首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vasopressin antisense peptide interactions with the V1 receptor   总被引:1,自引:0,他引:1  
The molecular recognition hypothesis, that peptide ligands and their receptor binding sites are encoded by complementary nucleotide sequences, was tested for arginine vasopressin (AVP) and its V1 receptor. Binding of [125I] [d(CH2)5,Sar7]AVP (a selective V1 vasopressin antagonist radioligand) or [3H]AVP to rat liver plasma membranes was inhibited by peptides known to bind to V1 receptors but not by the AVP complementary peptide (Ser-Ser-Trp-Ala-Val-Leu-Glu-Val-Ala) (PVA). Rabbit anti-PVA antibodies were nonimmunoreactive with any protein in rat liver membranes or in a partially purified preparation from rat liver containing reconstitutable vasopressin binding activity. Furthermore, there was no suppression of the AVP pressor effect by PVA in vivo using a rat blood pressure bioassay. These findings do not support the hypothesis that the V1 receptor binding site is encoded by the antisense DNA strand to AVP.  相似文献   

2.
Vasopressin (CYFQNCPRG-NH(2), AVP) is a semicyclic endogenous peptide, which exerts a variety of biological effects in mammals. The main physiological roles of AVP are the regulation of water balance and the control of blood pressure and adrenocorticotropin hormone (ACTH) secretion, mediated via three different subtypes of vasopressin receptors: V1a, V1b and V2 receptors (V1aR, V1bR and V2R, respectively). They are the members of the class A, G-protein-coupled receptors (GPCRs). AVP also modulates several behavioral and social functions. In this study, the interactions responsible for AVP binding to vasopressin V1a and V2 receptors versus the closely related oxytocin ([I3,L8]AVP, OT) receptor (OTR) have been investigated. Three-dimensional models of the activated receptors were constructed using multiple sequence alignment, followed by homology modeling using the complex of activated rhodopsin with Gt(alpha) C-terminal peptide of transducin MII-Gt(338-350) prototype as a template. AVP was docked into the receptor-G(alpha) systems. The three lowest-energy pairs of receptor-AVP-G(alpha) (two complexes per each receptor) were selected. The 1-ns unconstrained molecular dynamics (MD) of complexes embedded into the fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) lipid bilayer was conducted in the AMBER 7.0 force field. Six relaxed receptor-AVP-G(alpha) models were obtained. The residues responsible for AVP binding to vasopressin receptors have been identified and a different mechanism of AVP binding to V2R than to V1aR has been proposed.  相似文献   

3.
BACKGROUND: The molecular recognition theory (MRT) provides a conceptual framework that could explain the evolution of intermolecular and intramolecular interaction of peptides and proteins. As such, it predicts that binding sites of peptide hormones, and its receptor binding sites were originally encoded by and evolved from complementary strands of genomic DNA. MATERIALS AND METHODS: On the basis of principles underlying the MRT, we screened a rat brain complementary DNA library using an AngII followed by an endothelin-1 (ET-1) antisense oligonucleotide probe, expecting to isolate potential cognate receptors. RESULTS: An identical cDNA clone was isolated independently from both the AngII and ET-1 oligonucleotide screenings. Structural analysis revealed a receptor polypeptide containing a single predicted transmembrane region with distinct ET-1 and AngII putative binding domains. Functional analysis demonstrated ET-1- and AngII-specific binding as well as ET-1- and AngII-induced coupling to a Ca2+ mobilizing transduction system. Amino acid substitutions within the predicted ET-1 binding domain obliterate ET-1 binding while preserving AngII binding, thus defining the structural determinants of ET-1 binding within the dual ET-1/AngII receptor, as well as corroborating the dual nature of the receptor. CONCLUSIONS: Elucidation of the dual ET-1/AngII receptor provides further molecular genetic evidence in support of the molecular recognition theory and identifies for the first time a molecular link between the ET-1 and AngII hormonal systems that could underlie observed similar physiological responses elicited by ET-1 and AngII in different organ systems. The prominent expression of the ET-1/AngII receptor mRNA in brain and heart tissues suggests an important role in cardiovascular function in normal and pathophysiological states.  相似文献   

