首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three synthetic substrates H-Arg-NH-Mec, Bz-Arg-NH-Mec and H-Cit-NH-Mec (Bz, Benzoyl; NH-Mec, 4-methylcoumaryl-7-amide; Cit, citrulline) were used to characterize specificity requirements for the P1-S1 interaction of cathepsin H from rat liver. From rapid equilibrium kinetic studies it was shown that Km, kcat and the specificity constants kcat/Km are quite similar for substrates with a free alpha-amino group. In contrast, a 25-fold decrease of kcat/Km was observed for the N-terminal-blocked substrate Bz-Arg-NH-Mec. The activation energies for H-Arg-NH-Mec and Bz-Arg-NH-Mec were determined to be 37 kJ/mol and 55 kJ/mol, respectively, and the incremental binding energy delta delta Gb of the charged alpha-amino group was estimated to -8.1 kJ/mol at pH 6.8. The shown preference of cathepsin H for the unblocked substrates H-Arg-NH-Mec and H-Cit-NH-Mec was further investigated by inspection of the pH dependence of kcat/Km. The curves of the two substrates with a charged alpha-amino group showed identical bell-shaped profiles which both exhibit pKa1 and pKa2 values of 5.5 and 7.4, respectively, at 30 degrees C. The residue with a pKa1 of 5.5 in the acid limb of the activity profile of H-Arg-NH-Mec was identified by its ionization enthalpy delta Hion = 21 kJ/mol as a beta-carboxylate or gamma-carboxylate of the enzyme, whereas the residue with a pKa2 of 7.4 was assigned to the free alpha-amino group of the substrate with a delta Hion of 59 kJ/mol. Bz-Arg-NH-Mec showed a different pH-activity profile with a pKa1 of 5.4 and a pKa2 of 6.6 at 30 degrees C. Cathepsin H exhibits no preference for a basic P1 side chain as has been shown by the similar kinetics of H-Arg-NH-Mec and the uncharged, isosteric substrate H-Cit-NH-Mec. In summary, specific interactions of an anionic cathepsin H active site residue with the charged alpha-amino group of substrates caused transition state stabilization which proves the enzyme to act preferentially as an aminopeptidase.  相似文献   

2.
In an attempt to characterize the groups essential for the catalytic action extracellular endo-D-galacturonanase of Aspergillus niger (poly (1,4-alpha-D-galacturonide) glycanohydrolase, EC 3.2.1.15) the behaviour of the kinetic parameters as a function of pH was examined. The dependence of kcat and kcat/Km on pH suggests that two dissociable groups are involved, for which the pK values of about 3.0 and 5.0 in the free enzyme and 3.06 and 5.72 in the catalytic complex were found at 30 degrees C. These values and the value of the heat of ionization of the acidic group, deltaHi 6.48 kcal/mol, resulting from the pKa values obtained at 20 degrees C (5.91) and at 30 degrees C (5.72) suggest the participation of a carboxylate group and a protonated imidazole group of histidine in the reaction catalyzed by endo-D-galacturonanase.  相似文献   

3.
Native 5-aminolevulinic acid dehydratase contains zinc ions, which are essential for the enzymatic activity. Replacement of zinc by cadmium yielded an active enzyme whose kinetic parameters (kkat and Km) are similar to those of the zinc enzyme in the neutral pH range. However, the pH profiles of kcat and Km were different due to different pKa values. Two groups both with pKa values of 6.5 in the free zinc enzyme, but with pKa values of 7.0 in the cadmium enzyme were calculated from plots of log (kcat/Km) versus pH. On the other hand, the enzyme-substrate complex is controlled by one acidic group (zinc pKa = 6.0, cadmium pKa = 6.4) and one basis group (zinc pKa = 8.2, cadmium pKa = 7.7) as calculated from plots of log kcat versus pH. The Arrhenius plots for kcat of the two enzymes show no significant difference, the free energies of activation are 77.1 kJ/mol for the zinc and 76.8 kJ/mol for the cadmium enzyme. From this and from previous work it is concluded that the metal ions are located near the active site and influence the ionisations of essential amino acid residues. From the pH profiles of the modifying reaction and inhibition by diethylpyrocarbonate a histidinyl residue is inferred as one of the ionisable groups of the active site.  相似文献   

