首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian target of rapamycin (mTOR) has emerged as an attractive cancer therapeutic target. Treatment of metastatic renal cell carcinoma (mRCC) has improved significantly with the advent of agents targeting the mTOR pathway, such as temsirolimus and everolimus. Unfortunately, a number of potential mechanisms that may lead to resistance to mTOR inhibitors have been proposed.In this paper, we discuss the mechanisms underlying resistance to mTOR inhibitors, which include the downstream effectors of the phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway, the activation of hypoxia-inducible factor (HIF), the PIM kinase family, PTEN expression, elevated superoxide levels, stimulation of autophagy, immune cell response and ERK/MAPK, Notch and Aurora signaling pathways. Moreover, we present an updated analysis of clinical trials available on PubMed Central and www.clinicaltrials.gov, which were pertinent to the resistance to rapalogs.The new frontier of inhibiting the mTOR pathway is to identify agents targeting the feedback loops and cross talks with other pathways involved in the acquired resistance to mTOR inhibitors. The true goal will be to identify biomarkers predictive of sensitivity or resistance to efficiently develop novel agents with the aim to avoid toxicities and to better choose the active drug for the right patient.  相似文献   

2.
Heterotopic ossification (HO) refers to the pathological formation of ectopic bone in soft tissues, it occurs following severe trauma or in patients with a rare genetic disorder known as fibrodysplasia ossificans progressiva. The pathological process of HO formation is a two-step mechanism: inflammation and destruction of connective tissues, followed by bone formation. The latter is further subdivided into three stages: fibroproliferation/angiogenesis, chondrogenesis, and osteogenesis. Currently, therapeutic options for HO are limited. New potential therapeutics will most likely arise from a more detailed understanding of the signaling pathways implicated in each stage of ectopic bone formation and molecular targets that may be effective at both the early and late stages of HO. Bone morphogenetic protein (BMP) signaling is believed to play a key role in the overall HO process. Recently, the mammalian target of rapamycin (mTOR) signaling pathway has received attention as a critical pathway for chondrogenesis, osteogenesis, and HO. Inhibition of mTOR signaling has been shown to block trauma-induced and genetic HO. Intriguingly, recent studies have revealed crosstalk between mTOR and BMP signaling. Moreover, mTOR has emerged as a factor involved in the early hypoxic and inflammatory stages of HO. We will summarize the current knowledge of the roles of mTOR and BMP signaling in HO, with a particular focus on the crosstalk between mTOR and BMP signaling. We also discuss the activation of AMP activated protein kinase (AMPK) by the most widely used drug for type 2 diabetes, metformin, which exerts a dual negative regulatory effect on mTOR and BMP signaling, suggesting that metformin is a promising drug treatment for HO. The discovery of an mTOR-BMP signaling network may be a potential molecular mechanism of HO and may represent a novel therapeutic target for the pharmacological control of HO.  相似文献   

3.
The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that can sense environmental stimuli such as growth factors, energy state, and nutrients. It is essential for cell growth, proliferation, and metabolism, but dysregulation of mTOR signaling pathway is also associated with a number of human diseases. Encouraging data from experiments have provided sufficient evidence for the relationship between the mTOR signaling pathway and Alzheimer’s disease (AD). Upregulation of mTOR signaling pathway is thought to play an important role in major pathological processes of AD. The mTOR inhibitors such as rapamycin have been proven to ameliorate the AD-like pathology and cognitive deficits effectively in a broad range of animal models. Application of mTOR inhibitors indicates the potential value of reducing mTOR activity as an innovative therapeutic strategy for AD. In this review, we will focus on the recent process in understanding mTOR signaling pathway and the vital involvement of this signaling pathway in the pathology of AD, and discuss the application of mTOR inhibitors as potential therapeutic agents for the treatment of AD.  相似文献   

