首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Studies showed that specific probiotics might provide therapeutic benefits in inflammatory bowel disease. However, a rigorous screening of new probiotics is needed to study possible adverse interactions with the host, particularly when intended for administration to individuals with certain health risks. In this context, the objective of this study was to investigate the role of three lactobacilli (LAB) on intestinal inflammation and bacterial translocation using variations of the mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced acute colitis. We first compared the in vitro ability of LAB to survive gastrointestinal tract (GIT) conditions and their ability to persist in the GIT of mice following daily oral administration. As a control, we included a nonprobiotic Lactobacillus paracasei strain, previously isolated from an endocarditis patient. Feeding high doses of LAB strains to healthy and to TNBS-treated mice did not induce any detrimental effect or abnormal translocation of the bacteria. Oral administration of Lactobacillus salivarius Ls-33 had a significant preventive effect on colitis in mice, while Lactobacillus plantarum Lp-115 and Lactobacillus acidophilus NCFM did not. None of the three selected LAB strains translocated to extraintestinal organs of TNBS-treated mice. In contrast, L. paracasei exacerbated colitis under severe inflammatory conditions and translocated to extraintestinal organs. This study showed that evaluations of the safety and functionality of new probiotics are recommended. We conclude that not all lactobacilli have similar effects on intestinal inflammation and that selected probiotics such as L. salivarius Ls-33 may be considered in the prevention or treatment of intestinal inflammation.  相似文献   

2.
Fructophilic lactic acid bacteria (FLAB) are a specific group of lactic acid bacteria (LAB) characterized and described only recently. They prefer fructose as growth substrate and inhabit only fructose-rich niches. Honeybees are high-fructose-consuming insects and important pollinators in nature, but reported to be decreasing in the wild. In the present study, we analyzed FLAB microbiota in honeybees, larvae, fresh honey and bee pollen. A total of 66 strains of LAB were isolated from samples using a selective isolation technique for FLAB. Surprisingly, all strains showed fructophilic characteristics. The 66 strains and ten FLAB strains isolated from flowers in a separate study were genotypically separated into six groups, four of which being identified as Lactobacillus kunkeei and two as Fructobacillus fructosus. One of the L. kunkeei isolates showed antibacterial activity against Melissococcus plutonius, a causative pathogen of European foulbrood, this protection being attributable to production of an antibacterial peptide or protein. Culture-independent analysis suggested that bee products and larvae contained simple Lactobacillus-group microbiota, dominated by L. kunkeei, although adult bees carried a more complex microbiota. The findings clearly demonstrate that honeybees and their products are rich sources of FLAB, and FLAB are potential candidates for future bee probiotics.  相似文献   

3.
《Journal of molecular biology》2014,426(23):3866-3876
The human gut is home to trillions of microbes that form a symbiotic relationship with the human host. During health, the intestinal microbiota provides many benefits to the host and is generally resistant to colonization by new species; however, disruption of this complex community can lead to pathogen invasion, inflammation, and disease. Restoration and maintenance of a healthy gut microbiota composition requires effective therapies to reduce and prevent colonization of harmful bacteria (pathogens) while simultaneously promoting growth of beneficial bacteria (probiotics). Here we review the mechanisms by which the host modulates the gut community composition during health and disease, and we discuss prospects for antibiotic and probiotic therapy for restoration of a healthy intestinal community following disruption.  相似文献   

4.
Probiotics, gut-colonizing microorganisms capable of conferring a number of health benefits to their hosts, are highly desirable as animal feed supplements. Members of the Gram-positive genus Bacillus are often utilized as probiotics, since endospores formed by those bacteria render them highly resistant to environmental extremes and therefore capable of surviving gastrointestinal tract conditions. In this study, 84 distinct bacterial colonies were obtained from bovine chyme and 29 isolates were determined as Bacillus species. These isolates were principally screened for their antimicrobial activity against a group of two Gram-positive and four Gram-negative bacteria, including known human and animal pathogens such as Salmonella enterica, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Seven strains displaying strong antimicrobial activity against the test cohort were further evaluated for other properties desirable from animal probiotics, including high spore-forming capacity and adhesiveness, resistance to pH extremes and ability to form biofilms. The isolates were found to resist simulated gastrointestinal conditions and most of the antibiotics tested. In addition, plasmid presence was checked and cytotoxicity tests were performed to evaluate the potential risks of antibiotic resistance transfer and unintended pathogenic effects on host, respectively. We propose that the bacterial isolates are suitable for use as animal probiotics.  相似文献   

5.