4.
The binding of NAD+, NADH, and ADP-ribose to horse liver alcohol dehydrogenase has been studied calorimetrically as a function of pH at 25 degrees C. The enthalpy of NADH binding is 0 +/- 0.5 kcal mol-1 in the pH range 6 to 8.6. The enthalpy of NAD+ binding, however, varies with pH in a sigmoidal fashion and is -4.0 kcal mol(NAD)-1 at pH 6.0 and +4.5 kcal mol(NAD)-1 at pH 8.6 with an apparent pKa of 7.6 +/- 0.2. The enthalpy of proton ionization of the group on the enzyme is calculated to be in the range 8.8 to 9.8 kcal mol(H+)-1. In conjunction with the available thermodynamic data on the ionization of zinc-bound water in model compounds, it is concluded that the group with a pKa of 9.8 in the free enzyme and 7.6 in the enzyme . NAD+ binary complex is, most likely, the zinc-bound water molecule. Our studies with zinc-free enzyme provide further evidence for this conclusion. Therefore, the processes involving a conformational change of the enzyme upon NAD+ binding and the suggested mechanism of subsequent quenching of the fluorescence of Trp-314 implicating the participation of an ionized tyrosine group must be re-evaluated in the light of this thermodynamic study.  相似文献   

5.
Thiamin dehydrogenase, a flavoprotein isolated from an unidentified soil bacterium, contains 1 mol of covalently bound FAD/mol of enzyme. A flavin peptide, isolated from tryptic-chymotryptic digests of the enzyme and hydrolyzed to the FMN level, shows a pH-dependent fluorescence yield being maximal at pH 3.5 to 4.0 and decreasing over 90% at pH 7.5 with a pKa of 5.8. Acid hydrolysis of the peptide results in an aminoacylflavin which shows a pKa of fluorescence quenching of 5.2. Absorption and electron paramagnetic resonance spectral data show the covalent substituent to be at the 8alpha position of the flavin as is the case with all known enzymes containing covalently bound flavin. The aminoacylflavin gives a negative Pauly reaction but yields 1 mol of histidine on drastic acid hydrolysis thus showing an imidazole ring nitrogen as the 8alpha substituent of the flavin. The aminoacylflavin differs from synthetic 8alpha-[N(3)-histidyl]riboflavin or its acid-modified form in pKa of fluorescence quenching, in electrophoretic mobility, in being reduced by borohydride, and in being labile to storage, yielding 8-formylriboflavin. In all of these properties, however, the 8alpha-histidylriboflavin isolated from thiamin dehydrogenase is indistinguishable from 8alpha-[N(1)-histidyl]riboflavin. It is therefore concluded that the FAD moiety of thiamin dehydrogenase is covalently linked via the 8alpha-methylene group to the N(1) position of the imidazole ring of histidine.  相似文献   

6.
The inhibition of purified bovine adrenal tyrosine hydroxylase by several product and substrate analogues has been studied to probe the kinetic mechanism. Norepinephrine, dopamine, and methylcatechol are competitive inhibitors versus tetrahydropterins and noncompetitive inhibitors versus tyrosine. 3-Iodotyrosine is an uncompetitive inhibitor versus tetrahydropterins and a competitive inhibitor versus tyrosine. The Ki value for 3-iodotyrosine depends on the tetrahydropterin used. These results are consistent with tetrahydropterin binding first to the free enzyme followed by binding of tyrosine. 5-Deaza-6-methyltetrahydropterin is a noncompetitive inhibitor versus tetrahydropterins and tyrosine. The effect of varying the concentration of tyrosine on the Ki value for 5-deaza-6-methyltetrahydropterin is consistent with the binding of this inhibitor to both the free enzyme and to an enzyme-dihydroxyphenylalanine complex. Dihydroxyphenylalanine also is a noncompetitive inhibitor versus tetrahydropterins and tyrosine; the effect of changing the fixed substrate is consistent with the binding of this inhibitor to both the free enzyme and to the enzyme-tetrahydropterin complex. The effect of pH on the Ki values was determined in order to measure the pKa values of amino acid residues involved in substrate binding. Tight binding of catechols requires that a group with a pKa value of 7.6 be deprotonated. Binding of 3-iodotyrosine involves two groups with pKa values of 7.5 and about 5.5, one of which must be protonated for binding. Binding of 5-deaza-6-methyltetrahydropterin requires that a group on the free enzyme with a pKa value of 6.1 be protonated. The Ki value for dihydroxyphenylalanine is relatively insensitive to pH, but the inhibition pattern changes from noncompetitive to competitive above pH 7.5, consistent with the measured pKa values for binding to the free enzyme and to the enzyme-tetrahydropterin complex.  相似文献   