4.
The protein kinase mTOR (mammalian target of rapamycin) is a critical regulator of cellular metabolism, growth, and proliferation. These processes contribute to tumor formation, and many cancers are characterized by aberrant activation of mTOR. Although activating mutations in mTOR itself have not been identified, deregulation of upstream components that regulate mTOR are prevalent in cancer. The prototypic mechanism of mTOR regulation in cells is through activation of the PI3K/Akt pathway, but mTOR receives input from multiple signaling pathways. This review will discuss Akt-dependent and -independent mechanisms of mTOR regulation in response to mitogenic signals, as well as its regulation in response to energy and nutrient-sensing pathways. Preclinical and clinical studies have demonstrated that tumors bearing genetic alterations that activate mTOR are sensitive to pharmacologic inhibition of mTOR. Elucidation of novel pathways that regulate mTOR may help identify predictive factors for sensitivity to mTOR inhibitors, and could provide new therapeutic targets for inhibiting the mTOR pathway in cancer. This review will also highlight pharmacologic approaches that inhibit mTOR via activation of the AMP-activated protein kinase (AMPK), an important inhibitor of the mTOR pathway and an emerging target in cancer.  相似文献   

5.
ABSTRACT: Perivascular epithelioid cell tumor (PEComa) is an extremely rare neoplasm that appears to arise most commonly at visceral (especially gastrointestinal and uterine), retroperitoneal, and abdominopelvic sites. Malignant PEComas exist but are very rare. These tumors represent a family of mesenchymal neoplasms, mechanistically linked through activation of the mTOR signaling pathway. Metastatic PEComa is a rare form of sarcoma for which no effective therapy has been described previously and that has a uniformly fatal outcome. Although there is no known effective therapy, the molecular pathophysiology of aberrant mTOR signaling provides a scientific rationale to target this pathway therapeutically. The difficulty in determining optimal therapy, owing to the sparse literature available, led us to present this case. On this basis, we report a case of metastatic retroperitoneal PEComa treated with an oral mTOR inhibitor, with everolimus achieving significant clinical response.  相似文献   

6.
粘附斑激酶(focal adhesion kinase,FAK)是一种胞质非受体酪氨酸激酶,是整合素信号通路里一个重要的调节因子,在肿瘤细胞中高表达,与细胞迁移、粘附和侵袭有关。mTOR (mammalian target of rapamycin)是非典型性的Ser/Thr激酶,属于PIKK(phosphatidylinositol kinase related kinase)超家族,介导营养信号调控细胞生长、分化及代谢等生理过程。近年的研究发现FAK通过三条途径与mTOR相关联,组成FAK/mTOR信号通路,在肿瘤细胞的增殖、迁移及肿瘤微环境中发挥着重要的调控作用。本文综述了FAK、mTOR和FAK/mTOR信号通路的特点及对肿瘤细胞调控作用的研究概况,为肿瘤治疗提供参考。  相似文献   

7.
Lung cancer is the leading cause of cancer-related mortality worldwide. Although the PI3K/Akt/mTOR signaling pathway has recently been considered as one of the most altered molecular pathways in this malignancy, few articles reviewed the task. In this review, we aim to summarize the original data obtained from international research laboratories on the oncogenic alterations in each component of the PI3K/Akt/mTOR pathway in lung cancer. This review also responds to questions on how aberrant activation in this axis contributes to uncontrolled growth, drug resistance, sustained angiogenesis, as well as tissue invasion and metastatic spread. Besides, we provide a special focus on pharmacologic inhibitors of the PI3K/Akt/mTOR axis, either as monotherapy or in a combined-modal strategy, in the context of lung cancer. Despite promising outcomes achieved by using these agents, however, the presence of drug resistance as well as treatment-related adverse events is the other side of the coin. The last section allocates a general overview of the challenges associated with the inhibitors of the PI3K pathway in lung cancer patients. Finally, we comment on the future research aspects, especially in which nano-based drug delivery strategies might increase the efficacy of the therapy in this malignancy.  相似文献   

8.
The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine protein kinase that regulates a number of diverse biologic processes important for cell growth and proliferation, including ribosomal biogenesis and protein translation. In this regard, hyperactivation of the mTOR signaling pathway has been demonstrated in numerous human cancers, including a number of inherited cancer syndromes in which individuals have an increased risk of developing benign and malignant tumors. Three of these inherited cancer syndromes (Lhermitte-Duclos disease, neurofibromatosis type 1, and tuberous sclerosis complex) are characterized by significant central nervous system dysfunction and brain tumor formation. Each of these disorders is caused by a genetic mutation that disrupts the expression of proteins which negatively regulate mTOR signaling, indicating that the mTOR signaling pathway is critical for appropriate brain development and function. In this review, we discuss our current understanding of the mTOR signaling pathway and its role in promoting ribosome biogenesis and cell growth. We suggest that studies of this pathway may prove useful in identifying molecular targets for biologically-based therapies of brain tumors associated with these inherited cancer syndromes as well as sporadic central nervous system tumors.  相似文献   

