首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins can become oxidatively modified in many different ways, either by direct oxidation of amino acid side chains and protein backbone or indirectly by conjugation with oxidation products of polyunsaturated fatty acids and carbohydrates. While reversible oxidative modifications are thought to be relevant in physiological processes, irreversible oxidative modifications are known to contribute to cellular damage and disease. The most well-studied irreversible protein oxidation is carbonylation. In this work we first examine how protein carbonylation occurs via metal-catalyzed oxidation (MCO) in vivo and in vitro with an emphasis on cellular metal ion homeostasis and metal binding. We then review proteomic methods currently used for identifying carbonylated proteins and their sites of modification. Finally, we discuss the identified carbonylated proteins and the pattern of carbonylation sites in relation to cellular metabolism using the mitochondrion as a case story.  相似文献   

2.
A number of oxidative protein modifications have been well characterized during the past decade. Presumably, reversible oxidative posttranslational modifications (PTMs) play a significant role in redox signaling pathways, whereas irreversible modifications including reactive protein carbonyl groups are harmful, as their levels are typically increased during aging and in certain diseases. Despite compelling evidence linking protein carbonylation to numerous disorders, the underlying molecular mechanisms at the proteome remain to be identified. Recent advancements in analysis of PTMs by mass spectrometry provided new insights into the mechanisms of protein carbonylation, such as protein susceptibility and exact modification sites, but only for a limited number of proteins. Here we report the first proteome-wide study of carbonylated proteins including modification sites in HeLa cells for mild oxidative stress conditions. The analysis relied on our recent strategy utilizing mass spectrometry-based enrichment of carbonylated peptides after DNPH derivatization. Thus a total of 210 carbonylated proteins containing 643 carbonylation sites were consistently identified in three replicates. Most carbonylation sites (284, 44.2%) resulted from oxidation of lysine residues (aminoadipic semialdehyde). Additionally, 121 arginine (18.8%), 121 threonine (18.8%), and 117 proline residues (18.2%) were oxidized to reactive carbonyls. The sequence motifs were significantly enriched for lysine and arginine residues near carbonylation sites (±10 residues). Gene Ontology analysis revealed that 80% of the carbonylated proteins originated from organelles, 50% enrichment of which was demonstrated for the nucleus. Moreover, functional interactions between carbonylated proteins of kinetochore/spindle machinery and centrosome organization were significantly enriched. One-third of the 210 carbonylated proteins identified here are regulated during apoptosis.  相似文献   

3.
Seed germination is an important aspect of the plant life cycle, during which, reactive oxygen species (ROS) accumulate. The accumulation of ROS results in an increase in protein oxidation of which carbonylation is the most canonical one. However, there is insufficient information concerning protein oxidation, especially carbonylation and its contribution to seed germination. In this study, biotin hydrazide labeled chromatography combined with sequential window acquisition of all theoretical fragment ion spectra (SWATH) method was used to analyze the dynamic pattern of protein carbonylation in rice embryos during germination. A total of 1872 unique proteins were quantified, among which 288 carbonylated peptides corresponding to 144 proteins were determined based on the filtering through mass shifts of modified amino acids. In addition, 66 carbonylated proteins were further analyzed based on their carbonylation intensity in four stages of germination. These identified carbonylated proteins were mainly involved in maintaining the levels of ROS, abscisic acid and seed reserves. Remarkably, a peroxiredoxin was found with 23 unique carbonylated peptides, and the expression of which was consistent with its increased activity. This study describes the dynamic pattern of carbonylated proteins during seed germination, and may help to further understand the biochemical mechanisms on this process.  相似文献   

4.
Rao RS  Møller IM 《Proteomics》2011,11(21):4166-4173
Proteins are targets for modification by reactive oxygen species, and carbonylation is an important irreversible modification that increases during oxidative stress. While information on protein carbonylation is accumulating, its pattern is not yet understood. We have made a meta-analysis of the available literature data (456 carbonylation sites on 208 proteins) to appreciate the nature of carbonylation sites in proteins. Of the carbonylated (Arg, Lys, Pro, and Thr - RKPT) amino acids, Lys is the most abundant, whereas Pro is the most susceptible and Thr is the least susceptible. The incidence of carbonylation is lower in the N-terminal part of the protein primary sequence. Although a significantly higher number of carbonylated sites occur in Arg-, Lys-, Pro- and Thr-rich regions of proteins, the hydropathy environment of carbonylated sites is not significantly different from potential carbonylation sites. Comparison of metal-catalyzed oxidation of two closely related proteins indicates that this type of carbonylation might not be very specific in proteins. Interestingly, carbonylated sites show a very strong tendency to cluster together in the protein primary sequence hinting at some sort of discerning mechanism. While some attributes of protein carbonylation appear to be random, further investigations are warranted to appreciate the deterministic nature of protein carbonylation sites.  相似文献   