7.
C W Garner  F J Behal 《Biochemistry》1975,14(23):5084-5088
The presence of at least two ionizable active center groups has been detected by a study of the effect of pH upon catalysis of hydrolysis of L-alanyl-beta-naphthylamide by human liver alanine aminopeptidase and upon the inhibition of hydrolysis by inhibitors and substrate analogs. Octanoic acid, octylamine, and peptide inhibitors have been found to be competitive inhibitors and are therefore thought to bind the active center. L-Phe was previously shown to bind the active center since it was found to be a competitive inhibitor of the hydrolysis of tripeptide substrates (Garner, C. W., and Behal, F. J. (1975), Biochemistry 14, 3208). A plot of pKm vs. pH for the substrate L-Ala-beta-naphthylamide showed that binding decreased below pH 5.9 and above 7.5, the points at which the theoretical curve undergoes an integral change in slope. These points are interpreted as the pKa either of substrate ionizable groups or binding-dependent enzyme active center groups. Similar plots of pKm vs. pH for L-alanyl-p-nitroanilide (as substrate) and pKi vs. pH for L-Leu-L-Leu-L-Leu and D-Leu-L-Tyr (as inhibitors) gave pairs fo pKa values of 5.8 and 7.4, 6.0 and 7.5, and 5.7 and 7.5, respectively. All the above substrates (and D-Leu-L-Tyr) have pKa values near 7.5; therefore, the binding-dependent group with a pKa value near 7.5 is possibly this substrate group. Similar plots of pKi vs. pH for the inhibitors L-Phe, L-Met, L-Leu, octylamine, and octanoic acid had only one bending point at 7.7, 7.6, 7.4, 6.3, and 5.9, respectively. Amino acid inhibitors, octylamine, and octanoic acid have no groups with pKa values between 5 and 9. These data indicate that there are two active center ionizable groups with pKa values of approximately 6.0 and 7.5 which are involved in substrate binding or inhibitory amino acid binding but not in catalysis since Vmax was constant at all pH values tested.  相似文献   

8.
The acidic pH (1.5-7.0) and ionic strength (0.005-0.2M) dependence of thermodynamic functions of protein Sso7d from Sulfolobus solfataricus, cloned (c-Sso7d) and N-heptapeptide deleted [c-des(1-7)Sso7d] in glycine, and phosphate buffers was studied by means of adiabatic scanning calorimetry. The difference of proton binding was estimated from deltaHcal(pH), Td(pH), and (deltaTd/deltapH). It was found that a single group non-co-operative ionization with apparent pKa = 3.25 for both cloned and deleted proteins govern the thermal unfolding of two different (protonated and unprotonated) forms. deltaH degrees is found to be pH-independent and the changes in stability (deltaG degrees ) originate from changes in entropy terms. The apparent pKa measured at high salt concentrations decreases with 0.5 pH units from glycine to phosphate and the free energy of transfer at high ionic strength is 0.7 kcal/mol. The ionic strength dependence for the pH-dependent D-states is very different at pH 6.0 and 1.5. This is consistent with the property of denatured state to be more compacted or "closed" (Dc) at neutral or weak acidic pH and more random or "open" (Do) at acidic pH. From the Bjerrum's relation was found the number of screened charges important for the unfolding process. The main conclusions are: (1) the thermal stability of Sso7d has prominently entropic nature; (2) a single non-co-operative ionization controls the conformations in the D-state; and (3) pH-dependent conformational equilibrium could be functionally important in Sso7d-DNA recognition.  相似文献   