The current oral health crisis, whose causes are varied and complex, necessitates timely oral evaluation and early detection and treatment of oral health problems. Dramatic changes in eating habits and lifestyles are associated with the recent decline in oral health. Probiotics are “good” bacteria that support digestion and a healthy immune system and offer various health benefits to the host. Traditionally, probiotics have been used to improve gut health; the most common uses have historically been as a treatment or prevention of gastrointestinal infections and disease. During the last decade, studies have additionally suggested the intake of probiotics for oral health purposes. Probiotic use provides an effective strategy to combat oral disease, including the development of dental caries and periodontal infection. The aim of this review is to describe the beneficial roles of probiotic bacteria in the oral cavity and the potential mechanisms by which these bacteria exert their effects on oral health.

  相似文献   

6.
The aim of this work was to isolate novel lactobacilli probiotic strains from human feces and screen them for the presence of two valuable antitumor genes—the arginine deiminase-encoding gene arcA and l-asparaginase-encoding gene ansA—for future potential therapeutic application in cancer prevention. Feces samples were collected from Egyptian infants. Forty-two isolates were determined as Lactobacillus sp. and selected for further characterization. Only 20 isolates exhibited good tolerance to pH 1.5, 0.3 % bile salts and moderate tolerance to pancreatic enzymes in addition to antagonistic action. These isolates were screened by PCR for the presence of the arcA and ansA genes. Three strains were selected and identified to subspecies levels by amplification and sequencing of 16S rRNA genes as Lactobacillus gasseri NM112 containing the ansA gene; Lactobacillus fermentum NM212; and Lactobacillus casei NM312 containing the arcA gene, and confirmed by determining enzyme activity. We conclude that these three strains can be suggested as probiotics with potential therapeutic effect against cancer.  相似文献   

7.
Lactic acid bacteria (LAB) might offer opportunities as oral probiotics provided candidate strains persist in the mouth. After intake of a mixture of 69 LAB, strains of Lactobacillus fermentum and Lactobacillus salivarius were especially recovered. Coaggregation with other microbes is likely not a prerequisite for persistence since L. salivarius strongly coaggregated with typical oral cavity isolates, whereas L. fermentum failed to display this phenotype.  相似文献   

8.
Several studies have demonstrated a diversity of bacterial species in human milk, even in aseptically collected samples. The present study evaluated potential probiotic bacteria isolated from human milk and associated maternal variables. Milk samples were collected from 47 healthy women and cultured on selective and universal agar media under aerobic and anaerobic conditions. Bacterial isolates were counted and identified by Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight mass spectrometry and then tested for probiotic properties. Total bacteria in human milk ranged from 1.5 to 4.0 log10 CFU/mL. The higher bacterial counts were found in colostrum (mean = 3.9 log10 CFU/mL, 95% CI 3.14–4.22, p = 0.00001). The most abundant species was Staphylococcus epidermidis (n = 76). The potential probiotic candidates were Lactobacillus gasseri (n = 4), Bifidobacterium breve (n = 1), and Streptococcus salivarius (n = 4). Despite the small sample size, L. gasseri was isolated only in breast milk from mothers classified into a normal weight range and after a vaginally delivered partum. No potential probiotics showed antagonism against pathogens, but all of them agglutinated different pathogens. Nine bacterial isolates belonging to the species L. gasseri, B. breve, and S. salivarius were selected as potential probiotics. The present study confirms the presence in breast milk of a bacterial microbiota that could be the source of potential probiotic candidates to be used in the formula of simulated maternal milk.  相似文献   

