首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
N-(Oleoyl)galactosylceramide with perdeuterated acyl chain was prepared by partial synthesis, and studied by wide line 2H-NMR in phospholipid liposomes. Spectra were obtained for low glycolipid concentrations in bilayers of dimyristoyl-, distearoyl-, and 1-palmitoyl-2-oleoylphosphatidylcholines. In an attempt to isolate the effects of glycosphingolipid fatty acid cis unsaturation on glycolipid behaviour in membranes, spectral findings related to the above species were compared to literature NMR data for pure 1-palmitoyl-2-oleoylphosphatidylcholine bilayers in which the oleoyl chain of the phospholipid had been deuterated, and to analogously deuterated glycerol based lipids in Acholeplasma laidlawii membranes. The results for N-(oleoyl-d33)galactosylceramide proved to be qualitatively and quantitatively very similar to published data dealing with glycerol based lipids at comparable temperatures. In addition, the results were strikingly similar for glycolipids dispersed in saturated and unsaturated phospholipid host matrices. It would appear that the primary effects of cis 9,10 fatty acid unsaturation in glycosphingolipids (at low concentration in fluid phospholipid membranes) are the same as those of fatty acid cis unsaturation in glycerolipids. It further appears that the overall dynamic behaviour of N-(oleoyl)galactosylceramide in fluid phospholipid membranes is very similar to that of glycerolipids with comparable acyl chains.  相似文献   