5.
The aim of our study was to evaluate the carbonylation and the carbonylated fragmentation of apolipoprotein B upon low-density lipoprotein (LDL) oxidation induced in vitro by copper and *OH/O*(2)(-) free radicals generated by gamma-radiolysis. Therefore, we developed a very sensitive Western blot immunoassay using 2,4-dinitrophenylhydrazine which allows the revelation of the apolipoprotein B carbonylation and its carbonylated fragmentation. The main results of this study show that (i) apolipoprotein B carbonylation is present during the lag phase of LDL oxidation in the two oxidative processes and (ii) apolipoprotein B carbonylated fragmentation was not detected during the lag phase of copper-oxidized LDL but was detected during the propagation phase. By contrast, apolipoprotein B carbonylated fragmentation was detected in the lag phase of *OH/O*(2)(-) oxidized LDL.  相似文献   

6.
Guo J  Prokai L 《Journal of Proteomics》2011,74(11):2360-2369
Posttranslational carbonylation of proteins by the covalent attachment of the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) is a biomarker of oxidative stress. Tandem mass spectrometry (MS/MS) has become an essential tool for characterization of this modification. Chemical tagging methods have been used to facilitate the immunoaffinity-based enrichment or even quantification of HNE-modified peptides and proteins. With MS/MS spectra of the untagged modified peptides considered as references, a comparative evaluation is presented focusing on the impact of affinity-tagging with four carbonyl-specific reagents (2,4-dinitrophenyl hydrazine, biotin hydrazide, biotinamidohexanoic acid hydrazide and N'-aminooxymethylcarbonyl-hydrazino D-biotin) on collision-induced dissociation of the tagged HNE-carbonylated peptides. Our study has shown that chemical labeling may not be carried out successfully for all the peptides and with all the reagents. The attachment of a tag usually cannot circumvent the occurrence of strong neutral losses observed with untagged species and, in addition, fragmentation of the introduced tag may also happen. Chemical tagging of certain peptides may, nevertheless, afford more sequence ions upon MS/MS than the untagged carbonylated peptide, especially when Michael addition of the lipid peroxidation product occurs on cysteine residues. Therefore, tagging may increase the confidence of identifications of HNE-modified peptides by database searches.  相似文献   

7.
Je JH  Lee TH  Kim DH  Cho YH  Lee JH  Kim SC  Lee SK  Lee J  Lee MG 《Proteomics》2008,8(12):2384-2393
ROS are produced in dendritic cells (DCs) during antigen presentation in contact hypersensitivity (CHS). As a result, ROS cause a number of nonenzymatic protein modifications, including carbonylation, which is the most widely used marker of oxidative stress. 2,4,6-Trinitrobenzene sulfonic acid (TNBS) is a well-characterized contact allergen that results in the formation of ROS. However, proteins that are carbonylated in DCs in response to TNBS have not been identified. To study ROS-dependent protein carbonylation in response to TNBS, we used the well-established mouse DC line, XS-106. We focused on the effects of TNBS on oxidation by examining selected oxidative markers. We identified TNBS-induced ROS and myeloperoxidase (MPO) proteins and demonstrated that the increase in ROS resulted in IL-12 production. The increase in oxidation was further confirmed by an oxidation-dependent increase in protein modifications, such as carbonylation. In fact, TNBS strongly induced carbonylation of mitochondrial adenosine triphosphate (ATP) synthase in XS-106 DCs, as determined by MALDI-TOF analysis and 2-D Western blotting. ROS production and protein carbonylation were confirmed in human monocyte-derived DCs (Mo-DCs). Furthermore, glutathione (GSH) decreased ROS and protein carbonylation in Mo-DCs. Carbonylation of ATP synthase in DCs may contribute to the pathophysiology of CHS.  相似文献   

