首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platelet-activating factor (PAF), a phospholipid mediator with broad and potent biologic activities, is synthesized by several inflammatory cells including endothelial cells (EC). PAF is also an effective stimulating agent for EC leading to increased cell permeability and adhesivity. We examined the synthesis of PAF in human umbilical cord vein EC after stimulation of EC with PAF or with its nonmetabolizable analog 1-O-alkyl-2-N-methyl-carbamyl-sn-glycero-3-phosphocholine (C-PAF). PAF (1 to 100 nM) induced a dose- and time-dependent increase of PAF synthesis as detected by [3H]acetate incorporation into PAF fraction. Stimulation of PAF synthesis occurred via activation of the "remodeling pathway" as the 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PAF):acetyl-CoA acetyltransferase was dose-dependently increased after PAF treatment. The de novo pathway of PAF synthesis was not activated under these conditions. C-PAF was able to mimic the effect of authentic PAF on [3H] acetate incorporation. The inactive metabolite lyso-PAF (100 nM) had no influence on PAF synthesis in EC. CV-3988, BN 52021, and WEB 2086, potent and specific antagonists of PAF suppressed PAF effects on the remodeling pathway completely. The PAF- and C-PAF-induced [3H]PAF remained 93% cell-associated and was not degraded up to 10 min after stimulation. Characterization of the [3H]acetate-labeled material co-migrating with authentic PAF revealed that a significant proportion (approximately 57%) was actually 1-acyl-2-acetyl-sn-glycero-3-phosphocholine. PAF-induced PAF synthesis might be an important mechanism for amplifying original PAF signals and potentiating adhesive interactions of circulating cells with the endothelium.  相似文献   

2.
Platelets and leukocytes are known to degrade platelet-activating factor (PAF), a potential mediator of inflammation, to its lyso-derivative (lyso-PAF) and then convert this to 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholines. However, little is known about the mechanism of internalization of PAF and lyso-PAF, which is a prerequisite for their metabolism within the cells. In this work, the internalization of PAF and lyso-PAF by rabbit platelet and guinea-pig leukocyte plasma-membranes were examined by the washing method with bovine serum albumin. The rates of translocation of PAF and lyso-PAF across guinea-pig plasma membranes were significantly higher than those across rabbit platelets. In these cells, the translocation of PAF was found to be accelerated indirectly by activation of PAF receptors by a small portion of added PAF. Results suggest that a temperature-dependent diffusion process is involved in the internalization of these phospholipids. In both rabbit platelets and guinea-pig leukocytes, the translocation of PAF and lyso-PAF through the plasma membranes was shown to be rate-limiting for the metabolic conversion of these compounds to 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine.  相似文献   

3.
Platelet-activating factor increases lung vascular permeability to protein   总被引:2,自引:0,他引:2  
We studied the effects of platelet-activating factor (PAF) on pulmonary hemodynamics and microvascular permeability in unanesthetized sheep prepared with lung-lymph fistulas. Since cyclooxygenase metabolites have been implicated in mediating these responses, we also examined the role of the cyclooxygenase pathway. PAF infusion (4 micrograms X kg-1 X h-1 for 3 h) produced a rapid, transient rise in pulmonary arterial pressure (Ppa), pulmonary vascular resistance (PVR), plasma thromboxane B2 concentration (TxB2), and pulmonary lymph flow (Qlym). The lymph-to-plasma protein concentration ratio (L/P) did not change from base line. Pretreatment with the cyclooxygenase inhibitor, sodium meclofenamate, prevented the generation of TxB2 and the hemodynamic changes but did not prevent the increase in Qlym. The estimated protein reflection coefficient decreased from a control value of 0.66 +/- 0.04 to 0.43 +/- 0.06 after PAF infusion. We also studied the effects of PAF on endothelial permeability in vitro by measuring the flux of 125I-albumin across cultured bovine pulmonary artery endothelial cells (EC) grown to confluency on a gelatinized micropore filter and mounted within a modified Boyden chemotaxis chamber. PAF (10(-8) to 10(-4) M) had no direct effect on EC albumin permeability, suggesting that the increase in permeability in sheep was not the direct lytic effect of PAF. In conclusion, PAF produces pulmonary vasoconstriction mediated by cyclooxygenase metabolites. PAF also increases pulmonary vascular permeability to protein that is independent of cyclooxygenase products and is not the result of a direct effect of PAF on the endothelium.  相似文献   