2.
M R Morrow  D Singh  D Lu    C W Grant 《Biophysical journal》1993,64(3):654-664
The glycosphingolipid, galactosyl ceramide (GalCer), was studied by 2H nuclear magnetic resonance (NMR) in fluid phospholipid bilayer membranes, with regard to arrangement of its acyl chain. For this purpose, species with perdeuterated 18-carbon fatty acid (18:0[d35]GalCer) or with perdeuterated 24-carbon fatty acid (24:0[d47] GalCer) were dispersed in bilayers of the 18-carbon phospholipid, 1-stearoyl-2-oleoyl-phosphatidylcholine (SOPC). For 18:0[d35] GalCer, smoothed profiles of the order parameter, SCD, were found to be very similar to one another over the range of glycolipid concentration, 5-40 mol%. In addition, they were very similar to orientational order parameter profiles well known from the literature on phospholipid and glycolipid acyl chains (which deals in general with membranes of homogeneous chain length in the range 14-18 carbons). Corresponding order parameter profiles for the long-chain species, 24:0[d47] GalCer, were also similar to one another for glycolipid concentrations between 5 and 40 mol%. Their shapes, however, were distinctly different from those of the shorter chain analogues. SCD profiles for the two species were quantitatively similar to a membrane depth of C15. SCD values at C16 and C17 were approximately 20 and 30%, respectively, higher for the long-chain glycosphingolipid than for its short-chain analogue in SOPC. Nitroxide spin labels attached rigidly to C16 of the long-chain glycolipid in SOPC gave electron paramagnetic resonance (EPR) order parameters that were twice as high as for a spin label at C16 on the shorter chain glycolipid. Comparison was made between spectra of 24:0[d47] GalCer in SOPC and fully hydrated bilayers of the pure 24:0[d47] GalCer, a system that is considered to be partially interdigitated in fluid and gel phases. The resultant 2H NMR order parameter profiles displayed similar features, indicating that related organizational properties exist in these fluid systems. Effective chain length of 24:0[d47] GalCer within the SOPC membrane was calculated using the method of Schindler and Seelig (1975. Biochemistry, 14:2283-2287). The result suggested that the long-chain fatty acid should protrude roughly one third of the host matrix chain length across the bilayer midplane. However, a treatment of the same order parameters making very few assumptions about chain conformation indicated a high degree of orientational flexibility for the "extra" length of the long chain fatty acid.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
We have critically addressed the question of lateral distribution of glycolipids in bilayer membranes, and the effect of glycolipid fatty acid chain length upon such distribution. For this purpose we synthesised the complex neutral glycosphingolipid, globoside, with spin-labelled fatty acid. Base hydrolysis to remove the natural fatty acid was found to deacetylate the GalNAc residue concomitantly, necessitating application of the synthetic route described for gangliosides by Neuenhofer et al. (Biochemistry 24, 525-532 (1985)). Globosides were produced with 18-carbon and 24-carbon fatty acids bearing a spin label at the C-16 position. Spin-labelled globosides were incorporated at 2 and 10 mol% into rigid, highly cooperative bilayer matrices of 1,2-dipalmitoylglycerophosphocholine (DPPC) and also into semi-fluid, non-cooperative membranes of DPPC/cholesterol. Recorded electron paramagnetic resonance (EPR) spectra were analysed by comparison with a library of standards representing samples of known composition. Spectra were manipulated using a computer program which permitted linear combination of standards to stimulate coexistence of laterally separated domains of different composition. The most important conclusions were as follows: (1) at least 80% of the globoside was definitely not confined to domains highly enriched in glycolipid, although there was evidence of binary-phase separation in the rigid DPPC/globoside matrix; (2) the presence of 33 mol% cholesterol reduced the evidence of globoside phase separation; (3) there was remarkably little difference in results whether the globoside fatty acid chain length was similar to that of the phospholipid host matrix or eight carbons longer. Temperature profiles derived over the phase-transition region of DPPC using spin-labelled globoside or an unattached amphiphilic spin label were consistent with these findings. The same systems lent themselves to consideration of the role of glycolipid fatty acid chan length and cholesterol in determining glycolipid crypticity in membranes: (1) polyclonal anti-globoside IgG bound to globoside in DPPC liposomes without inducing agglutination. (2) The same antibodies did agglutinate DPPC/cholesterol liposomes bearing globoside. (3) The effect of cholesterol probably was upon glycolipid dynamics or attitude in the membrane, rather than upon distribution. (4) These observations were basically unaffected by the choice of 18-carbon vs. 24-carbon glycolipid fatty acids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Deuterium wide line NMR spectroscopy was used to study cholesterol effects on the ceramide portions of two glycosphingolipids (GSLs) distributed as minor components in fluid membranes. The common existence of very long fatty acids on GSLs was taken into account by including one glycolipid species with fatty acid chain length matching that of the host matrix, and one longer by 6 carbons. N-stearoyl and N-lignoceroyl galactosyl ceramide with perdeuterated fatty acid (18:0[d35] GalCer and 24:0[d47] GalCer) were prepared by partial synthesis. They were dispersed in bilayer membranes having the 18-carbon-fatty-acid phospholipid, 1-stearoyl-2-oleoyl-phosphatidylcholine (SOPC), as major component. Glycolipid fatty acid chain behavior and arrangement were analyzed using order profiles derived from their 2H-NMR spectra. Cholesterol effects on order parameter profiles for 18:0[d35] GalCer, with chain length equal to that of the host matrix, followed the pattern known for acyl chains of phospholipids. The presence of sterol led to restriction of trans/gauche isomerization along the length of the chain, with the largest absolute increase in order parameters being toward the surface, but somewhat greater relative effect just below the "plateau" region. In cholesterol-containing membranes, order parameter profiles for the long chain species, 24:0[d47] GalCer, showed a characteristic secondary "plateau" associated with carbon atoms C14 to C23, a feature also present in SOPC bilayers without cholesterol and in pure hydrated 24:0[d47] GalCer. Cholesterol-induced ordering effects on the long chain glycolipid were similar to those described for the shorter chain species, but were minimal at the methyl terminus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
'Interdigitation' is a term coined to describe the phenomenon whereby pure phosphatidylcholines with intramolecular fatty acid chain length heterogeneity when hydrated to form bilayers may insert the methyl ends of long fatty acids from one side across more than half of the membrane thickness to protrude amongst the acyl chains of the opposite side of the bilayer (Keough, K.M.W. and Davis, P.J. (1979) Biochemistry 18, 1453-1459; Huang, C. and Mason, J.T. (1986) Biochim. Biophys. Acta 864, 423-470). In this article we address the fate of long fatty acid chains of glycosphingolipids present as minor components in membranes of non-interdigitating phosphatidylcholines. In this pursuit, derivatives of galactosyl ceramide, lactosyl ceramide, globoside and GM1 were synthesized having either 18-carbon or 24-carbon fatty acid with a spin label covalently attached at C-16. Labelled glycolipids were incorporated at 1-2 mol% into bilayers of synthetic phosphatidylcholines, their mixtures with cholesterol, or natural egg phosphatidylcholine. In each case the C-16 carbon of the glycolipid long chain fatty acid showed considerably greater 'order' and immobility than did C-16 of the fatty acid which was similar in length to the host matrix phospholipids. We interpret this as strong evidence that the long chain fatty acid interdigitates across the mid point of the bilayer in the systems studied. Clearly this phenomenon did not require that the phospholipid host matrix have mixed chain lengths. Furthermore it was totally independent of glycolipid family: for a given host matrix and (glycolipid) fatty acid chain length the order parameter values found were the same amongst all four glycolipid families tested.  相似文献   