8.
Oxidative stress is defined as excessive production of reactive oxygen species (ROS) overwhelming the cellular antioxidant defense systems and thereby damaging most constituents of cells including proteins. Reactive carbonyls, i.e. aldehydes, ketones and lactams, are a major class of irreversible oxidative protein modifications that are widely used as biomarkers of oxidative stress, aging and age-related diseases. Whereas carbonylated proteins can be studied by western blotting and ELISA, their site specific mapping still remains a challenging task due to their low abundance and insufficient ionization. Here, we present a new strategy to identify carbonylation sites in a bottom-up approach. Protein digests were derivatized with 2,4-dinitrophenyl hydrazine (DNPH) and separated by hydrophilic interaction chromatography (HILIC). Peptide-containing fractions were then analyzed by laser-desorption/ionization with DNPH as the reactive matrix, which favors DNP-labeled peptides. The mass list generated for each HILIC fraction, representing mostly DNP-modified peptides, was used in the subsequent nano reversed-phase chromatography (RPC) coupled on-line to an electrospray ionization Orbitrap mass spectrometer recording the tandem mass spectra in data dependent acquisition mode. This comprehensive two-dimensional HILIC×RPC-strategy was exemplified for tryptic digests of native bovine serum albumin (BSA) and β-lactoglobulin (β-LG), as well as their in vitro oxidized versions, i.e. oxBSA and oxβ-LG. In total, three carbonylation sites were identified in native β-LG, nine in native BSA, eleven in oxβ-LG and 32 in oxBSA.  相似文献   

9.
Regular physical activity is associated with a reduced risk of coronary heart disease, as it probably modifies the balance between free-radical generation and antioxidant activity. On the other hand, however, acute physical activity increases oxygen uptake and leads to a temporary imbalance between the production of reactive oxygen and nitrogen species (RONS) and their disposal: this phenomenon is called oxidative stress. Proteins are one of the most important oxidation targets during physical exercise and carbonylation is one of the most common oxidative protein modifications. In cells there is a physiological level of oxidized proteins that doesn't interfere with cell function; however, an increase in oxidized protein levels may cause a series of cellular malfunctions that could lead to a disease state. For this reason the quantification of protein oxidation is important to distinguish a healthy state from a disease state. Several studies have demonstrated an increase of carbonylated plasma proteins in athletes after exercise, but none have identified targets of this oxidation. Recently a process of protein decarbonylation has been discovered, this may indicate that carbonylation could be involved in signal transduction. The aim of our research was to characterize plasma protein carbonylation in response to physical exercise in trained male endurance athletes. We analyzed by proteomic approach their plasma proteins at resting condition and after two different kinds of physical exercise (PE). We used 2D-GE followed by western blot with specific antibodies against carbonylated proteins. The 2D analysis identified Haptoglobin as potential protein target of carbonylation after PE. We also identified Serotransferrin and Fibrinogen whose carbonylation is reduced after exercise. These methods have allowed us to obtain an overview of plasma protein oxidation after physical exercise.  相似文献   

10.
Chronic hyperglycemia in diabetic patients often leads to chronic side effects associated with protein glycation and the formation of reactive carbonyl species, such as methylglyoxal (MGO) and glyoxal (GO). We have shown that both MGO and GO carbonylated bovine serum albumin (BSA) in vitro to the same degree and stability. The carbonylated BSA formed initially could be a reversible Schiff base as the UV absorbance formed after the addition of 2,4-dinitrophenylhydrazine was decreased when sodium borohydride was added. MGO and GO also carbonylated hepatocyte protein rapidly with similar dose and time dependence. In contrast to BSA carbonylation, the amount of carbonylated proteins in hepatocytes decreased over time, much more rapidly for hepatocytes treated with MGO than with GO. This could be attributed to the rapid hepatocyte metabolism of MGO with glyoxalase I, the predominant detoxification enzyme for MGO. Protein carbonylation and the associated toxicity caused by GO and MGO were studied in the following hepatocyte models: (1) control hepatocytes, (2) glutathione (GSH)-depleted hepatocytes, (3) mitochondrial aldehyde dehydrogenase (ALDH2)-inhibited hepatocytes, (4) hepatocyte inflammation model, and (5) catalase-inhibited hepatocyte model. Carbonylation and cytotoxicity caused by MGO or GO was markedly increased in GSH-depleted hepatocytes as compared to control hepatocytes. Hepatocytes exposed to non-toxic concentrations of H(2)O(2) or hepatocytes treated with catalase inhibitors also showed a marked increase in GO-caused cytotoxicity and protein carbonylation, whereas there were only minor increases with MGO. The GO effect was attributed to potential radical formation and the inhibition effect of H(2)O(2) on aldehyde dehydrogenase, a major GO metabolising enzyme. GO-caused cytotoxicity and protein carbonylation were also increased with ALDH2-inhibited hepatocytes whereas such an increase was only observed with MGO in GSH-depleted hepatocytes.  相似文献   