4.
Stimulation of human endothelial cells (EC) by thrombin elicits a rapid increase of intracellular free Ca2+ [(Ca2+]i), platelet-activating factor (PAF) production and 1-O-alkyl-2-lyso-sn-glycero-3- phosphocholine (lyso-PAF): acetyl-CoA acetyltransferase (EC 2.3.1.67) activity. The treatment of EC with thrombin leads to a 90% decrease in the cytosolic protein kinase C (PKC) activity; this dramatic decline is accompanied by an increase of the enzymatic activity in the particulate fraction. The role of PKC in thrombin-mediated PAF synthesis has been assessed: (1) by the blockade of PKC activity with partially selective inhibitors (palmitoyl-carnitine, sphingosine and H-7); (2) by chronic exposure of EC to phorbol 12-myristate 13-acetate (PMA), which results in down-regulation of PKC. In both cases, a strong inhibition of thrombin-induced PAF production is observed, suggesting obligatory requirement of PKC activity for PAF synthesis. It is suggested that PKC regulates EC phospholipase A2 (PLA2) activity as thrombin-induced arachidonic acid (AA) release is 90% inhibited in PKC-depleted cells. Brief exposure of EC to PMA strongly inhibits thrombin-induced [Ca2+]i rise, acetyltransferase activation and PAF production, suggesting that, in addition to the positive forward action, PKC provides a negative feedback control over membrane signalling pathways involved in the thrombin effect on EC. Forskolin and iloprost, two agents that increase the level of cellular cAMP in EC, are very effective in inhibiting thrombin-evoked cytosolic Ca2+ rise, acetyltransferase activation and PAF production; this suggests that endogenously generated prostacyclin (PGI2) may modulate the synthesis of PAF in human endothelial cells.  相似文献   

5.
Platelet-activating factor (PAF, 1-O-alkyl-(2R)-acetylglycero-3-phosphocholine) is a potent inflammatory mediator whose actions on bone cells have not been investigated previously. In this study, we examined effects of PAF on osteoclast morphology and intracellular free calcium. Osteoclasts, the large multinucleated cells responsible for bone resorption, were isolated from neonatal rat long bones, and the cytosolic free calcium concentration ([Ca2+]i) of individual fura-2-loaded cells was monitored by microspectrofluorimetry. In one series of experiments, PAF was applied focally to single, isolated osteoclasts (1 nM to 1 microM racemic mixture, in an application micropipette). Within 10 s of PAF application, [Ca2+]i increased from basal levels of 74 +/- 6 nM to peak levels of 209 +/- 28 nM (mean +/- S.E. of 24 cells responding). These results indicate that PAF acted directly on osteoclasts. In more than 75% of cells tested, PAF, at concentrations greater than or equal to 10 pM (final concentration, in the bath), induced biphasic elevation of [Ca2+]i. This response was highly specific for PAF, in that vehicle, lyso-PAF (the biologically inactive precursor/metabolite of PAF), and (S)-PAF (the inactive enantiomer of PAF) all failed to change [Ca2+]i. Moreover, [Ca2+]i elevation was blocked by the specific PAF antagonist CV-3988. To determine the source of Ca2+, cells were bathed in Ca(2+)-free medium, where PAF still caused an increase in [Ca2+]i, establishing that the response to PAF arose, at least in part, by release of Ca2+ from internal stores. In addition to changes in [Ca2+]i, PAF caused retraction followed by respreading of peripheral pseudopods. These findings indicate that rat osteoclasts respond to PAF by release of internal calcium and alterations in cell morphology and suggest that PAF may regulate resorption in inflammatory bone diseases.  相似文献   

