首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of alternative macrophage activation by galectin-3   总被引:3,自引:0,他引:3  
Alternative macrophage activation is implicated in diverse disease pathologies such as asthma, organ fibrosis, and granulomatous diseases, but the mechanisms underlying macrophage programming are not fully understood. Galectin-3 is a carbohydrate-binding lectin present on macrophages. We show that disruption of the galectin-3 gene in 129sv mice specifically restrains IL-4/IL-13-induced alternative macrophage activation in bone marrow-derived macrophages in vitro and in resident lung and recruited peritoneal macrophages in vivo without affecting IFN-gamma/LPS-induced classical activation or IL-10-induced deactivation. IL-4-mediated alternative macrophage activation is inhibited by siRNA-targeted deletion of galectin-3 or its membrane receptor CD98 and by inhibition of PI3K. Increased galectin-3 expression and secretion is a feature of alternative macrophage activation. IL-4 stimulates galectin-3 expression and release in parallel with other phenotypic markers of alternative macrophage activation. By contrast, classical macrophage activation with LPS inhibits galectin-3 expression and release. Galectin-3 binds to CD98, and exogenous galectin-3 or cross-linking CD98 with the mAb 4F2 stimulates PI3K activation and alternative activation. IL-4-induced alternative activation is blocked by bis-(3-deoxy-3-(3-methoxybenzamido)-beta-D-galactopyranosyl) sulfane, a specific inhibitor of extracellular galectin-3 carbohydrate binding. These results demonstrate that a galectin-3 feedback loop drives alternative macrophage activation. Pharmacological modulation of galectin-3 function represents a novel therapeutic strategy in pathologies associated with alternatively activated macrophages.  相似文献   

2.
3.
PPARs调控巨噬细胞的活化与功能   总被引:1,自引:0,他引:1  
巨噬细胞是先天性防御病原体的关键组分,它参与炎症的发生和消退,同时也参与了组织的修复。巨噬细胞的多种功能通过不同的活化状态完成,即从经典活化状态到替代性活化状态,再到失活状态。巨噬细胞活化的失调与代谢、炎症和免疫病变有关,调节蛋白控制巨噬细胞的活化可作为新的治疗靶点。主要综述过氧化物酶体增殖物激活受体(PPARs)调控巨噬细胞活化的作用。  相似文献   

4.
Several arenavirus pathogens, such as Lassa and Junin viruses, inhibit macrophage activation, the molecular mechanism of which is unclear. We show that lymphocytic choriomeningitis virus (LCMV) can also inhibit macrophage activation, in contrast to Pichinde and Tacaribe viruses, which are not known to naturally cause human diseases. Using a recombinant Pichinde virus system, we show that the LCMV Z N-terminal domain (NTD) mediates the inhibition of macrophage activation and immune functions.  相似文献   

5.
Bone marrow-derived macrophages proliferate in response to specific growth factors, including macrophage colony-stimulating factor (M-CSF). When stimulated with activating factors, such as lipopolysaccharide (LPS), macrophages stop proliferating and produce proinflammatory cytokines. Although triggering opposed responses, both M-CSF and LPS induce the activation of extracellular-regulated kinases (ERKs) 1 and 2. However, the time-course of ERK activation is different; maximal activation by M-CSF and LPS occurred after 5 and 15 min of stimulation, respectively. Granulocyte/macrophage colony-stimulating factor, interleukin 3, and TPA, all of which induced macrophage proliferation, also induced ERK activity, which was maximal at 5 min poststimulation. The use of PD98059, which specifically blocks ERK 1 and 2 activation, demonstrated that ERK activity was necessary for macrophage proliferation in response to these factors. The treatment with phosphatidylcholine-specific phospholipase C (PC-PLC) inhibited macrophage proliferation, induced the expression of cytokines, and triggered a pattern of ERK activation equivalent to that induced by LPS. Moreover, PD98059 inhibited the expression of cytokines induced by LPS or PC-PLC, thus suggesting that ERK activity is also required for macrophage activation by these two agents. Activation of the JNK pathway did not discriminate between proliferative and activating stimuli. In conclusion, our results allow to correlate the differences in the time-course of ERK activity with the macrophagic response toward proliferation or activation.  相似文献   