11.
Increased cellular levels of reactive oxygen species are known to occur during seed development and germination, but the consequences in terms of protein degradation are poorly characterized. In this work, protein carbonylation, which is an irreversible oxidation process leading to a loss of function of the modified proteins, has been analyzed by a proteomic approach during the first stages of Arabidopsis (Arabidopsis thaliana) seed germination. In the dry mature seeds, the legumin-type globulins (12S cruciferins) were the major targets. However, the acidic alpha-cruciferin subunits were carbonylated to a much higher extent than the basic (beta) ones, consistent with a model in which the beta-subunits are buried within the cruciferin molecules and the alpha-subunits are more exposed to the outside. During imbibition, various carbonylated proteins accumulated. This oxidation damage was not evenly distributed among seed proteins and targeted specific proteins as glycolytic enzymes, mitochondrial ATP synthase, chloroplastic ribulose bisphosphate carboxylase large chain, aldose reductase, methionine synthase, translation factors, and several molecular chaperones. Although accumulation of carbonylated proteins is usually considered in the context of aging in a variety of model systems, this was clearly not the case for the Arabidopsis seeds since they germinated at a high rate and yielded vigorous plantlets. The results indicate that the observed specific changes in protein carbonylation patterns are probably required for counteracting and/or utilizing the production of reactive oxygen species caused by recovery of metabolic activity in the germinating seeds.  相似文献   

12.
UVB oxidizes proteins through the generation of reactive oxygen species. One consequence of UVB irradiation is carbonylation, the irreversible formation of a carbonyl group on proline, lysine, arginine or threonine residues. In this study, redox proteomics was performed to identify carbonylated proteins in the UVB resistant marine bacterium Photobacterium angustum. Mass-spectrometry was performed with either biotin-labeled or dinitrophenylhydrazide (DNPH) derivatized proteins. The DNPH redox proteomics method enabled the identification of 62 carbonylated proteins (5% of 1221 identified proteins) in cells exposed to UVB or darkness. Eleven carbonylated proteins were quantified and the UVB/dark abundance ratio was determined at both the protein and peptide levels. As a result we determined which functional classes of proteins were carbonylated, which residues were preferentially modified, and what the implications of the carbonylation were for protein function. As the first large scale, shotgun redox proteomics analysis examining carbonylation to be performed on bacteria, our study provides a new level of understanding about the effects of UVB on cellular proteins, and provides a methodology for advancing studies in other biological systems.  相似文献   

13.
Carbonylation of proteins is an irreversible oxidative damage, often leading to a loss of protein function, which is considered a widespread indicator of severe oxidative damage and disease-derived protein dysfunction. Whereas moderately carbonylated proteins are degraded by the proteasomal system, heavily carbonylated proteins tend to form high-molecular-weight aggregates that are resistant to degradation and accumulate as damaged or unfolded proteins. Such aggregates of carbonylated proteins can inhibit proteasome activity. Alarge number of neurodegenerative diseases are directly associated with the accumulation of proteolysis-resistant aggregates of carbonylated proteins in tissues. Identification of specific carbonylated protein(s) functionally impaired and development of selective carbonyl blockers should lead to the definitive assessment of the causative, correlative or consequential role of protein carbonylation in disease onset and/or progression, possibly providing new therapeutic approaches.  相似文献   

14.
The purpose of this study was to determine (1) whether oxidative damage to plasma proteins in mice and rats, accrued during aging and manifested as carbonyl modifications, was selective or random, and (2) whether the putative carbonylated proteins could be used as markers of oxidative stress and aging. The total protein carbonyl content of the plasma significantly increased with age in mice but not in rats. Immunostaining of mouse plasma proteins, resolved by SDS-PAGE to localize carbonyls, revealed that only two specific proteins exhibited an age-associated increase in carbonylation. These proteins with molecular weights of 68 and 75 kDa, were identified as albumin and transferrin, respectively. In the rat, albumin and a 167-kDa protein, alpha1-macroglobulin (alpha-1M), showed significant age-dependent accrual of carbonylation. In the plasma of middle age Rhesus monkeys, in addition to albumin, a 54-kDa protein showed carbonylation. However, neither transferrin nor alpha-1M were carbonylated in the plasma of Rhesus monkey. Albumin was the only protein that showed carbonylation in all the three species examined. Results of this study indicate that age-associated increase in protein carbonylation is a selective and not a random phenomenon. However, the set of proteins that become carbonylated differs in different species.  相似文献   