6.
Incubation of two-cell mouse embryos with a range of radiolabelled compounds resulted in the incorporation of label into platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) in the culture media. The demonstration that known precursors ([1-14C]hexadecanol, [1-3H]hexadecanol, 1-O-[alkyl-1'2'-3H]lyso-PAF, 1-O-[alkyl-1'2'-3H]acetyl-glycerol and [methyl-3H]choline chloride) were incorporated into PAF showed that embryo-derived PAF biosynthesis occurred via pathways present in other PAF-producing cells. The enzyme responsible for the formation of the ether linkage of the PAF molecule, alkyl-dihydroxyacetone-phosphate synthase, was present in the preimplantation embryo as [1-3H]hexadecanol was incorporated into PAF. Incorporation of label from alkylacetyl-glycerol and choline chloride into lyso-PAF was also observed, suggesting a role for lyso-PAF in the metabolism of embryo-derived PAF. Incubation of embryos with each of three [14C]carbohydrate energy substrates resulted in the incorporation of label into PAF in culture media, indicating that the composition of embryo culture media is important in the synthesis of PAF precursors. Incorporation of label from [2-14C]pyruvate was greatest and is consistent with the suggestion that pyruvate is the major energy source at the two-cell stage of development. L-[U-14C]Lactate was also incorporated into embryo-derived PAF, but the mean amount incorporated relative to the concentration of labelled substrate in the medium was 40 times less. The incorporation of D-[U-14C]glucose into PAF was 2405 times less than that from pyruvate, relative to the concentration in the medium.  相似文献   

7.
In early studies we found that IL-1 stimulated endothelial cells (EC) to produce platelet-activating factor (PAF, 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine). Inasmuch as this phospholipid has a wide range of biologic activities, including polymorphonuclear leukocytes (PMN) aggregation and chemotaxis, we investigated whether EC-associated PAF could contribute to IL-1-induced PMN adhesion to EC. When four selective PAF antagonists were added to IL-1-stimulated EC during the PMN adhesion assay, adhesion was reduced in a concentration-related way. Similarly, pre-treatment of PMN with PAF before the adhesion assay to induce desensitization to this phospholipid reduced PMN adhesion to IL-1-treated EC. However, comparing the time course and the concentration response curve of IL-1-induced EC adhesivity and PAF synthesis, we found that increased EC adhesivity to PMN required a shorter incubation time and lower concentration of IL-1 to become apparent than PAF production. When acetyl-coenzyme A was added to EC cultures at a concentration that raised PAF synthesis by 60%, no significant increase in PMN adhesion was observed. In addition, after 9 to 10 doublings, the EC ability to synthesize PAF decreased by 85 to 90%, whereas IL-1-induced EC adhesivity to PMN was only slightly diminished. When IL-1-alpha and -beta were tested on EC, we observed that both were equally active in promoting PMN adhesion to EC but only the alpha-form was able to stimulate PAF production. When PMN were seeded on IL-1-treated EC, increased amounts of PAF were detected even when EC were fixed; in addition, the inhibitory effect of a PAF antagonist was evident also in these conditions. Overall these results indicate that IL-1-induced PAF production by EC does not significantly contribute to PMN adhesion to them. We hypothesize that the observed inhibitory effect of PAF antagonists and PAF desensitization of PMN might be directed at PAF produced by PMN themselves during adhesion to IL-1-treated EC.  相似文献   