9.
K K Wong  J S Blanchard 《Biochemistry》1989,28(8):3586-3590
Human erythrocyte glutathione reductase catalyzes the pyridine nucleotide dependent reduction of oxidized glutathione (GSSG). The pH dependence of the kinetic parameters V and V/K for three reduced pyridine nucleotide substrates, the Ki's for three competitive inhibitors (versus NADPH), and the temperature dependence of the V pH profile have been determined. Below pH 8, V and V/K for NADPH, 2',3'-cyclic-NADPH, and NADH are pH independent. In the basic pH region, both V and V/K for the three substrates are pH dependent. All three of the V profiles decrease with increasing pH as a group with a pKa of approximately 9.2 is titrated. The V/K profiles for NADPH, 2',3'-cyclic-NADPH, and NADH decrease at high pH as a group with a pKa of greater than 9.8, 8.9, and 8.8, respectively, is deprotonated. The Ki's for ATP-ribose and 2',5'-ADP are pH independent below pH 8 but increase in the basic region as a group with a pKa of about 8.8 and 8.5, respectively, is deprotonated. The Ki of AADP is pH independent between pH 6 and 9. These studies suggest that binding interactions between the 2'-phosphate of NADPH and the enzyme are predominately nonionic. The temperature dependence of the pK observed in all V pH profiles allows the calculation of an enthalpy of ionization of 3.2 kcal/mol for this group. The high pK and low enthalpy of ionization suggest that the protonation state of the His-467'-Glu-472' ion pair observed in the structure of human erythrocyte glutathione reductase influences proton-transfer steps occurring in the oxidative half-reaction.  相似文献   

10.
Benzyloxycarbonyl (Z)-Ala-Pro-Phe-glyoxal and Z-Ala-Ala-Phe-glyoxal have both been shown to be inhibitors of alpha-chymotrypsin with minimal Ki values of 19 and 344 nM, respectively, at neutral pH. These Ki values increased at low and high pH with pKa values of approximately 4.0 and approximately 10.5, respectively. By using surface plasmon resonance, we show that the apparent association rate constant for Z-Ala-Pro-Phe-glyoxal is much lower than the value expected for a diffusion-controlled reaction. 13C NMR has been used to show that at low pH the glyoxal keto carbon is sp3-hybridized with a chemical shift of approximately 100.7 ppm and that the aldehyde carbon is hydrated with a chemical shift of approximately 91.6 ppm. The signal at approximately 100.7 ppm is assigned to the hemiketal formed between the hydroxy group of serine 195 and the keto carbon of the glyoxal. In a slow exchange process controlled by a pKa of approximately 4.5, the aldehyde carbon dehydrates to give a signal at approximately 205.5 ppm and the hemiketal forms an oxyanion at approximately 107.0 ppm. At higher pH, the re-hydration of the glyoxal aldehyde carbon leads to the signal at 107 ppm being replaced by a signal at 104 ppm (pKa approximately 9.2). On binding either Z-Ala-Pro-Phe-glyoxal or Z-Ala-Ala-Phe-glyoxal to alpha-chymotrypsin at 4 and 25 degrees C, 1H NMR is used to show that the binding of these glyoxal inhibitors raises the pKa value of the imidazolium ion of histidine 57 to a value of >11 at both 4 and 25 degrees C. We discuss the mechanistic significance of these results, and we propose that it is ligand binding that raises the pKa value of the imidazolium ring of histidine 57 allowing it to enhance the nucleophilicity of the hydroxy group of the active site serine 195 and lower the pKa value of the oxyanion forming a zwitterionic tetrahedral intermediate during catalysis.  相似文献   

11.
A series of compounds has been prepared by reaction of dicyandiamide with alkyl/arylsulfonyl halides as well as arylsulfonylisocyanates to locate a lead for obtaining weakly basic thrombin inhibitors with sulfonyldicyandiamide moieties as the S1 anchoring group. The detected lead was sulfanilyl-dicyandiamide (K1 of 3 microM against thrombin, and 15 microM against trypsin), which has been further derivatized at the 4-amino group by incorporating arylsulfonylureido as well as amino acyl/dipeptidyl groups protected at the amino terminal moiety with benzyloxycarbonyl or tosylureido moieties. The best compound obtained (ts-D-Phe-Pro-sulfanilyl-dicyandiamide) showed inhibition constants of 9 nM against thrombin and 1400 nM against trypsin. pKa measurements showed that the new derivatives reported here do indeed possess a reduced basicity, with the pKa of the modified guanidine moieties in the range 7.9-8.3 pKa units. Molecular mechanics calculations showed that the preferred tautomeric form of these compounds is of the type ArSO2N=C(NH2) NH-CN, probably allowing for the formation of favorable interaction between this new anchoring group and the active site amino acid residue Asp 189, critical for substrate/inhibitor binding to this type of serine protease. Thus, the main finding of the present paper is that the sulfonyldicyandiamide group may constitute an interesting alternative for obtaining weakly basic, potent thrombin inhibitors, which bind with less affinity to trypsin.  相似文献   