4.
Radioligand binding studies with [3H]vasopressin (AVP) were used to determine the affinities of AVP receptor agonists and antagonists for mouse liver and kidney plasma membrane preparations. Both membrane preparations exhibited one class of high-affinity binding site. AVP ligand binding inhibition studies confirmed that mouse liver binding sites belong to the V1A subtype while kidney binding sites belong to the V2 receptor subtype. The affinity of each ligand for mouse V1A receptors was very similar to that for rat V1A receptors, showing differences in Ki values of less than 3-fold. In contrast, several peptide (d(CH2)5Tyr(Me)AVP) and nonpeptide (OPC-21268 and SR 49059) ligands had different affinities for mouse and rat kidney V2 receptors, with differences in Ki values ranging from 14- to 17-fold. These results indicate that mouse and rat kidney V2 receptors show significant pharmacologic differences.  相似文献   

5.
A fundamental issue in molecular endocrinology is to define how agonist:receptor interaction differs from antagonist:receptor interaction. The vasopressin V1a receptor (V1aR) is a member of a subfamily of related G protein-coupled receptors that are activated by the hormone AVP or related peptides. The N-terminus of the V1aR has recently been shown to be critical for binding agonists but not antagonists. Using a combination of N-terminally truncated constructs and alanine-scanning mutagenesis, individual residues that provide these agonist-specific binding epitopes have now been identified in this study. Our data establish that a single residue, Arg46, is critical for AVP binding to the V1aR. Systematic substitution revealed that Arg was required at this locus and could not be substituted by Lys, Glu, Leu, or Ala. In contrast, antagonist binding (cyclic or linear, peptide or nonpeptide) was unaffected. Disruption of Arg46 also resulted in defective intracellular signaling. Arginine is conserved at this locus in all members of the neurohypophysial peptide hormone receptor family cloned to date, indicative of a fundamental role in receptor function. In addition to Arg46, the residues Leu42, Gly43, Asp45 form a patch contributing to AVP binding. This study provides molecular insight into the role of the V1aR N-terminus and key differences between agonist and antagonist binding requirements.  相似文献   

6.
Hawtin SR  Wesley VJ  Parslow RA  Patel S  Wheatley M 《Biochemistry》2000,39(44):13524-13533
A fundamental issue in molecular pharmacology is to define how agonist:receptor interaction differs from that of antagonist:receptor. The V(1a) receptor (V(1a)R) is a member of a family of related G-protein-coupled receptors that are activated by the neurohypophysial peptide hormone arginine-vasopressin (AVP). Here we define a short subdomain of the N-terminus of the V(1a)R from Glu(37) to Asn(47) that is an absolute requirement for binding AVP and other agonists. In marked contrast to the situation for agonists, deleting this segment has little or no effect on the binding of either peptide or non-peptide antagonists. In addition, we established that this subdomain was crucial for receptor activation and second messenger generation. The oxytocin receptor (OTR) also binds AVP with high affinity but exhibits a different pharmacological profile to the V(1a)R. Substitution of the N-terminus of the V(1a)R with the corresponding sequence from the OTR generated a chimeric receptor (OTR(N)-V(1a)R). The presence of the OTR N-terminus recovered high affinity agonist binding such that the OTR(N)-V(1a)R possessed almost wild-type V(1a)R pharmacology and signaling. Consequently, a domain within the N-terminus is required for agonist binding but it does not provide the molecular discriminator for subtype-selective agonist recognition. Cotransfection and peptide mimetic studies demonstrated that this N-terminal subdomain had to be contiguous with the receptor polypeptide to be functional. This study establishes that a segment of the V(1a)R N-terminus has a pivotal role in the mechanism of agonist binding and provides molecular insight into key differences between the interaction of agonists and antagonists with a peptide receptor family.  相似文献   