6.
Alternative activation of macrophages   总被引:1,自引:0,他引:1  
The classical pathway of interferon-gamma-dependent activation of macrophages by T helper 1 (T(H)1)-type responses is a well-established feature of cellular immunity to infection with intracellular pathogens, such as Mycobacterium tuberculosis and HIV. The concept of an alternative pathway of macrophage activation by the T(H)2-type cytokines interleukin-4 (IL-4) and IL-13 has gained credence in the past decade, to account for a distinctive macrophage phenotype that is consistent with a different role in humoral immunity and repair. In this review, I assess the evidence in favour of alternative macrophage activation in the light of macrophage heterogeneity, and define its limits and relevance to a range of immune and inflammatory conditions.  相似文献   

7.
Cultures prepared from dissociated rat thymus were examined 1-2 weeks after plating. Macrophage cells were identified by their adherence, morphological appearance, and ability to phagocytize carbon particles or heat-inactivated Staphylococcus aureus. Whole cell current recordings from macrophage cells revealed an inward current at potentials more negative than the equilibrium potential for potassium and an outward current at potentials more positive than -40 mV in normal recording solution. Acetylcholine or muscarine caused a reduction in inward current but did not alter the outward current. The inward current and acetylcholine effect were seen at less negative potentials by decreasing the potassium equilibrium potential and both were blocked by the addition of cesium to the external recording solution. These results indicated that the inward current was mediated by potassium through the inward or anomalous rectifier. Physiologically, the action of acetylcholine on the inward rectifier of these macrophage cells may be mediated by cholinergic innervation of the thymus.  相似文献   

8.
The study of [3H]-uridine uptake by mouse peritoneal macrophages showed that this is an active, temperature- and protein synthesis-dependent phenomenon, which is early altered when are exposed to a variety of stimuli. Murine recombinant interferon-gamma, a stimulus able to activate macrophage and to induce the production of tumor necrosis factor-alpha, within few hours markedly increased [3H]-uridine uptake by mouse macrophage. Other stimuli devoid of activation capacity, such as inert phagocytable latex beads, did not affect this phenomenon, which appeared to be related to macrophage activation. The increase in [3H]-uridine uptake may be an useful phenomenon in studying the early biochemical events associated with macrophage activation.  相似文献   

9.
C-reactive protein (CRP), an acute-phase protein with an ability to bind to nuclear antigen, has been reported to regulate cytokine secretion and modulate immune responses. We previously reported that activated syngeneic lymphocyte-derived apoptotic DNA (apopDNA) could induce macrophage activation and contribute to the initiation and progression of lupus nephritis. It is reasonable to hypothesize that CRP might regulate apopDNA-induced macrophage activation. Herein, CRP was shown to promote macrophage-mediated apopDNA uptake by binding to apopDNA (CRP/apopDNA complex). Notably, CRP/apopDNA treatment inhibited the production of inflammatory cytokines and chemokines by macrophages which could be induced by apopDNA alone. Further coculture and transwell studies revealed that CRP/apopDNA-induced macrophages prohibited apopDNA-induced macrophage activation in an IL-10 dependent manner. These results provide insight into the potential mechanism of CRP regulatory activity in macrophage activation induced by apopDNA in the context of lupus nephritis and other autoimmune diseases.  相似文献   

