vaccines is likely to be type specific.  相似文献   

11.
Newcomb WW  Brown JC 《Journal of virology》2002,76(19):10084-10088
Studies were carried out to examine the mechanism of action of WAY-150138, a member of a novel group of thiourea compounds recently shown to inhibit replication of herpes simplex virus type 1 (HSV-1). Previous studies have shown that the drug acts by preventing DNA encapsidation and that resistant mutants map to U(L)6, the gene encoding the protein subunit of the portal complex through which DNA enters the capsid. We tested the idea that WAY-150138 acts by preventing the incorporation of DNA-packaging proteins into capsids as they are assembled. Capsids were isolated from HSV-1-infected, drug-treated cells and examined by Western immunoblotting for the presence of two packaging proteins, the portal subunit (U(L)6) and a candidate terminase subunit (U(L)15). The results showed that both proteins were depleted in the capsids, suggesting that WAY-150138 antagonizes DNA encapsidation by depriving capsids of packaging proteins during the assembly process.  相似文献   

12.
Recombinant vaccinia viruses containing the 22-kilodalton protein (matrixlike or 22K protein) or phosphoprotein gene from respiratory syncytial virus were constructed. These recombinant viruses expressed proteins which were immunoprecipitated by appropriate respiratory syncytial virus antibodies and comigrated with authentic proteins produced by respiratory syncytial virus infection. The new recombinant viruses (and others previously described containing the attachment glycoprotein, fusion, or nucleoprotein genes of respiratory syncytial virus) were used to infect target cells for cultured polyclonal cytotoxic T lymphocytes generated from the spleens of BALB/c or DBA/2 mice primed by intranasal infection with respiratory syncytial virus. Respiratory syncytial virus-specific cytotoxic T lymphocytes (CTL) showed strong Kd (but not Dd)-restricted recognition of the 22K protein. As previously reported, the fusion protein and nucleoprotein were both seen by CTL, but recognition of these proteins was comparatively weak. There was no detectable recognition of other respiratory syncytial virus proteins tested (including phosphoprotein). 22K protein-specific splenic memory CTL persisted for at least 11 months after infection of BALB/c mice. Priming BALB/c mice with recombinant vaccinia virus containing the 22K protein gene induced respiratory syncytial virus-specific memory CTL at lower levels than that previously reported following infection with a similar recombinant containing the fusion protein gene. These data identify the 22K protein as a major target antigen for respiratory syncytial virus-specific CTL from H-2d mice primed by respiratory syncytial virus infection.  相似文献   

13.
Vaccinia virus encodes an enzyme with DNA modifying activity that cleaves and inefficiently cross-links cruciformic DNA. This enzyme is contained within the virion, expressed at late times postinfection, and processes DNA in an energy-independent, Mg2+ ion-independent manner. Viral nuclease activity was measured in extracts from cells infected with well-defined viral mutants. Since some viral extracts lacked nuclease activity, the gene encoding the activity was postulated to be one of the open reading frames absent in the viruses lacking activity. Inducible expression of each candidate open reading frame revealed that only the gene VACWR035, or K4L, was required for nuclease activity. A recombinant virus missing only the open reading frame for K4L lacked nuclease activity. Extracts from a recombinant virus expressing K4L linked to a FLAG polypeptide were able to cleave and cross-link cruciformic DNA. There were no significant differences between the virus lacking K4L and wild-type vaccinia virus WR with respect to infectivity, growth characteristics, or processing of viral replicative intermediate DNA, including both telomeric and cross-linked forms. Purification of the K4L FLAG polypeptide expressed in bacteria yielded protein containing nicking-joining activity, implying that K4L is the only vaccinia virus protein required for the nicking-joining enzymatic activity.  相似文献   