15.
This study was conducted to further our understanding about the link between lipid peroxidation and protein carbonylation in rat brain slices incubated with the glutathione (GSH)-depletor diethyl maleate. Using this in vitro system of oxidative stress, we found that there is a significant lag between the appearance of carbonylated proteins and GSH depletion, which seems to be due to the removal of oxidized species early on in the incubation by the mitochondrial Lon protease. Upon acute GSH depletion, protein carbonyls accumulated mostly in mitochondria and to a lesser degree in other subcellular fractions that also contain high levels of polyunsaturated lipids. This result is consistent with our previous findings suggesting that lipid hydroperoxides mediate the oxidation of proteins in this system. However, these lipid hydroperoxides are not produced by oxidation of free arachidonic acid or other polyunsaturated free fatty acids by lipooxygenases or cyclooxygenases. Finally, γ-glutamyl semialdehyde and 2-amino-adipic semialdehyde were identified by HPLC as the carbonyl-containing amino acid residues, indicating that proteins are carbonylated by metal ion-catalyzed oxidation of lysine, arginine and proline residues. The present findings are important in the context of neurological disorders that exhibit increased lipid peroxidation and protein carbonylation, such as Parkinson’s disease, Alzheimer’s disease, and multiple sclerosis.  相似文献   

16.
Carbonylation is an irreversible and irreparable protein modification induced by oxidative stress. Cholangiocarcinoma (CCA) is associated with chronic inflammation caused by liver fluke infection. To investigate the relationship between protein carbonylation and CCA progression, carbonylated proteins were detected by 2D OxyBlot and identified by MALDI-TOF/TOF analyses in pooled CCA tissues in comparison to adjacent nontumor tissues and normal liver tissues. We identified 14 highly carbonylated proteins in CCA tissues. Immunoprecipitation and Western blot analyses of individual samples confirmed significantly greater carbonylation of serotransferrin, heat shock protein 70-kDa protein 1 (HSP70.1), and α1-antitrypsin (A1AT) in tumor tissues compared to normal tissues. The oxidative modification of these proteins was significantly associated with poor prognoses as determined by the Kaplan-Meier method. LC-MALDI-TOF/TOF mass spectrometry identified R50, K327, and P357 as carbonylated sites in serotransferrin, HSP70.1, and A1AT, respectively. Moreover, iron accumulation was significantly higher in CCA tissues with, compared to those without, carbonylated serotransferrin. We conclude that carbonylated serotransferrin-associated iron accumulation may induce oxidative stress via the Fenton reaction, and the carbonylation of HSP70.1 with antioxidative property and A1AT with protease inhibitory capacity may cause them to become dysfunctional, leading to CCA progression.  相似文献   

17.
In this study, we investigated the possible link between lipid peroxidation (LPO) and the formation of protein carbonyls (PCOs) during depletion of brain glutathione (GSH). To this end, rat brain slices were incubated with the GSH depletor diethyl maleate (DEM) in the absence or presence of classical LPO scavengers: trolox, caffeic acid phenethyl ester (CAPE), and butylated hydroxytoluene (BHT). All three scavengers reduced DEM-induced lipid oxidation and protein carbonylation, suggesting that intermediates/products of the LPO pathway such as lipid hydroperoxides, 4-hydroxynonenal and/or malondialdehyde are involved in the process. Additional in vitro experiments revealed that, among these products, lipid hydroperoxides are most likely responsible for protein oxidation. Interestingly, BHT prevented the carbonylation of cytoskeletal proteins but not that of soluble proteins, suggesting the existence of different mechanisms of PCO formation during GSH depletion. In pull-down experiments, beta-actin and alpha/beta-tubulin were identified as major carbonylation targets during GSH depletion, although other cytoskeletal proteins such as neurofilament proteins and glial fibrillary acidic protein were also carbonylated. These findings may be important in the context of neurological disorders that exhibit decreased GSH levels and increased protein carbonylation such as Parkinson's disease, Alzheimer's disease, and multiple sclerosis.  相似文献   