6.
A glycosphingolipid (galactosyl ceramide) has been synthesized which has a spin label covalently attached near the methyl end of the fatty acid chain. This is to our knowledge the first glycolipid spin label to be reported. It is being used to study glycosphingolipid behaviour in lipid bilayers — especially with a view to potential differences from phospholipids. Like phospholipids it assumes a random distribution in fluid lipid bilayers but tends to be excluded from regions rich in phosphatidyl serine in the face of a Ca2+-induced lateral phase separation.  相似文献   

7.
1. Several types of glycolipid are examined in lipid bilayer model membranes as part of a program to clarify their fuction in living cells. 2. Data obtained with three spin labelled derivatives of galactosyl ceramide is reported showing a fatty acid fluidity gradient similar to that obtained with phospholipid spin labels. Some possible structural implications of the observed differences are considered. 3. Results obtained using Freeze-Etch electron microscopy and hemagglutination inhibition are given showing beef brain gangliosides in lipid vesicles to be effective receptors for influenza virus.  相似文献   

8.
Amphiphilic solutes play an important role in the desiccation tolerance of plant cells, because they can reversibly partition into cellular membranes during dehydration. Their effects on membrane stability depend on their chemical structure, but also on the lipid composition of the host membrane. We have shown recently that tryptophan destabilizes liposomes during freezing. The degree of destabilization depends on the presence of glycolipids in the membranes, but not on the phase preference (bilayer or non-bilayer) of the lipids in mixtures with the bilayer lipid phosphatidylcholine. Here, we have investigated the influence of tryptophan on the phase behavior and intermolecular interactions in dry and hydrated bilayers made from the phospholipid egg phosphatidylcholine and the plant chloroplast glycolipid digalactosyldiacylglycerol, or from a mixture (1:1) of these lipids, using Fourier-transform infrared spectroscopy. To distinguish effects of the hydrophobic ring structure of tryptophan from those of the amino acid moiety, we also performed experiments with the hydrophilic amino acid glycine. Our data show that there are specific interactions between tryptophan and either phospholipid or glycolipid in the dry state, as well as H-bonding interactions between the lipids and both solutes. In the rehydrated state, the H-bonding interactions between amino acids and lipids are mostly replaced by interactions between water and lipids, while the hydrophobic interactions between lipids and tryptophan mostly persist.  相似文献   

9.
Plasma membranes isolated from a cell-wall-less mutant of Neurospora crassa grown at 37 and 15 degrees C display large differences in lipid compositions. A free sterol-to-phospholipid ratio of 0.8 was found in 37 degrees C membranes, while 15 degrees C plasma membranes exhibited a ratio of nearly 2.0. Membranes formed under both growth conditions were found to contain glycosphingolipids. Cultures grown at the low temperature, however, were found to contain 6-fold higher levels of glycosphingolipids and a corresponding 2-fold reduction of phospholipid levels. The high glycosphingolipid content at 15 degrees C compensates for the reduced levels of phospholipids in such a way that sterol/polar lipid ratios are almost the same in plasma membranes under the two growth conditions. Temperature-dependent changes in plasma-membrane phospholipid and glycosphingolipid species were also observed. Phosphatidylethanolamine levels were sharply reduced at 15 degrees C, in addition to a moderate increase in levels of unsaturated phospholipid fatty acids. Glycosphingolipids contained high levels of long-chain hydroxy fatty acids, which constituted 75% of the total fraction at 37 degrees C, but only 50% at 15 degrees C. Compositional changes were also observed in the long-chain base component of glycosphingolipids with respect to growth temperature. Fluorescence polarization studies indicate that the observed lipid modifications in 15 degrees C plasma membranes act to modulate bulk fluidity of the plasma-membrane lipids with respect to growth temperature. These studies suggest that coordinate modulation of glycosphingolipid, phospholipid and sterol content may be involved in regulation of plasma-membrane fluid properties during temperature acclimation.  相似文献   