14.
利用PCR技术克隆截短型HPV58 L1基因并重组入杆状病毒表达系统穿梭质粒pFastBac-Htb,通过转座反应,将目的基因片段重组入杆状病毒基因组,分离重组的Bacmid DNA, 并转染Sf-9昆虫细胞,收集被转染的Sf-9细胞,提取细胞蛋白,SDS-PAGE检测可见在大约58Kda处出现一新生蛋白条带,Western blot 证实为HPV58L1蛋白。用ProBondTM纯化系统纯化所表达的蛋白。小鼠红细胞凝集试验证实纯化的蛋白可介导小鼠红细胞凝集,透射电镜观察证实纯化蛋白可自组装成VLP。结果表明昆虫杆状病毒表达系统可高效表达截短型HPV58L1蛋白,纯化后的截短型HPV58L1蛋白在体外可自组装VLP,并具有介导小鼠红细胞凝集的生物学活性。  相似文献   

15.
A cDNA containing the complete coding sequence of the Bunyamwera virus (family Bunyaviridae) L genome segment has been constructed and cloned into two recombinant vaccinia virus expression systems. In the first, the L gene is under control of vaccinia virus P7.5 promoter; in the second, the L gene is under control of the bacteriophage T7 phi 10 promoter, and expression of the L gene requires coinfection with a second recombinant vaccinia virus which synthesizes T7 RNA polymerase. Both systems express a protein which is the same size as the Bunyamwera virus L protein and is recognized by a monospecific L antiserum. The expressed L protein was shown to be functional in synthesizing Bunyamwera virus RNA in a nucleocapsid transfection assay: recombinant vaccinia virus-infected cells were transfected with purified Bunyamwera virus nucleocapsids, and subsequently, total cellular RNA was analyzed by Northern (RNA) blotting. No Bunyamwera virus RNA was detected in control transfections, but in cells which had previously been infected with recombinant vaccinia viruses expressing the L protein, both positive- and negative-sense Bunyamwera virus S segment RNA was detected. The suitability of this system to delineate functional domains within the Bunyamwera virus L protein is discussed.  相似文献   

16.
The herpes simplex virus type 1 U(L)34 gene encodes a protein that is conserved in all human herpesviruses. The association of the U(L)34 protein with membranes in the infected cell and its expression as a gamma-1 gene suggest a role in maturation or egress of the virus particle from the cell. To determine the function of this gene product, we have constructed a recombinant virus that fails to express the U(L)34 protein. This recombinant virus, in which the U(L)34 protein coding sequence has been replaced by green fluorescent protein, forms minute plaques and replicates in single-step growth experiments to titers 3 to 5 log orders of magnitude lower than wild-type or repair viruses. On Vero cells, the deletion virus synthesizes proteins of all kinetic classes in normal amounts. Electron microscopic and biochemical analyses show that morphogenesis of the deletion virus proceeds normally to the point of formation of DNA-containing nuclear capsids, but electron micrographs show no enveloped virus particles in the cytoplasm or at the surface of infected cells, suggesting that the U(L)34 protein is essential for efficient envelopment of capsids.  相似文献   

17.
The vaccinia virus G3L/WR079 gene encodes a conserved protein with a predicted transmembrane domain. Our proteomic analyses of vaccinia virus revealed that G3L protein is incorporated into intracellular mature virus; however, the function of G3L protein in the vaccinia virus life cycle has not been investigated. In this study, a recombinant vaccinia virus, viG3L, expressing G3L protein under IPTG (isopropyl-beta-d-thiogalactopyranoside) regulation was constructed. Under permissive conditions when G3L protein was expressed, the vaccinia virus life cycle proceeded normally, resulting in plaque formation in BSC40 cells. In contrast, under nonpermissive conditions when G3L protein expression was repressed, no plaques were formed, showing that G3L protein is essential for vaccinia virus growth in cell cultures. In infected cells when G3L protein was not expressed, the formation of intracellular mature virus (IMV) and cell-associated enveloped virus occurred normally, showing that G3L protein is not required for virion morphogenesis. IMV particles containing (G3L(+)) or lacking (G3L(-)) G3L protein were purified and were found to be indistinguishable on microscopic examination. Both G3L(+) and G3L(-) IMV bound to HeLa cells; however, G3L(-) IMV failed to enter the cells, showing that G3L protein is required for IMV penetration into cells. Finally, G3L protein was required for fusion of the infected cells under low-pH treatment. Thus, our results provide direct evidence that G3L is an essential component of the vaccinia virus fusion complex, in addition to the previously reported A28, H2, L5, A21, and A16 proteins.  相似文献   