18.
Lin X  Xue LY  Wang R  Zhao QY  Chen Q 《The FEBS journal》2006,273(6):1275-1284
Neurodegenerative disorders are associated with oxidative stress. Low density lipoprotein (LDL) exists in the brain and is especially sensitive to oxidative damage. Oxidative modification of LDL has been implicated in the pathogenesis of neurodegenerative diseases. Therefore, protecting LDL from oxidation may be essential in the brain. The antioxidative effects of endomorphin 1 (EM1) and endomorphin 2 (EM2), endogenous opioid peptides in the brain, on LDL oxidation has been investigated in vitro. The peroxidation was initiated by either copper ions or a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH). Oxidation of the LDL lipid moiety was monitored by measuring conjugated dienes, thiobarbituric acid reactive substances, and the relative electrophoretic mobility. Low density lipoprotein oxidative modifications were assessed by evaluating apoB carbonylation and fragmentation. Endomorphins markedly and in a concentration-dependent manner inhibited Cu2+ and AAPH induced the oxidation of LDL, due to the free radical scavenging effects of endomorphins. In all assay systems, EM1 was more potent than EM2 and l-glutathione, a major intracellular water-soluble antioxidant. We propose that endomorphins provide protection against free radical-induced neurodegenerative disorders.  相似文献   

19.
We applied the improved sensitivity and soft ionization characteristics of electrospray Ionization (ESI)-MS/MS and matrix-assisted laser desorption/ionization(MALDI)-time of flight (TOF) mass spectrometry (MS) to analysis of the GPI-anchored C-terminal peptide derived from 5'-nucleotidase. ESI-MS/MS analysis was applied to the core structure (MW, 2,743). In the collision-induced dissociation (CID) spectrum, single-charged ions such as m/z 162 (glucosamine), 286 (mannose-phosphate-ethanolamine), and 447 ([mannose-phosphate-ethanolamine]-glucosamine) were clearly detected as characteristic fragment ions of the GPI-anchored peptide. On MALDI-TOF-MS analysis, heterogeneous peaks of GPI-anchored peptides were detected as single-charged ions in the positive mode. Product ions were obtained by post-source decay (PSD) of m/z 2,905 using curved field reflectron of TOF-MS. Most of the expected product ions derived from the GPI-anchored peptide, containing the core structure and an additional mannose side chain, were successively obtained. Thus, ESI-MS/MS and MALDI-TOF-PSD-MS proved to be effective and sensitive methods for analyzing the GPI-anchored peptide structure with less than 10 pmol of sample. These characteristic fragments or fragmentation patterns seem to be very useful for identification of GPI-anchored C-terminal peptides derived from any kind of GPI-anchored protein.  相似文献   

20.
Saccharomyces cerevisiae expresses two forms of superoxide dismutase (SOD): MnSOD, encoded by SOD2, which is located within the mitochondrial matrix, and CuZnSOD, encoded by SOD1, which is located in both the cytosol and the mitochondrial intermembrane space. Because two different SOD enzymes are located in the mitochondrion, we examined the relative roles of each in protecting mitochondria against oxidative stress. Using protein carbonylation as a measure of oxidative stress, we have found no correlation between overall levels of respiration and the level of oxidative mitochondrial protein damage in either wild type or sod mutant strains. Moreover, mitochondrial protein carbonylation levels in sod1, sod2, and sod1sod2 mutants are not elevated in cells harvested from mid-logarithmic and early stationary phases, suggesting that neither MnSOD nor CuZnSOD is required for protecting the majority of mitochondrial proteins from oxidative damage during these early phases of growth. During late stationary phase, mitochondrial protein carbonylation increases in all strains, particularly in sod1 and sod1sod2 mutants. By using matrix-assisted laser desorption ionization time-of-flight mass spectrometry, we have found that specific proteins become carbonylated in sod1 and sod2 mutants. We identified six mitochondrial protein spots representing five unique proteins that become carbonylated in a sod1 mutant and 19 mitochondrial protein spots representing 11 unique proteins that become carbonylated in a sod2 mutant. Although some of the same proteins are carbonylated in both mutants, other proteins are not. These findings indicate that MnSOD and CuZnSOD have both unique and overlapping functions in the mitochondrion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号