10.
Sulfatides (galactosylceramidesulfates) are negatively charged glycosphingolipids that are important constituents of brain myelin membranes. These membranes are also highly enriched in galactosylceramide and cholesterol. It has been implicated that sulfatides, together with other sphingolipids, take part in lateral domain formation in biological membranes. This study was conducted to characterize the lateral phase behavior of N-palmitoyl-sulfatide in mixed bilayer membranes. Going from simple lipid mixtures with sulfatide as the only sphingolipid in a fluid matrix of POPC, to more complex membranes including other sphingolipids, we have examined 1) ordered domain formation with sulfatide, 2) sterol enrichment in such domains and 3) stabilization of the domains against temperature by the addition of calcium. Using two distinct phase selective fluorescent probes, trans-parinaric acid and cholestatrienol, together with a quencher in the fluid phase, we were able to distinguish between ordered domains in general and ordered domains enriched in sterol. We found that N-palmitoyl-sulfatide formed ordered domains when present as the only sphingolipid in a fluid phospholipid bilayer, but these domains did not contain sterol and their stability was unaffected by calcium. However, at low, physiologically relevant concentrations, sulfatide partitioned favorably into domains enriched in other sphingolipids and cholesterol. These domains were stabilized against temperature in the presence of divalent cations. We conclude that sulfatides are likely to affect the lateral organization of biomembranes.  相似文献   

11.
In early research on fatty acid transport, passive diffusion seemed to provide an adequate explanation for movement of fatty acids through the membrane bilayer. This simple hypothesis was later challenged by the discovery of several proteins that appeared to be membrane-related fatty acid transporters. In addition, some biophysical studies suggested that fatty acids moved slowly through the simple model membranes (phospholipid bilayers), which would provide a rationale for protein-assisted transport. Furthermore, it was difficult to rationalize how fatty acids could diffuse passively across the bilayer as anions. Newer studies have shown that fatty acids are present in membranes in the un-ionized as well as the ionized form, and that the un-ionized form can cross a protein-free phospholipid bilayer quickly. This flip-flop mechanism has been validated in cells by intracellular pH measurements. The role of putative fatty acid transport proteins remains to be clarified.  相似文献   

12.
Plasma membranes isolated from a cell-wall-less mutant of Neurospora crassa grown at 37 and 15°C display large differences in lipid compositions. A free sterol-to-phospholipid ratio of 0.8 was found in 37°C membranes, while 15°C plasma membranes exhibited a ratio of nearly 2.0. Membranes formed under both growth conditions were found to contain glycosphingolipids. Cultures grown at the low temperature, however, were found to contain 6-fold higher levels of glycosphingolipids and a corresponding 2-fold reduction of phospholipid levels. The high glycosphingolipid content at 15°C compensates for the reduced levels of phospholipids in such a way that sterol/polar lipid ratios are almost the same in plasma membranes under the two growth conditions. Temperature-dependent changes in plasma-membrane phospholipid and glycosphingolipid species were also observed. Phosphatidylethanolamine levels were sharply reduced at 15°C, in addition to a moderate increase in levels of unsaturated phospholipid fatty acids. Glycosphingolipids contained high levels of long-chain hydroxy fatty acids, which constituted 75% of the total fraction at 37°C, but only 50% at 15°C. Compositional changes were also observed in the long-chain base component of glycosphingolipids with respect to growth temperature. Fluorescence polarization studies indicate that the observed lipid modifications in 15°C plasma membranes act to modulate bulk fluidity of the plasma-membrane lipids with respect to growth temperature. These studies suggest that coordinate modulation of glycosphingolipid, phospholipid and sterol content may be involved in regulation of plasma-membrane fluid properties during temperature acclimation.  相似文献   