12.
Human glutaminyl cyclase (QC) was identified as a metalloenzyme as suggested by the time-dependent inhibition by the heterocyclic chelators 1,10-phenanthroline and dipicolinic acid. The effect of EDTA on QC catalysis was negligible. Inactivated enzyme could be fully restored by the addition of Zn2+ in the presence of equimolar concentrations of EDTA. Little reactivation was observed with Co2+ and Mn2+. Other metal ions such as K+, Ca2+, and Ni2+ were inactive under the same conditions. Additionally, imidazole and imidazole derivatives were identified as competitive inhibitors of QC. An initial structure activity-based inhibitor screening of imidazole-derived compounds revealed potent inhibition of QC by imidazole N-1 derivatives. Subsequent data base screening led to the identification of two highly potent inhibitors, 3-[3-(1H-imidazol-1-yl)propyl]-2-thioxoimidazolidin-4-one and 1,4-bis-(imidazol-1-yl)-methyl-2,5-dimethylbenzene, which exhibited respective Ki values of 818 +/- 1 and 295 +/- 5 nm. The binding properties of the imidazole derivatives were further analyzed by the pH dependence of QC inhibition. The kinetically obtained pKa values of 6.94 +/- 0.02, 6.93 +/- 0.03, and 5.60 +/- 0.05 for imidazole, methylimidazole, and benzimidazole, respectively, match the values obtained by titrimetric pKa determination, indicating the requirement for an unprotonated nitrogen for binding to QC. Similarly, the pH dependence of the kinetic parameter Km for the QC-catalyzed conversion of H-Gln-7-ami-no-4-methylcoumarin also implies that only N-terminally unprotonated substrate molecules are bound to the active site of the enzyme, whereas turnover is not affected. The results reveal human QC as a metal-dependent transferase, suggesting that the active site-bound metal is a potential site for interaction with novel, highly potent competitive inhibitors.  相似文献   

13.
Haloalkane dehalogenases: steady-state kinetics and halide inhibition   总被引:2,自引:0,他引:2  
The substrate specificities and product inhibition patterns of haloalkane dehalogenases from Xanthobacter autotrophicus GJ10 (XaDHL) and Rhodococcus rhodochrous (RrDHL) have been compared using a pH-indicator dye assay. In contrast to XaDHL, RrDHL is efficient toward secondary alkyl halides. Using steady-state kinetics, we have shown that halides are uncompetitive inhibitors of XaDHL with 1, 2-dichloroethane as the varied substrate at pH 8.2 (Cl-, Kii = 19 +/- 0.91; Br-, Kii = 2.5 +/- 0.19 mM; I-, Kii = 4.1 +/- 0.43 mM). Because they are uncompetitive with the substrate, halide ions do not bind to the free form of the enzyme; therefore, halide ions cannot be the last product released from the enzyme. The Kii for chloride was pH dependent and decreased more than 20-fold from 61 mM at pH 8.9 to 2.9 mM at pH 6.5. The pH dependence of 1/Kii showed simple titration behavior that fit to a pKa of approximately 7.5. The kcat was maximal at pH 8.2 and decreased at lower pH. A titration of kcat versus pH also fits to a pKa of approximately 7.5. Taken together, these data suggest that chloride binding and kcat are affected by the same ionizable group, likely the imidazole of a histidyl residue. In contrast, halides do not inhibit RrDHL. The Rhodococcus enzyme does not contain a tryptophan corresponding to W175 of XaDHL, which has been implicated in halide ion binding. The site-directed mutants W175F and W175Y of XaDHL were prepared and tested for halide ion inhibition. Halides do not inhibit either W175F or W175Y XaDHL.  相似文献   

14.
Iminoalditol analogues of galactofuranosides were synthesized from 1-C-(2′-oxo-propyl)-1,4-dideoxy-1,4-imino-d-galactosides and different amines by reductive amination, followed by removal of protecting groups. The activity of these compounds against galactosidases and other glycosidases was investigated. The best inhibitor against β-galactosidase (bovine liver) is a diastereomeric mixture of an iminoalditol (10h), which contains a hydrophobic hexadecyl aglycon (R = C16H33), whereas no significant inhibitory activity was observed with compounds having a hydrophilic aglycon. Surprisingly, activation of α-galactosidase (coffee bean) by 10h was also observed. Because these results were obtained from a mixture of iminoalditols, the inhibition and activation of glycosidases could result from different diastereomers.  相似文献   