8.
1-O-[3H]Alkyl-2-acetyl-sn-glycero-3-phosphocholine ([3H]PAF) and 1-O-[3H]alkyl-2-lyso-sn-glycero-3-phosphocholine ([3H]lyso-PAF) when incubated with rat polymorphonuclear leukocytes (PMN) were rapidly metabolized to 1-O-[3H]alkyl-2-acyl-sn-glycero-3-phosphocholine ([3H]alkyl-acyl-GPC) containing long chain acyl groups in the sn-2 position. The specificity and the absolute requirements of arachidonate (20:4) for acylation into PAF and lyso-PAF were investigated by comparing the rate of [3H]PAF and [3H]lyso-PAF metabolism by control rat PMN with that by rat PMN depleted of 20:4. Comparable rates of metabolism of [3H]PAF and [3H]lyso-PAF by both control and 20:4-depleted PMN were observed at all the concentrations of PAF and lyso-PAF studied. The nature of the fatty acyl group incorporated into the sn-2 position of the [3H]alkyl-acyl-GPC formed was analyzed by argentation chromatography. Dienoic fatty acids were the major fatty acid incorporated into the alkyl-acyl-GPC by both control and 20:4-depleted PMN at all the incubation times studied. At 3 min of incubation with [3H]PAF and [3H]lyso-PAF, control PMN had small but significant amounts of [3H]alkyl-acyl-GPC containing tetraenoic fatty acids, the concentration of which gradually increased as the incubation time progressed. On the other hand, under similar conditions, 20:4-depleted PMN had only trace amounts of the [3H]alkyl-acyl-GPC with tetraenoic fatty acid and the concentration of which remained at the low level throughout the incubation time. At 3 min of incubation, the 20:4-depleted PMN had small but significant amounts of [3H]alkyl-acyl-GPC with saturated fatty acids, the amount of which declined by 10 min and remained at that level as the incubation time progressed. While the concentration of [3H]alkyl-acyl-GPC with dienoic fatty acids in the 20:4-depleted cells gradually increased with the progress of incubation time, these molecular species of GPC in the control PMN remained more or less constant. In spite of a very high concentration (equivalent to that of 20:4 in control PMN) of eicosatrienoic acid (20:3 delta 5,8,11) in the 20:4-depleted PMN, no significant amounts of [3H]alkyl-acyl-GPC with trienoic fatty acid were formed by these cells. The rate of metabolism of [3H]PAF and [3H]lyso-PAF by the resident macrophages isolated from control and 20:4-depleted rats was similar.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Injection of PAF into the left uterine horn induced a dose-dependent decidua-like reaction in the pseudopregnant rat. This reaction was maximal when PAF was injected at Day 5 of pseudopregnancy and was blocked by the specific PAF antagonist, BN 52021. BN 52021 did not interfere with the decidual reaction induced by prostaglandin E-2 or insertion of a cotton thread in the uterine horn. In contrast, a decidua-like reaction was not evoked by the inactive lyso-PAF, demonstrating the specificity of the action of PAF. The decidua-like reaction induced by PAF involves the generation of cyclooxygenase metabolites of arachidonic acid since it was inhibited by indomethacin. The histological alterations induced by PAF were similar to those observed after embryo implantation, strengthening the postulate for a role of the autacoid in the early stages of pregnancy.  相似文献   

10.
In this report we demonstrate evidence which strongly suggests that human alveolar macrophages possess receptor for the platelet activating factor (PAF). We investigated the effects of PAF by measuring (a) the intracellular free calcium concentration [Ca2+]i, using the fura-2 method in single isolated cells and (b) the production of superoxide anion. PAF increased [Ca2+]i in a dose-dependent manner (EC50 = 1 x 10(-8) M), whereas lyso-PAF had no effect. The initial increase of [Ca2+]i was followed by a slow decrease to a sustained elevation of [Ca2+]i significantly above basal values. While the initial rise in [Ca2+]i was only slightly reduced in Ca(2+)-free medium (1 mM EGTA), the sustained phase was totally abolished. The sustained calcium increase was also blocked after preincubation of AM with the calcium-channel blocker nitrendipine. PAF increased the production of superoxide anion (O2-) by human alveolar macrophages in a dose- dependent manner. The effects of PAF on [Ca2+]i and (O2-) could be blocked by the PAF-specific antagonist WEB 2086 dose dependently, indicating a receptor-mediated event.  相似文献   

11.
《Life sciences》1993,52(21):PL227-PL232
The conversion of lyso-platelet activating factor (lyso-PAF) to PAF in cultured paranasal sinus mucosa obtained from normal human subjects was studied. The PAF concentration in the medium was determined after addition of lyso-PAF. PAF became detectable at 10 minutes after the addition of 10−8M lyso-PAF, and reached a maximum concentration (3.25×10−9M) at 20 minutes. The PAF level then gradually declined to become undetectable at 60 minutes after addition of lyso-PAF. Thus PAF is very unstable having a half-life calculated to be 12.8 minutes with an elimination constant of k=0.05377 minutes−1. In contrast, lyso-PAF is known to be a stable metabolite of PAF as well as a precursor of PAF. The results obtained from this study suggest that the turnover of lyso-PAF to PAF may play a role in evoking prolonged inflammation in target organs or tissues.  相似文献   

12.
Human polymorphonuclear leukocytes (PMN) produced considerable amounts of platelet-activating factor (PAF) when exposed to various concentrations of lyso-PAF, especially in the absence of albumin. The amount of produced PAF in the presence of 5 microM lyso-PAF (without albumin) was 1.1 pmol/10 min per 2.5 X 10(6) cells, which was close to the level in the case of opsonized zymosan stimulation. We found that the activity of neither acetyltransferase nor acetylhydrolase was affected markedly by the treatment of cells with lyso-PAF, suggesting that the increased availability of lyso-PAF could be responsible for the induction of PAF synthesis. We also found that PAF synthesis was induced not only by lyso-PAF but also by ether-containing ethanolamine lysophospholipids, 1-alkenyl(alkyl)-sn-glycero-3-phosphoethanolamine (GPE). The addition of 1-alkenyl(alkyl)-GPE caused the degradation of pre-existing 1-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine (GPC) and an increased level of lyso-PAF, followed by the formation of PAF. By contrast, 1-acyl-GPC and 1-acyl-GPE failed to induce PAF production. These results suggest a possible key role of the availability of lyso-PAF in triggering the biosynthesis of PAF in human PMN.  相似文献   