10.
beta-Glucans are major structural components of fungi. We have recently reported that the pathogenic fungus Pneumocystis carinii assembles a beta-glucan-rich cell wall that potently activates alveolar macrophages to release pro-inflammatory cytokines and chemokines. Purified P. carinii beta-glucans predictably induce both cytokine generation and associated neutrophilic lung inflammation. Herein, we demonstrate that P. carinii beta-glucan-induced macrophage stimulation results from activation of NF-kappaB. Although analogous to macrophage activation induced by bacterial lipopolysaccharide (LPS), P. carinii beta-glucan-induced macrophage NF-kappaB activation exhibits distinctly different kinetics, with slower induction and longer duration compared with LPS stimulation. Macrophage activation in response to P. carinii beta-glucan was also substantially inhibited with the NF-kappaB antagonist pyrrolidine dithiocarbamate. In addition to different kinetics of NF-kappaB activation, P. carinii beta-glucan and LPS also utilize different receptor systems to induce macrophage activation. Macrophages from Toll-like receptor 4-deficient and wild type mice produced equivalent amounts of tumor necrosis factor alpha when stimulated with P. carinii beta-glucan. However, Toll-like receptor 4-deficient macrophages were refractory to stimulation with LPS. In contrast, MyD88-deficient macrophages exhibited a significant (though partial) blunted response to P. carinii beta-glucan. These data demonstrate that P. carinii beta-glucan acts as potent inducer of macrophage activation through NF-kappaB utilizing cellular receptors and signaling pathways distinct from LPS.  相似文献   

11.
12.
A voltage-activated inward-rectifying K+ conductance (lKi) appears in human promyelocytic leukemia (HL-60) cells during phorbol ester-induced differentiation into macrophages. This conductance was detected in the cells 24 hours after exposure to phorbol-12-myristate-13-acetate (PMA), as the cells began to express the macrophage phenotype, and continued to increase for 4 days after PMA exposure. The magnitude of inward current was a function of external K+; current was blocked by extracellular or intracellular Cs+ and by extracellular Ba++. Hyperpolarization produced activation at membrane potentials more negative than -80 mV, and a slower, partial inactivation also occurred at potentials more negative than -100 mV. This conductance was not detected in proliferating cells nor in granulocytes derived from HL-60 cells which were induced to differentiate with retinoic acid (RA). Exposure of differentiated macrophages to recombinant human CSF-1 produced inhibition of the lKi beginning within 1 minute after exposure. CSF-1 inhibition of lKi channels in cell-attached patches indicated that channel modulation was via intracellular mediators. The rapid inhibition of the inward rectifier by the macrophage-specific CSF-1 appears to be one of the earliest cellular responses to this factor.  相似文献   

13.
N-acylethanolamines (NAEs) such as N-palmitoylethanolamine and anandamide are endogenous bioactive lipids having numerous functions, including the control of inflammation. Their levels and therefore actions can be controlled by modulating the activity of two hydrolytic enzymes, N-acylethanolamine-hydrolyzing acid amidase (NAAA) and fatty acid amide hydrolase (FAAH). As macrophages are key to inflammatory processes, we used lipopolysaccharide-activated J774 macrophages, as well as primary mouse alveolar macrophages, to study the effect of FAAH and NAAA inhibition, using PF-3845 and AM9053 respectively, on macrophage activation and NAE levels measured by HPLC-MS. Markers of macrophage activation were measured by qRT-PCR and ELISA. Activation of macrophages decreased NAAA expression and NAE hydrolytic activity. FAAH and NAAA inhibition increased the levels of the different NAEs, although with different magnitudes, whether in control condition or following LPS-induced macrophage activation. Both inhibitors reduced several markers of macrophage activation, such as mRNA expression of inflammatory mediators, as well as cytokine and prostaglandin production, with however some differences between FAAH and NAAA inhibition. Most of the NAEs tested – including N-docosatetraenoylethanolamine and N-docosahexaenoylethanolamine – also reduced LPS-induced mRNA expression of inflammatory mediators, again with differences depending on the marker and the NAE, thus offering a potential explanation for the differential effect of the inhibitors on macrophage activation markers. In conclusion, we show different and complementary effects of NAE on lipopolysaccharide-induced macrophage activation. Our results support an important role for inhibition of NAE hydrolysis and NAAA inhibition in particular in controlling macrophage activation, and thus inflammation.  相似文献   