9.
Perineural invasion (PNI) is a pathologic feature of pancreatic cancer and is associated with poor outcomes, metastasis, and recurrence in pancreatic cancer patients. However, the molecular mechanism of PNI remains unclear. The present study aimed to investigate the mechanism that HGF/c-Met pathway facilitates the PNI of pancreatic cancer. In this study, we confirmed that c-Met expression was correlated with PNI in pancreatic cancer tissues. Activating the HGF/c-Met signaling pathway potentiated the expression of nerve growth factor (NGF) to recruit nerves and promote the PNI. Activating the HGF/c-Met signaling pathway also enhanced the migration and invasion ability of cancer cells to facilitate cancer cells invading nerves. Mechanistically, HGF/c-Met signaling pathway can active the mTOR/NGF axis to promote the PNI of pancreatic cancer. Additionally, we found that knocking down c-Met expression inhibited cancer cell migration along the nerve, reduced the damage of the sciatic nerve caused by cancer cells and protected the function of the sciatic nerve in vivo. Taken together, our findings suggest a supportive mechanism of the HGF/c-Met signaling pathway in promoting PNI by activating the mTOR/NGF axis in pancreatic cancer. Blocking the HGF/c-Met signaling pathway may be an effective target for the treatment of PNI.Subject terms: Pancreatic cancer, Cancer microenvironment  相似文献   

10.
11.
研究表明大约有20%的乳腺癌患者存在HER2过表达现象。HER2的异常表达及异常信号通路与乳腺癌的侵袭转移、治疗抵抗及不良预后密切相关。在临床上,对于HER2阳性的初期乳腺癌患者常联合曲妥珠单抗及化学药物治疗,但部分患者对曲妥珠单抗产生耐药。因此,研究其耐药机制对于HER2阳性乳腺癌患者的治疗、预后及新疗法的探索具有重要的临床意义。目前引起曲妥珠单抗抵抗的主要机制有:p95-HER2累积、P13K/AKT/mTOR信号异常激活、HER家族受体和IGF-1R信号增加、非受体酪氨酸激酶c-SRC活性增加等。将对上述机制及治疗HER2阳性乳腺癌的新疗法进行综述。  相似文献   

12.
The phosphatidylinositol 3-kinase (PI3 K)/Akt/mammalian target of rapamycin (mTOR) signaling axis plays a central role in cell proliferation, growth and survival under physiological conditions. However, aberrant PI3 K/Akt/mTOR signaling has been implicated in many human cancers, including human triple negative breast cancer. Therefore, dual inhibitors of PI3 K/Akt and mTOR signaling could be valuable agents for treating breast cancer. The objective of this study was to investigate the effect of piperlongumine (PPLGM), a natural alkaloid on PI3 K/Akt/mTOR signaling, Akt mediated regulation of NF-kB and apoptosis evasion in human breast cancer cells. Using molecular docking studies, we found that PPLGM physically interacts with the conserved domain of PI3 K and mTOR kinases and the results were comparable with standard dual inhibitor PF04691502. Our results demonstrated that treatment of different human triple-negative breast cancer cells with PPLGM resulted in concentration- and time-dependent growth inhibition. The inhibition of cancer cell growth was associated with G1-phase cell cycle arrest and down-regulation of the NF-kB pathway leads to activation of the mitochondrial apoptotic pathway. It was also found that PPLGM significantly decreased the expression of p-Akt, p70S6K1, 4E-BP1, cyclin D1, Bcl-2, p53 and increased expression of Bax, cytochrome c in human triple-negative breast cancer cells. Although insulin treatment increased the phosphorylation of Akt (Ser473), p70S6K1, 4E-BP1, PPLGM abolished the insulin mediated phosphorylation, it clearly indicates that PPLGM acts through PI3 k/Akt/mTOR axis. Our results suggest that PPLGM may be an effective therapeutic agent for the treatment of human triple negative breast cancer.  相似文献   