13.
The biosynthesis of platelet-activating factor (PAF), a phospholipid autocoid with potent ulcerogenic properties that is produced in secretory exocrine glands by physiological secretagogues, was assessed in microsomal preparations of glandular gastric mucosa. For this purpose, 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PAF):acetyl-CoA acetyltransferase (EC 2.3.1.67); the enzymes of the 'de novo' pathway: 1-O-alkyl-2-lyso-sn-glycero-3-phosphate (alkyl-lyso-GP):acetyl-CoA acetyltransferase and 1-O-alkyl-2-acetyl-sn-glycerol (alkylacetyl-G):CDP-choline cholinephosphotransferase (EC 2.7.8.16); and some enzymes involved in the catabolism of PAF and lyso-PAF were assayed. Only the enzymes of the 'de novo' pathway and small amounts of PAF acetylhydrolase, phospholipase A2 and a lysophospholipase D acting on either lipids could be detected in the gastric preparations, whereas lyso-PAF:acetyl-CoA acetyltransferase activity was undetectable. The specific activity of alkyl-lyso-GP:acetyl-CoA acetyltransferase in the gastric mucosa was about one-tenth of that found in spleen microsomes and its apparent Km for acetyl-CoA was 454 microM compared with 277 microM in spleen microsomes. Glandular mucosa homogenates contained preformed PAF at a concentration of 2.7 +/- 0.7 ng equivalents of PAF (hexadecyl)/mg of protein. When gastric microsomes were incubated with micromolar concentrations of fatty acids (arachidonic, palmitic and oleic) prior to the assay of dithiothreitol (DTT)-insensitive cholinephosphotransferase, a dose-dependent reduction in the formation of PAF was observed, arachidonic acid being the most potent inhibitor, followed by linoleic acid (only tested on spleen microsomes) and oleic acid. By contrast, 1,2-diolein and phosphatidylcholine (dipalmitoyl) showed no or little effect. These results indicate that glandular gastric mucosa can produce PAF through the 'de novo' pathway, and that fatty acids, especially unsaturated, can reduce that synthesis by modulating the expression of DTT-insensitive cholinephosphotransferase.  相似文献   

14.
Platelet-activating factor (PAF) is a potent proinflammatory lipid mediator eliciting a variety of cellular functions. Lipid mediators, including PAF are produced from membrane phospholipids by enzymatic cascades. Although a G protein-coupled PAF receptor and degradation enzymes have been cloned and characterized, the PAF biosynthetic enzyme, aceyl-CoA:lyso-PAF acetyltransferase, has not been identified. Here, we cloned lyso-PAF acetyltransferase, which is critical in stimulus-dependent formation of PAF. The enzyme is a 60-kDa microsomal protein with three putative membrane-spanning domains. The enzyme was induced by bacterial endotoxin (lipopolysaccharide), which was suppressed by dexamethasone treatment. Surprisingly, the enzyme catalyzed not only biosynthesis of PAF from lyso-PAF but also incorporation of arachidonoyl-CoA to produce PAF precursor membrane glycerophospholipids (lysophosphatidylcholine acyltransferase activity). Under resting conditions, the enzyme prefers arachidonoyl-CoA and contributes to membrane biogenesis. Upon acute inflammatory stimulation with lipopolysaccharide, the activated enzyme utilizes acetyl-CoA more efficiently and produces PAF. Thus, our findings provide a novel concept that a single enzyme catalyzes membrane biogenesis of inflammatory cells while producing a prophlogistic mediator in response to external stimuli.  相似文献   