14.
Macrophage activation is essential for a correct and efficient response of innate immunity. During oxidative stress membrane receptors and/or membrane lipid dynamics can be altered, leading to dysfunctional cell responses. Our aim is to analyze membrane fluidity modifications and cell function under oxidative stress in LPS-activated macrophages. Membrane fluidity of individual living THP-1 macrophages was evaluated by the technique two-photon microscopy. LPS-activated macrophage function was determined by TNFα secretion. It was shown that LPS activation causes fluidification of macrophage plasma membrane and production of TNFα. However, oxidative stress induces rigidification of macrophage plasma membrane and inhibition of cell activation, which is evidenced by a decrease of TNFα secretion. Thus, under oxidative conditions macrophage proinflammatory response might develop in an inefficient manner.  相似文献   

15.
Toll-like receptors (TLR) are pivotal in macrophage activation. The molecular mechanisms controlling TLR signaling and macrophage activation are not completely understood. Zc3h12d is originally identified as a possible tumor suppressor gene. However, its function remains unknown. We here report that Zc3h12d negatively regulates TLR signaling and macrophage activation. Zc3h12d was enriched in spleen, lung and lymph node. In macrophages, the expression of Zc3h12d was remarkably induced by TLR ligands through JNK and NF-κB signal pathways. On the other hand, overexpression of Zc3h12d significantly inhibited TLR2 and TLR4 activation-induced JNK, ERK and NF-κB signaling as well as macrophage inflammation. Similar to Zc3h12a/MCPIP1, Zc3h12d also decreased the global cellular protein ubiquitination. These findings suggest that Zc3h12d is a novel negative feedback regulator of TLR signaling and macrophage activation and thus may play a role in host immunity and inflammatory diseases.  相似文献   

16.
ATP-binding cassette transporter A1 (ABCA1), a molecule mediating free cholesterol efflux from peripheral tissues to apoAI and high density lipoprotein (HDL), inhibits the formation of lipid-laden macrophage/foam cells and the development of atherosclerosis. ERK1/2 are important signaling molecules regulating cellular growth and differentiation. The ERK1/2 signaling pathway is implicated in cardiac development and hypertrophy. However, the role of ERK1/2 in the development of atherosclerosis, particularly in macrophage cholesterol homeostasis, is unknown. In this study, we investigated the effects of ERK1/2 activity on macrophage ABCA1 expression and cholesterol efflux. Compared with a minor effect by inhibition of other kinases, inhibition of ERK1/2 significantly increased macrophage cholesterol efflux to apoAI and HDL. In contrast, activation of ERK1/2 reduced macrophage cholesterol efflux and ABCA1 expression. The increased cholesterol efflux by ERK1/2 inhibitors was associated with the increased ABCA1 levels and the binding of apoAI to cells. The increased ABCA1 by ERK1/2 inhibitors was due to increased ABCA1 mRNA and protein stability. The induction of ABCA1 expression and cholesterol efflux by ERK1/2 inhibitors was concentration-dependent. The mechanism study indicated that activation of liver X receptor (LXR) had little effect on ERK1/2 expression and activation. ERK1/2 inhibitors had no effect on macrophage LXRα/β expression, whereas they did not influence the activation or the inhibition of the ABCA1 promoter by LXR or sterol regulatory element-binding protein (SREBP). However, inhibition of ERK1/2 and activation of LXR synergistically induced macrophage cholesterol efflux and ABCA1 expression. Our data suggest that ERK1/2 activity can play an important role in macrophage cholesterol trafficking.  相似文献   