7.
Defining how the agonist-receptor interaction differs from that of the antagonist-receptor and understanding the mechanisms of receptor activation are fundamental issues in cell signalling. The V1a vasopressin receptor (V1aR) is a member of a family of related G-protein coupled receptors that are activated by neurohypophysial peptide hormones, including vasopressin (AVP). It has recently been reported that an arginyl in the distal N-terminus of the V1aR is critical for binding agonists but not antagonists. To determine specific features required at this locus to support high affinity agonist binding and second messenger generation, Arg46 was substituted by all other 19 encoded amino acids. Our data establish that there is an absolute requirement for arginyl, as none of the [R46X]V1aR mutant constructs supported high affinity agonist binding and all 19 had defective signalling. In contrast, all of the mutant receptors possessed wildtype binding for both peptide and nonpeptide antagonists. The ratio of Ki to EC50, an indicator of efficacy, was increased for all substitutions. Consequently, although [R46X]V1aR constructs have a lower affinity for agonist, once AVP has bound all 19 are more likely than the wildtype V1aR to become activated. Therefore, in the wildtype V1aR, Arg46 constrains the inactive conformation of the receptor. On binding AVP this constraint is alleviated, promoting the transition to active V1aR. Our findings explain why arginyl is conserved at this locus throughout the evolutionary lineage of the neurohypophysial peptide hormone receptor family of G-protein coupled receptors.  相似文献   

8.
The photoreactive analog of vasopressin [1,6-alpha-aminosuberic acid, 3-(p-azidophenylalanine), 8-arginine] vasopressin [( Asu1,6, Phe (p-N3)3]AVP) has been synthesized. This analog retains a high binding affinity for the vasopressin receptor in plasma membranes from bovine kidney inner medulla (apparent dissociation constant, KD = 8.5 X 10(-9) M). [Asu1,6, Phe (p-N3)3] AVP was found to be biologically active in triggering the characteristic increase in toad bladder permeability to water. Photolysis of the analog in the presence of the toad bladder results in a hydroosmotic response which persists, in spite of repeated washings, for more than 18 h. The irreversible stimulation of the bladder is inhibited when photolysis is carried out in the presence of vasopressin. Our findings indicate that with photoactivation [Asu1,6, Phe(p-N3)3]AVP binds covalently to hormonal receptors and forms an active hormone-receptor complex. This analog, therefore, is a suitable tool for studies of hydroosmotic receptor function and for receptor isolation.  相似文献   

9.
The vasopressin V2 receptor (V2R) belongs to the Class A G protein-coupled receptors (GPCRs). V2R is expressed in the renal collecting duct (CD), where it mediates the antidiuretic action of the neurohypophyseal hormone arginine vasopressin (CYFQNCPRG-NH2, AVP). Desmopressin ([1-deamino, 8-D]AVP, dDAVP) is strong selective V2R agonist with negligible pressor and uterotonic activity. In this paper, the interactions responsible for binding of dDAVP to vasopressin V2 receptor versus vasopressin V1a and oxytocin receptors has been examined. Three-dimensional activated models of the receptors were constructed using the multiple sequence alignment and the complex of activated rhodopsin with Gt(alpha) C-terminal peptide of transducin MII-Gt(alpha) (338-350) prototype (Slusarz, R.; Ciarkowski, J. Acta Biochim Pol 2004 51, 129-136) as a template. The 1-ns unconstrained molecular dynamics (MD) of receptor-dDAVP complexes immersed in the fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) membrane model was conducted in an Amber 7.0 force field. Highly conserved transmembrane residues have been proposed as being responsible for V2R activation and G protein coupling. Molecular mechanism of the dDAVP binding has been suggested. The internal water molecules involved in an intricate network of the hydrogen bonds inside the receptor cavity have been identified and their role in the stabilization of the agonist-bound state proposed.  相似文献   