18.
The proteins produced by the herpes simplex virus type 1 (HSV-1) genes U(L)15 and U(L)28 are believed to form part of the terminase enzyme, a protein complex essential for the cleavage of newly synthesized, concatameric herpesvirus DNA and the packaging of the resultant genome lengths into preformed capsids. This work describes the purification of recombinant forms of pU(L)15 and pU(L)28, which allowed the calculation of the average number of copies of each protein in A and B capsids and in capsids lacking the putative portal encoded by U(L)6. On average, 1.0 (+/-0.29 [standard deviation]) copies of pU(L)15 and 2.4 (+/-0.97) copies of pU(L)28 were present in B capsids, 1.2 (+/-0.72) copies of pU(L)15 and 1.5 (+/-0.86) copies of pU(L)28 were found in mutant capsids lacking the putative portal protein pU(L)6, and approximately 12.0 (+/-5.63) copies of pU(L)15 and 0.6 (+/-0.32) copies of pU(L)28 were present in each A capsid. These results suggest that the packaging machine is partly comprised of approximately 12 copies of pU(L)15, as found in A capsids, with wild-type B and mutant U(L)6(-) capsids containing an incomplete complement of cleavage and packaging proteins. These results are consistent with observations that B capsids form by default in the absence of packaging machinery in vitro and in vivo. In contrast, A capsids may be the result of initiated but aborted attempts at DNA packaging, resulting in the retention of at least part of the DNA packaging machinery.  相似文献   

19.
The capsid proteins of papillomavirus self-assemble to form empty capsids or virus-like particles that appear quite similar to naturally occurring virions by conventional electron microscopy. To characterize such virus-like particles more fully, cryoelectron microscopy and image analysis techniques were used to generate three-dimensional reconstructions of capsids produced by vaccinia virus recombinants (V capsids) that expressed human papillomavirus type 1 L1 protein only or both L1 and L2 proteins. All V capsids had 72 pentameric capsomers arranged on a T = 7 icosahedral lattice. Each particle (approximately 60 nm in diameter) consisted of an approximately 2-nm-thick shell of protein with a radius of 22 nm with capsomers that extend approximately 6 nm from the shell. At a resolution of 3.5 nm, both V capsid structures appear identical to the capsid structure of native human papillomavirus type 1 (T. S. Baker, W. W. Newcomb, N. H. Olson, L. M. Cowsert, C. Olson, and J. C. Brown, Biophys. J. 60:1445-1456, 1991), thus implying that expressed and native capsids are structurally equivalent.  相似文献   

20.
Yang K  Wills EG  Baines JD 《Journal of virology》2011,85(22):11972-11980
Herpesvirus genomic DNA is cleaved from concatemers that accumulate in infected cell nuclei. Genomic DNA is inserted into preassembled capsids through a unique portal vertex. Extensive analyses of viral mutants have indicated that intact capsids, the portal vertex, and all components of a tripartite terminase enzyme are required to both cleave and package viral DNA, suggesting that DNA cleavage and packaging are inextricably linked. Because the processes have not been functionally separable, it has been difficult to parse the roles of individual proteins in the DNA cleavage/packaging reaction. In the present study, a virus bearing the deletion of codons 400 to 420 of U(L)15, encoding a terminase component, was analyzed. This virus, designated vJB27, failed to replicate on noncomplementing cells but cleaved concatemeric DNA to ca. 35 to 98% of wild-type levels. No DNA cleavage was detected in cells infected with a U(L)15-null virus or a virus lacking U(L)15 codons 383 to 385, comprising a motif proposed to couple ATP hydrolysis to DNA translocation. The amount of vJB27 DNA protected from DNase I digestion was reduced compared to the wild-type virus by 6.5- to 200-fold, depending on the DNA fragment analyzed, thus indicating a profound defect in DNA packaging. Capsids containing viral DNA were not detected in vJB27-infected cells, as determined by electron microscopy. These data suggest that pU(L)15 plays an essential role in DNA translocation into the capsid and indicate that this function is separable from its role in DNA cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号