17.
Toxoplasma gondii modifies its host cell to suppress its ability to become activated in response to IFN-γ and TNF-α and to develop intracellular antimicrobial effectors, including NO. Mechanisms used by T. gondii to modulate activation of its infected host cell likely underlie its ability to hijack monocytes and dendritic cells during infection to disseminate to the brain and CNS where it converts to bradyzoites contained in tissue cysts to establish persistent infection. To identify T. gondii genes important for resistance to the effects of host cell activation, we developed an in vitro murine macrophage infection and activation model to identify parasite insertional mutants that have a fitness defect in infected macrophages following activation but normal invasion and replication in naive macrophages. We identified 14 independent T. gondii insertional mutants out of >8000 screened that share a defect in their ability to survive macrophage activation due to macrophage production of reactive nitrogen intermediates (RNIs). These mutants have been designated counter-immune mutants. We successfully used one of these mutants to identify a T. gondii cytoplasmic and conoid-associated protein important for parasite resistance to macrophage RNIs. Deletion of the entire gene or just the region encoding the protein in wild-type parasites recapitulated the RNI-resistance defect in the counter-immune mutant, confirming the role of the protein in resistance to macrophage RNIs.  相似文献   

18.
Macrophage-derived foam cells play important roles in the progression of atherosclerosis. We reported previously that ERK1/2-dependent granulocyte/macrophage colony-stimulating factor (GM-CSF) expression, leading to p38 MAPK/ Akt signaling, is important for oxidized low density lipoprotein (Ox-LDL)-induced macrophage proliferation. Here, we investigated whether activation of AMP-activated protein kinase (AMPK) could suppress macrophage proliferation. Ox-LDL-induced proliferation of mouse peritoneal macrophages was assessed by [3H]thymidine incorporation and cell counting assays. The proliferation was significantly inhibited by the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and restored by dominant-negative AMPKα1, suggesting that AMPK activation suppressed macrophage proliferation. AICAR partially suppressed Ox-LDL-induced ERK1/2 phosphorylation and GM-CSF expression, suggesting that another mechanism is also involved in the AICAR-mediated suppression of macrophage proliferation. AICAR suppressed GM-CSF-induced macrophage proliferation without suppressing p38 MAPK/Akt signaling. GM-CSF suppressed p53 phosphorylation and expression and induced Rb phosphorylation. Overexpression of p53 or p27kip suppressed GM-CSF-induced macrophage proliferation. AICAR induced cell cycle arrest, increased p53 phosphorylation and expression, and suppressed GM-CSF-induced Rb phosphorylation via AMPK activation. Moreover, AICAR induced p21cip and p27kip expression via AMPK activation, and small interfering RNA (siRNA) of p21cip and p27kip restored AICAR-mediated suppression of macrophage proliferation. In conclusion, AMPK activation suppressed Ox-LDL-induced macrophage proliferation by suppressing GM-CSF expression and inducing cell cycle arrest. These effects of AMPK activation may represent therapeutic targets for atherosclerosis.  相似文献   

19.
Influence of the recombinant culture filtered protein 10 (CFP-10) and early-secreted antigenic target 6kDa protein (ESAT-6) (r-CFP-10-ESAT-6, rCE) of Mycobacterium tuberculosis (Mtb) on human monocyte and macrophage activation was investigated using human monocyte, monocyte like THP-1 cell line and monocyte derived macrophage (MDM). rCE solely enhanced TNF-alpha release from human monocytes and THP-1 cells in a dose- and time-dependent manner. rCE enhanced expression of CD80 and CD40, it also synergized with IFN-gamma in induction of TNF-alpha production and HLA-DR expression. Pharmacological agents that selectively inhibit mitogen activated protein kinase activation markedly suppressed rCE-induced TNF- alpha release. However, continuous presence of rCE (>72h) during monocyte to macrophage differentiation inhibited macrophage response to LPS stimulation. Collectively, these data suggest that rCE might have differential influence on monocyte and macrophage activation, which might be correlated with Mtb immune evasion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号