10.
Tritiated vasopressin ([3H]AVP) was directly crosslinked to its human platelet receptor by using an ultraviolet irradiation procedure. After preincubation with [3H]AVP, the hydrodynamic parameters of the hormone-receptor complexes solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate were derived from Sephacryl S-300 superfine gel filtration and from sucrose density gradient ultracentrifugation experiments. The following values were obtained: Stoke's radius = 5.48 +/- 0.1 nm, apparent sedimentation coefficient = 5.55 +/- 0.1 S, and calculated molecular weight = 132,000. On sodium dodecyl sulfate-8% polyacrylamide slab gel electrophoresis under reducing conditions, [3H]AVP preferentially and specifically labeled a 125,000-dalton protein. The labeling of this protein was suppressed by addition of excess cold vasopressin, whereas angiotensin II did not inhibit incorporation of tritiated vasopressin in this protein. These results suggest that direct UV-photoaffinity labelling with [3H]AVP is a suitable tool for the purification of the human platelet vasopressin receptor.  相似文献   

11.
Starting from the 2.8-A resolution x-ray structure of bovine rhodopsin, three-dimensional molecular models of the complexes between arginine vasopressin and two receptor subtypes (V1a, V1b) have been built. Amino acid sequence alignment and docking studies suggest that four key residues (1.35, 2.65, 4.61, and 5.35) fine tune the binding of vasopressin and related peptide agonists to both receptor subtypes. To validate these predictions, a series of single or double mutants were engineered at V1a and V1b receptor subtypes and tested for their binding and functional properties. Two negatively charged amino acids at positions 1.35 and 2.65 are key anchoring residues to the Arg8 residue of arginine vasopressin. Moreover, two amino acids (V(4.61) and P(5.35)) delineating a hydrophobic subsite at the human V1b receptor are responsible for the recognition of V1b selective peptide agonists. Last, one of the latter positions (5.35) is hypothesized to explain the pharmacological species differences between rat and human vasopressin receptors for a V1b peptide agonist. Altogether these refined three-dimensional models of V1a and V1b human receptors should enable the identification of further new selective V1a and V1b agonists as pharmacological but also therapeutic tools.  相似文献   

12.
Abstract

The peptide encoded in the 5″ to 3″ direction by rat vasopressin complementary RNA, rat PVA (H-Ser-Ser-Trp-Ala-Val-Leu-Glu-Val-Ala-OH) and the corresponding bovine PVA (H-Ala-Pro-Trp-Ala-Val-Leu-Glu-Val-Ala-OH) were investigated with respect to their interaction with [8-arginine] vasopressin (AVP) and V2 vasopressin receptor binding and function. Rat or bovine PVA did neither affect the binding of the hormone to the V2 receptor of bovine kidney membranes and LLC-PK1 pig kidney cells nor influence the AVP-induced cAMP-production in LLC-PK1 cells. Rat PVA was further investigated by the use of vasopressin-specific polyclonal and monoclonal antibodies with differnt affinity and epitope specifity. Consistent with receptor binding studies no inhibition of [3H]AVP-binding in fluid- or solid-phase antibody binding tests after preincu-bation with PVA was found. Direct interaction of rat PVA and [3H]AVP measured on solid surface was not observed in contrast to specific binding of the hormone with NP II and antibodies. In our study no evidence for an interaction of AVP and its antisense peptides was found.  相似文献   

13.
We studied the role played by the intracellular COOH-terminal region of the human arginine vasopressin (AVP) V1-vascular receptor (V1R) in ligand binding, trafficking, and mitogenic signal transduction in Chinese hamster ovary cells stably transfected with the human AVP receptor cDNA clones that we had isolated previously. Truncations, mutations, or chimeric alterations of the V1R COOH terminus did not alter ligand binding, but agonist-induced V1R internalization and recycling were reduced in the absence of the proximal region of the V(1)R COOH terminus. Coupling to phospholipase C was altered as a function of the COOH-terminal length. Deletion of the proximal portion of the V1R COOH terminus or its replacement by the V2-renal receptor COOH terminus prevented AVP stimulation of DNA synthesis and progression through the cell cycle. Mutation of a kinase consensus motif in the proximal region of the V1R COOH terminus also abolished the mitogenic response. Thus the V1R cytoplasmic COOH terminus is not involved in ligand specificity but is instrumental in receptor trafficking and facilitates the interaction between the intracellular loops of the receptor, G protein, and phospholipase C. It is absolutely required for transmission of the mitogenic action of AVP, probably via a specific kinase phosphorylation site.  相似文献   