13.
The sphingolipids galactosylceramide and sulfatide are important for the formation and maintenance of myelin. Transgenic mice overexpressing the galactosylceramide synthesizing enzyme UDP-galactose:ceramide galactosyltransferase in oligodendrocytes display an up to four-fold increase in UDP-galactose:ceramide galactosyltransferase activity, which correlates with an increase in its products monogalactosyl diglyceride and non-hydroxy fatty acid-containing galactosylceramide. Surprisingly, however, we observed a concomitant decrease in alpha-hydroxylated galactosylceramide such that total galactosylceramide in transgenic mice was almost unaltered. These data suggest that UDP-galactose:ceramide galactosyltransferase activity does not limit total galactosylceramide level. Furthermore, the predominance of alpha-hydroxylated galactosylceramide appeared to be determined by the extent to which non-hydroxylated ceramide was galactosylated rather than by the higher affinity of UDP-galactose:ceramide galactosyltransferase for alpha-hydroxy fatty acid ceramide. The protein composition of myelin was unchanged with the exception of significant up-regulation of the myelin and lymphocyte protein. Transgenic mice were able to form myelin, which, however, was apparently unstable and uncompacted. These mice developed a progressive hindlimb paralysis and demyelination in the CNS, demonstrating that tight control of UDP-galactose:ceramide galactosyltransferase expression is essential for myelin maintenance.  相似文献   

14.
Lipid composition of the isolated rat intestinal microvillus membrane   总被引:13,自引:4,他引:9  
1. Rat intestinal microvillus plasma membranes were prepared from previously isolated brush borders and the lipid composition was analysed. 2. The molar ratio of cholesterol to phospholipid was greatest in the membranes and closely resembled that reported for myelin. 3. Unesterified cholesterol was the major neutral lipid. However, 30% of the neutral lipid fraction was accounted for by glycerides and fatty acid. 4. Five phospholipid components were identified and measured, including phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, sphingomyelin and lysophosphatidylcholine. Though phosphatidylethanolamine was the chief phospholipid, no plasmalogen was detected. 5. In contrast with other plasma membranes in the rat, the polar lipids of the microvillus membrane were rich in glycolipid. The cholesterol:polar lipid (phospholipid+glycolipid) ratio was about 1:3 for the microvillus membrane. Published data suggest that this ratio resembles that of the liver plasma membrane more closely than myelin or the erythrocyte membrane. 6. The fatty acid composition of membrane lipids was altered markedly by a single feeding of safflower oil. Membrane polar lipids did not contain significantly more saturated fatty acids than cellular polar lipids. Differences in the proportion of some fatty acids in membrane and cellular glycerides were noted. These differences may reflect the presence of specific membrane glycerides.  相似文献   

15.
The transfer kinetics of the neutral glycosphingolipid gangliotetraosylceramide (asialo-GM1) were investigated by monitoring tritiated asialo-GM1 movement from donor to acceptor vesicles. Two different methods were employed to separate donor and acceptor vesicles at desired time intervals. In one method, a negative charge was imparted to dipalmitoylphosphatidylcholine donor vesicles by including 10 mol% dipalmitoylphosphatidic acid. Donors were separated from neutral dipalmitoylphosphatidylcholine acceptor vesicles by ion-exchange chromatography. In the other method, small, unilamellar donor vesicles (20-nm diameter) and large, unilamellar acceptor vesicles (70-nm diameter) were coincubated at 45 degrees C and then separated at desired time intervals by molecular sieve chromatography. The majority of asialo-GM1 transfer to acceptor vesicles occurred as a slow first-order process with a half-time of about 24 days assuming that the relative concentration of asialo-GM1 in the phospholipid matrix was identical in each half of the donor bilayer and that no glycolipid flip-flop occurred. Asialo-GM1 net transfer was calculated relative to that of [14C]cholesteryl oleate, which served as a nontransferable marker in the donor vesicles. A nearly identical transfer half-time was obtained when the phospholipid matrix was changed from dipalmitoylphosphatidylcholine to palmitoyloleoylphosphatidylcholine. Varying the acceptor vesicle concentration did not significantly alter the asialo-GM1 transfer half-time. This result is consistent with a transfer mechanism involving diffusion of glycolipid through the aqueous phase rather than movement of glycolipid following formation of collisional complexes between donor and acceptor vesicles. When viewed within the context of other recent studies involving neutral glycosphingolipids, these findings provide additional evidence for the existence of microscopic, glycosphingolipid-enriched domains within the phospholipid bilayer.  相似文献   

16.
The fatty acid composition of phospholipids of mitochondria and microsomes from rat liver and hepatoma 27 was investigated. Basing on the fatty acid and phospholipid composition the unsaturation of the lipid bilayer of the intracellular membranes was calculated. The unsaturation of the phospholipids of the hepatoma mitochondria and microsomes was found to be much lower than that of the corresponding rat liver membranes. The lipid bilayer of the rat liver and hepatoma plasma membranes was shown to be more saturated than that of the intracellular membranes.  相似文献   