13.
mTOR信号途径与肿瘤   总被引:7,自引:0,他引:7  
郑杰 《生命科学》2006,18(3):261-265
mTOR信号途径是最近新出现的细胞内重要信号途径,该途径在进化上高度保守,主要通过控制蛋白合成来调节细胞生长。现发现人体某些错构瘤综合征和恶性肿瘤存在mTOR信号途径的异常激活,雷帕霉素及其衍生物是mTOR信号特异性的抑制荆。这些新发现对了解细胞的生长调控和肿瘤的靶向性治疗具有重要意义。  相似文献   

14.
The serine/threonine kinase LKB1 is a master kinase involved in cellular responses such as energy metabolism, cell polarity and cell growth. LKB1 regulates these crucial cellular responses mainly via AMPK/mTOR signaling. Germ-line mutations in LKB1 are associated with the predisposition of the Peutz–Jeghers syndrome in which patients develop gastrointestinal hamartomas and have an enormously increased risk for developing gastrointestinal, breast and gynecological cancers. In addition, somatic inactivation of LKB1 has been associated with sporadic cancers such as lung cancer. The exact mechanisms of LKB1-mediated tumor suppression remain so far unidentified; however, the inability to activate AMPK and the resulting mTOR hyperactivation has been detected in PJS-associated lesions. Therefore, targeting LKB1 in cancer is now mainly focusing on the activation of AMPK and inactivation of mTOR. Preclinical in vitro and in vivo studies show encouraging results regarding these approaches, which have even progressed to the initiation of a few clinical trials. In this review, we describe the functions, regulation and downstream signaling of LKB1, and its role in hereditary and sporadic cancers. In addition, we provide an overview of several AMPK activators, mTOR inhibitors and additional mechanisms to target LKB1 signaling, and describe the effect of these compounds on cancer cells. Overall, we will explain the current strategies attempting to find a way of treating LKB1-associated cancer.  相似文献   

15.
Molecular Biology Reports - Aberrant expression of mTOR signaling pathway is significantly associated with gastric cancer. However, the effect of smoking on mTOR expression and its downstream...  相似文献   

16.
A hallmark of metastasis is organ specificity; however, little is known about the underlying signaling pathways responsible for the colonization and growth of tumor cells in target organs. Since tyrosine kinase receptor activation is frequently associated with prostate cancer progression, we have investigated the role of a common signaling intermediary, activated Ras, in prostate cancer metastasis. Three effector pathways downstream of Ras, Raf/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase, and Ral guanine nucleotide exchange factors (RalGEFs), were assayed for their ability to promote the metastasis of a tumorigenic, nonmetastatic human prostate cancer cell line, DU145. Oncogenic Ras promoted the metastasis of DU145 to multiple organs, including bone and brain. Activation of the Raf/ERK pathway stimulated metastatic colonization of the brain, while activation of the RalGEF pathway led to bone metastases, the most common organ site for prostate cancer metastasis. In addition, loss of RalA in the metastatic PC3 cell line inhibited bone metastasis but did not affect subcutaneous tumor growth. Loss of Ral appeared to suppress expansive growth of prostate cancer cells in bone, whereas homing and initial colonization were less affected. These data extend our understanding of the functional roles of the Ral pathway and begin to identify signaling pathways relevant for organ-specific metastasis.  相似文献   