14.
In adult male rats, vasopressin (AVP) facilitates social recognition via activation of V1a receptors within the lateral septum. Much less is known about how AVP affects social recognition in adult females or in juvenile animals of either sex. We found that administration of the specific V1a receptor antagonist d(CH(2))(5)[Tyr(Me)(2)]AVP into the lateral septum of adult rats impaired, whereas AVP extended, social discrimination in both sexes. In juveniles, however, we detected a sex difference, such that males but not females showed social discrimination. Interestingly, administration of the V1a receptor antagonist to juveniles (either intracerebroventricularly or locally in the lateral septum) did not prevent social discrimination, but instead significantly decreased the investigation of a novel as opposed to a familiar animal in both sexes, with stronger effects in males. V1a receptors were found to be abundantly expressed in the lateral septum with higher binding density in females than in males. These findings demonstrate that activation of V1a receptors in the lateral septum is important for social recognition in both sexes, and that the roles of septal V1a receptors in social recognition change during development.  相似文献   

15.
The solubilization of vasopressin receptors from plasma membranes of bovine kidney and rat liver by different detergents was investigated. A prerequisite for the extraction of vasopressin receptors retaining binding affinity for their ligand was the stabilization of the receptors by the prior formation of the membrane-bound hormone-receptor complexes. The vasopressin-receptor complexes from both kidney and liver membranes were solubilized in a high yield with dodecyl-beta-D-maltoside and 3-laurylamido-N,N'-dimethylpropylaminoxide. Several other nonionic detergents including octyl-beta-D-glucopyranoside effectively extracted the hepatic vasopressin receptor. For the hormone-receptor complex solubilized from bovine kidney with dodecyl-beta-D-maltoside, a Stokes' radius of 5.8 nm was determined.  相似文献   

16.
A guanine nucleotide regulatory protein may be involved in vasopressin-receptor-mediated polyphosphoinositide breakdown in rat liver. Therefore we examined the effects of the non-hydrolysable guanine nucleotide guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) on [3H]vasopressin ([3H]AVP) binding to hepatic plasma membranes and detergent extracts. [3H]AVP bound to a single set of high-affinity binding sites in membranes. Addition of p[NH]ppG decreased the affinity of receptor binding without altering the maximal binding capacity. The rate of dissociation of [3H]AVP from membrane-bound receptors was also enhanced by p[NH]ppG. Solubilization of [3H]AVP-prelabelled membranes with dodecyl beta-D-maltoside resulted in a [3H]AVP-receptor complex that was unstable in solution. Incubation of these extracts for 5 min at 30 degrees C resulted in a 40% loss of bound [3H]AVP, whereas in the presence of p[NH]ppG there was a 54% loss. However, when membranes were prelabelled with [3H]AVP and p[NH]ppG and then solubilized, the resulting hormone-receptor complex was still temperature-labile but insensitive to the further addition of p[NH]ppG. The molecular size of soluble vasopressin receptors was estimated by gel filtration. The [3H]AVP-receptor complex was eluted as a single peak with an apparent molecular size of 258 kDa. However, no peak was detected when solubilized extract was made from membranes prelabelled with [3H]AVP and p[NH]ppG, suggesting that this receptor complex had dissociated during chromatography. It is possible therefore that the high-Mr complex contains the hormone, its receptor and a guanine nucleotide binding protein.  相似文献   