17.
Sulfatides (galactosylceramidesulfates) are negatively charged glycosphingolipids that are important constituents of brain myelin membranes. These membranes are also highly enriched in galactosylceramide and cholesterol. It has been implicated that sulfatides, together with other sphingolipids, take part in lateral domain formation in biological membranes. This study was conducted to characterize the lateral phase behavior of N-palmitoyl-sulfatide in mixed bilayer membranes. Going from simple lipid mixtures with sulfatide as the only sphingolipid in a fluid matrix of POPC, to more complex membranes including other sphingolipids, we have examined 1) ordered domain formation with sulfatide, 2) sterol enrichment in such domains and 3) stabilization of the domains against temperature by the addition of calcium. Using two distinct phase selective fluorescent probes, trans-parinaric acid and cholestatrienol, together with a quencher in the fluid phase, we were able to distinguish between ordered domains in general and ordered domains enriched in sterol. We found that N-palmitoyl-sulfatide formed ordered domains when present as the only sphingolipid in a fluid phospholipid bilayer, but these domains did not contain sterol and their stability was unaffected by calcium. However, at low, physiologically relevant concentrations, sulfatide partitioned favorably into domains enriched in other sphingolipids and cholesterol. These domains were stabilized against temperature in the presence of divalent cations. We conclude that sulfatides are likely to affect the lateral organization of biomembranes.  相似文献   

18.
Membrane fractions were prepared from Staphylococcus aureus H and 100 after dissolution of the cell walls by a lytic enzyme from Streptomyces griseus. Membranes were also prepared from the L-forms derived from the same strains. The membranes were analysed for protein, lipid, carbohydrate and RNA contents, and the fatty acid composition of the lipids was determined. A branched-chain saturated C(15) acid was the major component in all samples, and the correspondence between L-forms and parent bacteria was fairly close. The lipids were separated into non-polar-lipid, glycolipid and phospholipid fractions; the L-forms contained a little more neutral lipid and much more glycolipid than the parent bacteria. In all membranes the glycolipid, which accounted for all the carbohydrate present, was a diglucosyl diglyceride. The major phospholipids of the protoplast membranes were phosphatidylglycerol and some lipoamino acids (lysine and a little alanine). On the other hand, diphosphatidylglycerol was the chief phospholipid found in L-form membranes.  相似文献   

19.
The electro-osmotic velocity is the velocity of a fluid near an interface produced by an electric field parallel to a surface. The velocity adjacent to fixed phospholipid bilayer membranes was measured by observing the velocity of small vesicles suspended in the fluid. The charge densities of the bilayers ranged from 0 to 1 electronic charge per lipid and experiments were performed at temperatures above and below the transition temperature of the phospholipid bilayer in 1, 10 and 100 mM NaCl solutions. The Helmholtz-Smoluchowski equation correctly predicted the electro-osmotic velocity from the known value of zeta potential of the phospholipid bilayer.  相似文献   

20.
Freely-diffusing phospholipid spin labels have been employed to study rhodopsin-lipid interactions in frog rod outer segment disc membranes. Examination of the ESR spectra leads us to the conclusion that there are two motionally distinguishable populations of lipid existing in frog rod outer segment membranes over a wide physiological temperature range. Each of the spin probes used shows a two-component electron spin resonance (ESR) spectrum, one component of which is motionally restricted on the ESR timescale, and represents between 33 and 40% of the total integrated spectral intensity. The second spectral component which accounts for the remainder of the spectral intensity possesses a lineshape characteristic of anisotropic motion in a lipid bilayer, very similar in shape to that observed from the same spin labels in dispersions of whole extracted frog rod outer segment lipid. The motionally restricted spectral component is attributed to those spin labels in contact with the surface of rhodospin, while the major component is believed to originate from spin labels in the fluid lipid bilayer region of the membranes. Calculations indicate that the motionally restricted lipid is sufficient to cover the protein surface. This population of lipids is shown here and elsewhere (Watts, A., Volotovski, I.D. and Marsh, D. (1979) Biochemistry 18, 5006-5013) to be by no means rigidly immobilized, having motion in the 20 ns time regime as opposed to motions in the one nanosecond time regime found in the fluid bilayer. Little selectivity for the motionally restricted population is observed between the different spin-labelled phospholipid classes nor with a spin-labelled fatty acid or sterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号