15.
Ki values for leucine aldehyde, a competitive inhibitor of leucine aminopeptidase, vary with pH in a manner compatible with binding of uncharged inhibitor. The pH dependence of kcat/Km suggests likewise that the substrate leucine p-nitroanilide is productively bound as the uncharged species. Comparison of pKa values of the model compounds aminoacetone and aminoacetal indicates that the equilibrium constant for hydration of amino aldehydes is reduced by a factor of about 2 when a proton is lost from the alpha-ammonium group near pH 8. Effects of deuterium substitution at C-1 on equilibrium binding of leucine aldehyde were determined with immobilized enzyme and inhibitors doubly labeled with radioisotopes. The observed isotope effect (KD/KH) is approximately unity, suggesting that leucine aldehyde combines with the enzyme as an oxygen adduct, not as the intact aldehyde.  相似文献   

16.
Cellulases are the enzymes that cleave beta-1,4 linkages of cellulose, and carbohydrate that is main part of plants' cell walls. Presently, cellulase isolation and partial purification was executed through ammonium sulfate precipitation. The isolated protein of parental and derived mutants conferred molecular weights of 30, 45 and 55 kDa. The optimum temperature for maximal cellulase activity was 50 degrees C with Ea for substrate hydrolysis of 77.73, 83.97 and 83.14 kJ mol(-1) and temperature quotient of 1.0020, 1.0022 and 1.0022 by Trichoderma viride FCBP-142, Tv-UV-5.6 and Tv-Ch-4.3, respectively. The enzyme was stable at 50 degrees C for about 60 min but rapid denaturation occurred above 55 degrees C. The enzyme showed optimum activity at pH 4.0 and involved two types of acidic and basic limbs with pKa1 and pKa2. The pKa1 of active site presented a significant shift from 2.55 to 2.9 and 3.1 by Tv-UV-5.6 and Tv-Ch-4.3, respectively in comparison to parental strain. Likewise, pKa2 moved from 6.05 to 6.5 and 6.4. Enzyme kinetics displayed Michaelis-Menten constant Km 0.6, 0.5 and 0.28 mg mL(-1) and Vmax value of 8.33, 10 and 9.09 Units mL(-1) for parental, Tv-UV-5.6 and Tv-Ch-4.3, respectively.  相似文献   

17.
We have shown that diphenlacetaldehyde (DPAA) is able to promote mitochondrial DeltaPsi disruption accompanied by damage in mitochondrial DNA, lipids, and proteins [Almeida, A. M.; Bechara, E. J. H.; Vercesi, A. E.; Nantes, I. L. Free Radic. Biol. Med. 27:744-747; 1999]. In this work, DPAA was used as a model of carbonyl reagent for cytochrome c. The results suggest that DPAA is a redox cytochrome c modifier. Conversion of Fe(III) to Fe(II) cytochrome c promoted by DPAA is pH dependent. The second-order rate determined for heme iron reduction (k2) is 698 M(-1) s(-1) and this process occurs with an activation energy of 8.5 +/- 0.8 kcal/mol. Analysis of the pH profile suggests the presence of two ionizable cytochrome c groups (pKa1 = 8.9 and pKa2 = 11.4) related to the electron transfer from DPAA to heme iron. The heats of ionization of the two prototropic groups, pKa1 (DeltaH(ion) = 6.5 kcal/mol, DeltaS(ion) = -29.0 cal/mol.K), and pKa2 (DeltaH(ion) = 5.0 kcal/mol, DeltaS(ion) = -24.0 cal/mol.K), suggest involvement of two tyrosine residues, probably Y67 and Y74, related to DPAA-promoted heme iron reduction. The cytochrome c chemical modification by iodination of tyrosine groups significantly decreased the reduction rate promoted by DPAA, and shifted the pH(opt) value from 10.0 to 9.25. The cytochrome c-promoted DPAA electron abstraction quickly produces the expected enol-derived radical, as indicated by 3,5-dibromo-4-nitrosobenzenesulfonate (DBNBS) spin trapping EPR measurements. This radical reacts with molecular oxygen, producing a peroxyl intermediate radical that, via a putative dioxetane intermediate, promotes formation of benzophenone as the main final product of this reaction, detected by high-performance liquid chromatography coupled with tandem mass spectrometry.  相似文献   