17.
Long non-coding RNAs have been reported to play crucial roles in tumorigenesis including cervical cancer. LINC00037 has been identified as a significant regulator in several cancers. Our study was aimed to investigate the function of LINC00037 in cervical cancer progression. LINC00037 was significantly downregulated in human cervical cancer cells (HeLa, HCC94, HT-3, Caski, and SiHa cells) compared with the ectocervical epithelial cells (End1/E6E7 cells). Overexpression of LINC00037 was able to inhibit cervical cancer cell proliferation, induce cell apoptosis, and restrain the cell migration/invasion capacity. Reversely, knockdown of LINC00037 exhibited an opposite process in vitro. mTOR has been recognized as an atypical serine/threonine kinase that is involved in regulating significant cellular functions. In our present study, we observed that the mTOR signaling pathway was strongly activated in human cervical cancer cells. Meanwhile, upregulation of LINC00037 contributed to the inactivation of mTOR signaling whereas downregulation of LINC00037 activated the pathway. Subsequently, in vivo animal models using SiHa cells were established and we proved that LINC00037 repressed cervical cancer progression via targeting the mTOR signaling pathway. All these findings implied that LINC00037 could regulate cervical cancer pathogenesis via mTOR signaling. In conclusion, a novel role of LINC00037 was manifested in cervical cancer progression.  相似文献   

18.
19.
Background: Breast cancer is the main lethal disease among females. The combination of lobaplatin and microwave hyperthermia plays a crucial role in several kinds of cancer in the clinic, but its possible mechanism in breast cancer has remained indistinct.Methods: Mouse models were used to detect breast cancer progression. Cell growth was explored with MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphonyl)-2H-tetrazolium) and colony formation assays. Cell migration and invasion were investigated with a transwell assay. Cell apoptosis was probed with flow cytometry. The expression of apoptosis-associated proteins was examined with Western blots.Result: Combination treatment decreased breast cancer cell viability, colony formation, cell invasion and metastasis. In addition, the treatment-induced breast cancer cell apoptosis and autophagy, activated the c-Jun N-terminal kinase (JNK) signaling pathway, suppressed the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway, and down-regulated IAP and Bcl-2 family protein expression.Conclusion: These results indicate that lobaplatin is an effective breast cancer anti-tumor agent. Microwave hyperthermia was a useful adjunctive treatment. Combination treatment was more efficient than any single therapy. The possible mechanism for this effect was mainly associated with activation of the JNK signaling pathway, inactivation of the AKT/mTOR signaling pathway and down-regulation of the Bcl-2 and IAP families.  相似文献   

20.
Purvalanol and roscovitine are cyclin dependent kinase (CDK) inhibitors that induce cell cycle arrest and apoptosis in various cancer cells. We further hypothesized that co-treatment of CDK inhibitors with rapamycin, an mTOR inhibitor, would be an effective combinatory strategy for the inhibition of prostate cancer regard to androgen receptor (AR) status due to inhibition of proliferative pathway, PI3K/AKT/mTOR, and induction of cell death mechanisms. Androgen responsive (AR+), PTEN?/? LNCaP and androgen independent (AR?), PTEN+/? DU145 prostate cancer cells were exposed to purvalanol (20 µM) and roscovitine (30 µM) with or without rapamycin for 24 h. Cell viability assay, immunoblotting, flow cytometry and fluorescence microscopy was used to define the effect of CDK inhibitors with or without rapamycin on proliferative pathway and cell death mechanisms in LNCaP and DU145 prostate cancer cells. Co-treatment of rapamycin modulated CDK inhibitors-induced cytotoxicity and apoptosis that CDK inhibitors were more potent to induce cell death in AR (+) LNCaP cells than AR (?) DU145 cells. CDK inhibitors in the presence or absence of rapamycin induced cell death via modulating upstream PI3K/AKT/mTOR signaling pathway in LNCaP cells, exclusively only treatment of purvalanol have strong potential to inhibit both upstream and downstream targets of mTOR in LNCaP and DU145 cells. However, co-treatment of rapamycin with CDK inhibitors protects DU145 cells from apoptosis via induction of autophagy mechanism. We confirmed that purvalanol and roscovitine were strong apoptotic and autophagy inducers that based on regulation of PI3K/AKT/mTOR signaling pathway. Co-treatment of rapamycin with purvalanol and roscovitine exerted different effects on cell survival and death mechanisms in LNCaP and DU145 cell due to their AR receptor status. Our studies show that co-treatment of rapamycin with CDK inhibitors inhibit prostate cancer cell viability more effectively than either agent alone, in part, by targeting the mTOR signaling cascade in AR (+) LNCaP cells. In this point, mTOR is a fine-tuning player in purvalanol and roscovitine-induced apoptosis and autophagy via regulation of PI3K/AKT and the downstream targets, which related with cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号