9.
Lactic acid bacteria originated from swine feces and intestines were selected for potential probiotics based on their bile-salt resistance, low pH tolerance, potential adhesion to epithelial cells and especially functional properties, including production of antimicrobial substances, bile-salt hydrolase (BSH) and amylolytic activity. Results showed 7 isolates with antimicrobial activity, 5 with BSH activity and 3 with amylolytic activity were preliminarily selected from 485 lactic acid bacteria based on their highest potential with functional properties in vitro. The 15 isolates were further assayed on the essential characteristics as potential probiotics. All isolates were fully tolerant to 0.3% bile salts and 11 of them were able to resist pH 3 for 3 h without loss of viable cells. The eleven isolates were then evaluated on their adhesion capability. Wide variation in the hydrophobic character and specific adhesion efficiency was observed and three isolates G1-1, G22-2 and G8-5, with respective antimicrobial, BSH and amylolytic activities were finally selected. In addition, the three isolates were compatible in the coexistence assay. Isolate G1-1 was identified as Lactobacillus salivarius by API system and a 16S rRNA gene sequence analysis. Both G8-5 and G22-2 showed the closest homology to Lactobacillus reuteri according to their 16S rRNA gene sequences (99%). From the study, the three Lactobacilli strains were shown to share the functional properties necessary for probiotics use in animal additives. Their compatibility with respective in vitro activities was expected to show enhanced in vivo efficacy after combination for multistrain probiotics use.  相似文献   

10.
Lactic acid bacteria (LAB) are a well-used probiotics for health improvements in both humans and animals. Despite of several benefits, non-host-specific LAB showed poor probiotics effects due to difficulty in colonization and competition with normal flora. Therefore, the feasibility of porcine LAB isolates was evaluated as a probiotics. Ten of 49 Lactobacillus spp. isolates harbored 2∼10 kb plasmid DNA. Seven strains were selected based on the safety test, such as hemolytic activity, ammonia, indole, and phenylalanine production. After safety test, five strains were selected again by several tests, such as epithelial adherence, antimicrobial activity, tolerance against acid, bile, heat, and cold-drying, and production of acid and hydrogen peroxide. Then, enzyme profiles (ZYM test) and antibiotics resistance were analyzed for further characterization. Five Lactobacillus reuteri isolates from pig feces were selected by safety and functional tests. The plasmid DNA which was able to develop vector system was detected in the isolates. Together with these approaches, pig-specific Lactobacillus spp. originated from pigs were selected. These strains may be useful tools to develop oral delivery system.  相似文献   

11.
This study aimed to evaluate lactic acid bacteria isolates from Saanen goats’ milk for probiotic attributes, thereby determining their potential as direct-fed microbials for goats. Isolates were identified using API 50CH system, 16S rDNA sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry. All 17 isolates obtained were identified as Lactobacillus plantarum except one identified as Pediococcus acidilactici. Four isolates identified as L. plantarum (Accession numbers KJ026587.1, KM207826.1, KC83663.1 and KJ958428.1) by at least two of the techniques used and isolate 17 differently identified by all the methods used were selected as representatives and then screened for probiotic properties. These isolates displayed phenotypic probiotic attributes including tolerance to acid and bile salts, ability to adhere to intestines and possession of antagonistic activities against Proteus vulgaris, Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa and Escherichia coli. The lactic acid bacteria isolated from Saanen goats’ milk showed potential to be used as sustainable probiotics in goats’ industry. Successful use of probiotics in animals depends upon availability of appropriate isolates originating from the specific host animal. This study is a positive contribution towards identification of isolates with potential for formulation as direct-fed microbials for South African Saanen goats.  相似文献   

12.
益生菌与口腔微生态调控的研究进展   总被引:1,自引:1,他引:0  
口腔疾病的发生和发展与口腔微生物群落的失衡密切相关。益生菌是一类对人体健康有益的活的微生物,主要通过分泌抗菌物质、与致病菌竞争性定殖、调节毒力相关基因表达、调节宿主免疫反应、调节氧化应激反应、参与硝酸盐—亚硝酸盐—一氧化氮代谢循环通路、调整生物膜pH值等过程发挥其益生效能。研究发现,益生菌疗法能够降低龋齿的风险、改善牙周状况、提高口腔黏膜病的治疗效果,有望成为防治口腔疾病的潜在途径。本文就近年来益生菌与口腔微生态调控相关的研究情况做一综述。  相似文献   

13.
Purpose

Scientific information regarding the microbial content and functional aspects of fermented beverages traditionally produced in certain parts of Europe are scarce. However, such products are believed to have some health benefits and might contain functional bacterial strains, such as probiotics. The aim of the study was to identify such lactic acid bacteria strains isolated from water kefir and, for the first time, from braga, a Romanian fermented beverage made of cereals.

Methods

Lactic acid bacteria (LAB) were identified to species level based on (GTG)5-PCR fingerprinting and 16S rRNA gene sequencing. Selected strains were screened for their antibacterial activity and probiotic potential.