18.
The yeast Saccharomyces cerevisiae takes up adenine, guanine, hypoxanthine, and cytosine via a common energy-dependent transport system. The apparent affinity of the transport system to these and other purines and pyrimidines is correlated with their capability to be protonated to the positively charged form. Further organic molecules are competitive inhibitors when they are cationic, e.g. guanidine and octylguanidine in contrast to urea, or hexadecyltrimethylammonium in contrast to dodecylsulfate and Triton X-100. The influence of the pH on the kinetic constants of hypoxanthine transport points to a stoichiometry of one proton being associated to the transport system together with one substrate molecule. The pKa values of two ionizable groups that are involved in substrate binding are revealed; one of which (pKa = 1.8) may be attributed to the substrate, the other (pKa = 5.1) to an amino acid residue in the recognition site of the transport system. Studies with group-specific inhibitors indicate that this amino acid residue contains a carboxyl group. The results are in accordance with the assumption that a carboxyl group of the transport system, a proton and a substrate molecule arrange to an uncharged ternary complex.  相似文献   

19.
Glucose oxidase from Aspergillus niger (EC 1.1.3.4) is able to catalyze the oxidation of beta-D-glucose with p-benzoquinone, methyl-1,4-benzoquinone, 1,2-naphthoquinone, 1,2-naphthoquinone-4-sulfonic acid, potassium ferricyanide, phenazine methosulfate, and 2,6-dichloroindophenol. In this work, the steady-state kinetic parameters, V1/K(B), for reactions of these substrates were collected from pH 2.5-8. Further, the molecular models of the enzyme's active site were constructed for the free enzyme in the oxidized state, the complex of beta-D-glucose with the oxidized enzyme, the complex of reduced enzyme with methyl-1,4-benzoquinone, the reduced enzyme plus 1,2-naphthoquinone-4-sulfonic acid, oxidized enzyme plus reduced 1,2-naphthoquinone-4-sulfonic acid (hydroquinone anion), and oxidized enzyme plus fully reduced 1,2-naphthoquinone-4-sulfonic acid. Combining the steady-state kinetic and structural data, it was concluded that Glu412 bound to His559, in the active site of enzyme, modulates powerfully its catalytic activity by affecting all the rate constants in the reductive and the oxidative half-reaction of the catalytic cycle. His516 is the catalytic base in the oxidative and the reductive part of the catalytic cycle. It was estimated that the pKa of Glu412 (bound to His559) in the free reduced enzyme is 3.4, and the pKa of His516 in the free reduced enzyme is 6.9.  相似文献   

20.
The kinetics of Klebsiella aerogenes urease inactivation by disulfide and alkylating agents was examined and found to follow pseudo-first-order kinetics. Reactivity of the essential thiol is affected by the presence of substrate and competitive inhibitors, consistent with a cysteine located proximal to the active site. In contrast to the results observed with other reagents, the rate of activity loss in the presence of 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) saturated at high reagent concentrations, indicating that DTNB must first bind to urease before inactivation can occur. The pH dependence for the rate of urease inactivation by both disulfide and alkylating agents was consistent with an interaction between the thiol and a second ionizing group. The resulting macroscopic pKa values for the 2 residues are less than 5 and 12. Spectrophotometric studies at pH 7.75 demonstrated that 2,2'-dithiodipyridine (DTDP) modified 8.5 +/- 0.2 mol of thiol/mol of enzyme or 4.2 mol of thiol/mol of catalytic unit. With the slow tight binding competitive inhibitor phenyl-phosphorodiamidate (PPD) bound to urease, 1.1 +/- 0.1 mol of thiol/mol of catalytic unit were protected from modification. PPD-bound DTDP-modified urease could be reactivated by dialysis, consistent with the presence of one thiol per active site. Analogous studies at pH 6.1, using the competitive inhibitor phosphate, confirmed the presence of one protected thiol per catalytic unit. Under denaturing conditions, 25.5 +/- 0.3 mol of thiol/mol of enzyme (Mr = 211, 800) were modified by DTDP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号