15.
Degradation of platelet-activating factor (PAF) was examined by incubating PAF with macrophages from PAF receptor-deficient mice. The degradation rate was halved as compared with wild-type mice. The reduction of the rate was comparable with the presence of a PAF antagonist WEB 2086 in wild-type cells. PAF was internalized rapidly (t(12) approximately 1 min) into wild-type macrophages. The PAF internalization was inhibited by the treatment of 0.45 m sucrose but was not affected by phorbol 12-myristate 13-acetate, suggesting that PAF internalizes into macrophages with its receptor in a clathrin-dependent manner. Internalized PAF was degraded into lyso-PAF with a half-life of 20 min. Treatment of concanavalin A inhibited the conversion of PAF into lyso-PAF, suggesting that uptake of PAF enhances PAF degradation. Lyso-PAF was subsequently metabolized into 1-alkyl-2-acyl-phosphatidylcholine. In addition, release of PAF acetylhydrolase from macrophages was enhanced when wild-type macrophages were stimulated with PAF but not from macrophages of PAF receptor-deficient mice. Thus, the PAF stimulation of macrophages leads to its degradation through both intracellular and extracellular mechanisms.  相似文献   

16.
Platelet-activating factor (PAF) has recently been demonstrated to be metabolized by B lymphocytes and to cause enhancement of Ig synthesis by Ig-secreting B lymphoblastoid cell lines. We have now examined some of the early activation events triggered by PAF binding to three Ig-secreting B cell lines, LA350 (IgM secreting), HSCE- (IgG secreting), and U266 (IgE secreting). After addition of 10(-7) to 10(-11) M PAF, but not equimolar concentrations of the inactive metabolite lyso-PAF, all three cell lines demonstrated rapid dose-dependent increases in free cytosolic Ca2+ concentrations ([Ca2+]i). The increases in [Ca2+]i resulted from both the release of Ca2+ from internal stores as well as transmembrane Ca2+ uptake. Addition of PAF triggered the rapid hydrolysis of phosphatidylinositol bisphosphate and accumulation of inositol phosphates. PAF also increased expression of the cell cycle-active genes c-fos and EGR2 in a dose-dependent fashion. The stimulated increases in [Ca2+]i and phosphatidylinositol bisphosphate hydrolysis and the increases in gene expression were all inhibited by the specific PAF receptor antagonist Web 2086. The LA350 cell line (which expresses surface IgM) was also shown to increase [Ca2+]i after addition of anti-IgM antibodies. Sequential addition of PAF or anti-IgM antibody in either order failed to reveal any evidence for heterologous desensitization. Furthermore, the PAF receptor antagonist did not affect anti-IgM induced changes in [Ca2+]i. These data provide evidence for the presence of functional PAF receptors on B lymphoblastoid cells and indicate a potential role for PAF in the regulation of B cell activation.  相似文献   

17.
Platelet-activating factor (PAF) is a potent lipid mediator playing various inflammatory and physiological roles. PAF is biosynthesized through two independent pathways called the de novo and remodeling pathways. Lyso-PAF acetyltransferase (lyso-PAF AT) was believed to biosynthesize PAF under inflammatory conditions, through the remodeling pathway. The first isolated lyso-PAF AT (LysoPAFAT/LPCAT2) had consistent properties. However, we show in this study the finding of a second lyso-PAF AT working under noninflammatory conditions. We partially purified a Ca(2+)-independent lyso-PAF AT from mouse lung. Immunoreactivity for lysophosphatidylcholine acyltransferase 1 (LPCAT1) was detected in the active fraction. Lpcat1-transfected Chinese hamster ovary cells exhibited both LPCAT and lyso-PAF AT activities. We confirmed that LPCAT1 transfers acetate from acetyl-CoA to lyso-PAF by the identification of an acetyl-CoA (and other acyl-CoAs) interacting site in LPCAT1. We further showed that LPCAT1 activity and expression are independent of inflammatory signals. Therefore, these results suggest the molecular diversity of lyso-PAF ATs is as follows: one (LysoPAFAT/LPCAT2) is inducible and activated by inflammatory stimulation, and the other (LPCAT1) is constitutively expressed. Each lyso-PAF AT biosynthesizes inflammatory and physiological amounts of PAF, depending on the cell type. These findings provide important knowledge for the understanding of the diverse pathological and physiological roles of PAF.  相似文献   