17.
D A Jans  R Peters    F Fahrenholz 《The EMBO journal》1990,9(9):2693-2699
The present work examines lateral mobility of the vasopressin V1-type receptor, representing the first determination of lateral mobility of a hormone receptor coupled to phospholipase C activation. The V1-receptor of A7r5 smooth muscle cells was characterized for [Arg8] vasopressin (AVP) binding properties and affinity for the fluorescent vasopressin analogue 1-deamino[8-lysine (N6-tetramethylrhodamylaminothiocarbonyl)] vasopressin (TR-LVP). TR-LVP was biologically active in A7r5 cells, inducing inositol 1,4,5-trisphosphate turnover in similar fashion to AVP. TR-LVP was used to specifically label the V1-receptor of living A7r5 cells, and lateral mobility of the V1-receptor was measured using the technique of fluorescence microphotolysis. The apparent lateral diffusion coefficient (D) at 37 degrees C was 5.1 x 10(-10) cm2/s, falling to 2.9 x 10(-10) cm2/s at 13 degrees C. These D values are higher than comparable values for the adenylate cyclase-activating vasopressin V2-receptor of LLC-PK1 renal epithelial cells analysed with the same fluorescent ligand. In contrast to the V2-receptor, no marked temperature dependence was observed for the V1-receptor mobile fraction (f). From 37 degrees C to 13 degrees C, f was relatively low (between 0.4 and 0.5) consistent with V1-receptor immobilization through internalization, which is rapid even at room temperature in A7r5 cells. These differences between V1- and V2-receptor lateral mobility are discussed in terms of the implications for their respective signal transduction systems.  相似文献   

18.
The effect of 1-(1-[4-(3-acetylaminopropoxy)benzoyl]-4-piperidyl-3,4-dihydro-2(1 H)- quinolinone) (OPC-21268) on vascular action of arginine vasopressin (AVP) was examined in cultured rat vascular smooth muscle cells (VSMC) by the measurement of cytosolic free calcium concentration [( Ca2+]i) and the AVP V1 receptor study. The preincubation of cells with OPC-21268 for 10 min inhibited the AVP-induced mobilization of [Ca2+]i in a dose-dependent manner but did not affect the angiotensin II-induced mobilization of [Ca2+]i. The receptor study revealed that OPC-21268 blocks the binding of AVP to the receptor in VSMC in a similar way to the V1 structural antagonist [1-(beta-mercapto-beta,beta-cyclopentamethylenepropionic acid)-2-O-methyltyrosine]AVP: d(CH2)5Tyr(Me)AVP. Lineweaver-Burk plot showed that OPC-21268 is the competitive AVP V1 receptor antagonist. These results therefore indicate that OPC-21268 specifically blocks the vascular action of AVP mediated through the competitive inhibition of AVP binding to the receptors in VSMC.  相似文献   

19.
Arginine vasopressin (AVP) regulates aggression in male Syrian hamsters. In this study, we used radioligand receptor autoradiography to examine whether changes in agonistic behavior following acute and repeated social defeat are accompanied by changes in AVP V1a receptor binding. Social defeat produced high levels of submissive behavior and a loss of territorial aggression when hamsters were subsequently tested with a novel intruder, and repeated agonistic encounters produced similar behavioral changes in subordinates. AVP V1a receptor binding was not reduced by acute social defeat but was affected by repeated agonistic encounters. Dominants had significantly more AVP V1a receptor binding in lateral portions of the ventromedial hypothalamus (VMHL) than did their subordinate opponents, but subordinates were no different from controls. In contrast, receptor binding did not differ in most other brain regions examined. The changes in receptor binding appear to be independent of testosterone levels, as testosterone levels did not differ among dominants, subordinates, and controls. Our results suggest that changes in AVP V1a receptors do not account for the changes in agonistic behavior produced by acute social defeat but AVP V1a binding in the VMHL correlates with, and may modulate, the behavioral changes that occur following repeated experiences of victory.  相似文献   

20.
Our efforts in seeking low molecular weight agonists of the antidiuretic peptide hormone arginine vasopressin (AVP) have led to the identification of the clinical candidate WAY-151932 (VNA-932). Further exploration of the structural requirements for agonist activity has provided another class of potent, orally active, non-peptidic vasopressin V2 receptor selective agonists exemplified by the 5,11-dihydro-pyrido[2,3-b][1,5]benzodiazepine as a candidate for further development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号