18.
Platelet-activating factor (PAF) is a naturally occurring pleiotropic mediator which acts via specific membrane receptors. In certain target cells, PAF causes elevations in cytosolic free Ca2+ concentration ([Ca2+]i); however, little is known of the effects of PAF on endocrine cells. Therefore, we have investigated the actions of PAF on [Ca2+]i in prolactin-secreting GH4C1 cells and have compared the effects with the well documented actions on these cells of thyrotropin-releasing hormone (TRH). GH4C1 cells were loaded with quin2/AM and fluorescence was measured in suspended populations. PAF induced a dose-dependent (10-100 microM) rise in [Ca2+]i which was slower in onset than that caused by TRH, peaking (200 to 400% above basal [Ca2+]i) at about 12 sec, and decaying over about 3 min to basal [Ca2+]i. Unlike TRH, PAF did not cause a secondary plateau phase of rise in [Ca2+]i. The terpene PAF receptor antagonist BN52021 inhibited the action of PAF on [Ca2+]i. Voltage-dependent Ca2+ channel blocker, verapamil (200 microM), antagonized the action of PAF on [Ca2+]i as did chelation of extracellular Ca2+. PAF also stimulated the secretion of prolactin in a dose-dependent manner (10 to 50 microM). The concentrations of PAF required to evoke responses in GH4C1 cells were considerably higher than those required in several other known PAF target cell types. The high concentration requirement in GH4C1 cells may be due to rapid degradation of PAF or the presence of low affinity receptors. We conclude that PAF can act, via cell surface receptors, on pituitary GH4C1 cells to alter [Ca2+]i by a pathway that enhances influx of extracellular Ca2+ through voltage-gated channels and then to enhance the secretion of prolactin.  相似文献   

19.
Lysophosphatidylcholine is an abundant component of plasma and oxidized LDL that displays several biological activities, some of which may occur through the platelet-activating factor (PAF) receptor. We find that commercial lysophosphatidylcholine, its alkyl homolog (lyso-PAF), and PAF all induce inflammation in a murine model of pleurisy. Hydrolysis of PAF to lyso-PAF by recombinant PAF acetylhydrolase abolished this eosinophilic infiltration, implying that lyso-PAF should not have displayed inflammatory activity. Saponification of lyso-PAF or PAF acetylhydrolase treatment of lyso-PAF or lysophosphatidylcholine abolished activity; neither lysolipid should contain susceptible sn-2 residues, suggesting contaminants account for the bioactivity. Lyso-PAF and to a lesser extent lysophosphatidylcholine stimulated Ca(2+) accumulation in 293 cells stably transfected with the human PAF receptor, and this was inhibited by specific PAF receptor antagonists. Again, treatment of lyso-PAF or lysophosphatidylcholine with recombinant PAF acetylhydrolase, a nonselective phospholipase A(2), or saponification of lyso-PAF destroyed the PAF-like activity, a result incompatible with lyso-PAF or lysophosphatidylcholine being the actual agonist.We conclude that neither lyso-PAF nor lysophosphatidylcholine is a PAF receptor agonist, nor are they inflammatory by themselves. We suggest that PAF or a PAF-like mimetic accounts for inflammatory effects of lysophosphatidylcholine and lyso-PAF.  相似文献   

20.
A photoreactive, radioiodinated derivative of platelet activating factor (PAF), 1-O-(4-azido-2-hydroxy-3-iodobenzamido)undecyl-2-O-acetyl-sn- glycero-3-phosphocholine ([125I]AAGP), was synthesized and used as a photoaffinity probe to study the PAF binding sites in rabbit platelet membranes. The nonradioactive analog, IAAGP, induced rabbit platelet aggregation with an EC50 value of 3.2 +/- 1.9 nM as compared to 0.40 +/- 0.25 nM for PAF. Specific binding of [125I]AAGP to rabbit platelet membranes was saturable with a dissociation constant (Kd) of 2.4 +/- 0.7 nM and a receptor density (Bmax) of 1.1 +/- 0.2 pmol/mg protein. Photoaffinity labeling of platelet membranes with [125I]AAGP revealed several 125I-labeled components by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A protein species with apparent molecular weight of 52,000 was consistently observed and inhibited significantly by unlabeled PAF at nanomolar concentrations. The labeling was specific since the PAF antagonists, SRI-63,675 and L-652,731, at 1 uM also blocked the appearance of this band; whereas lysoPAF was not effective at the same concentration. These results suggest that the binding sites of PAF receptor in rabbit platelets reside in the polypeptide of Mr = 52,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号