Results

Eight isolates belonging to seven Lactobacillus species were recovered from the two drinks. The identification of LAB involved in the fermentation of braga (Lactobacillus plantarum, Lactobacillus fermentum, and Lactobacillus delbrueckii) is firstly reported here. Five of the Lactobacillus isolates showed antibacterial activity against pathogenic bacteria, including Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, and Salmonella enterica. Moreover, most of them showed a good resistance to pH 2.5 and some survived at high concentrations of bile salts (up to 2%). Two L. plantarum isolates were able to inhibit all the indicator strains, and showed the best viability (about 70%) after a sequential treatment simulating the passage through the gastrointestinal tract.

Conclusion

Based on the results, the most promising candidates for designing new probiotic products are: L. plantarum BR9 from braga and L. plantarum CR1 from water kefir.

  相似文献   

14.
Aims: Not all lactic acid bacteria possess the ability to confer health benefits for the host. Thus, it becomes necessary to screen and characterize numerous strains to obtain ideal probiotics. Here, two Lactobacillus plantarum strains (CECT 7315 and CECT 7316) were isolated and characterized. Methods and Results: In vitro and in vivo tests were carried out for demonstrating the abilities as probiotics of CECT 7315/CECT 7316 Lact. plantarum strains. Both strains showed high ability to survive at gastro‐intestinal tract conditions and to adhere to intestinal epithelial cells, as well as great inhibitory activity against a wide range of enteropathogens and ability to induce the production of anti‐inflammatory cytokine IL‐10. Conclusions: Lactobacillus plantarum CECT 7315/CECT 7316 because of their potential probiotic properties could be excellent candidates for being tested in clinical trials aimed to demonstrate beneficial effects on human health. Significance and Impact of the Study: Probiotics are live micro‐organisms that confer a health benefit for the host. However, not all the lactic acid bacteria possess the ability to confer health benefits for the host. In this study, two Lact. plantarum strains (CECT 7315 and CECT 7316) were isolated and characterized to demonstrate their excellent qualities as potential probiotic strains.  相似文献   

15.
This study aimed to examine the effects of multi-species probiotic on growth, hematological status, intestinal microbes, and intestinal morphology of mrigal (Cirrhinus cirrhosus). The mrigal fries (average weight 0.51 g) were reared for 60 days by supplementing multi-species probiotics containing Bacillus spp. (1 × 109 cfu/mL) and Lactobacillus spp. (1 × 1011 cfu/mL) in the raising water at doses of 0 (control), 0.5, and 1.0 mL/L. The results indicated that fish reared with multi-species probiotics showed significantly higher growth performance and feed efficiency where the survival rate was similar in all cases. Accordingly, significant higher red blood cell (RBC) and white blood cell (WBC) were counted from the fish reared with multi-species probiotic. There was a considerable difference in bacterial microbiota between the experimental and control group. Multi-species probiotics significantly enhanced the length, width, and villus area. Several immune response indicators like fattening of intestinal mucosal fold, width of lamina propria, the width of enterocytes, and abundance of goblet cells were also increased significantly in fish that received multi-species probiotics. This study revealed that multi-species probiotics can significantly contribute to the growth of mrigal through upgrading intestinal microbiota and morphology, which can be suggested as an eco-friendly growth stimulator in mrigal farming.  相似文献   

16.
Probiotics are defined as live micro-organisms, which when administered in adequate amounts, confer health benefits on the host. Scientists have isolated various strains of Lactobacilli from human milk (such as Lactobacillus fermentum and Lactobacillus salivarius), and the presence of these organisms is thought to be protective against breast infections, or mastitis.Trials of probiotics for treating mastitis in dairy cows have had mixed results: some successful and others unsuccessful. To date, only one trial of probiotics to treat mastitis in women and one trial to prevent mastitis have been published. Although trials of probiotics to prevent mastitis in breastfeeding women are still in progress, health professionals in Australia are receiving marketing of these products.High quality randomised controlled trials are needed to assess the effectiveness of probiotics for the prevention and/or treatment of mastitis.  相似文献   

17.
Taking into account that fructophilic lactic acid bacteria (FLAB) can play an important role in the health of honey bees and can be used as probiotics, phenotypic properties of probiotic interest of Lactobacillus kunkeei (12 strains) and Fructobacillus fructossus bacteria (2 strains), isolated from Apis mellifera gastrointestinal tract, have been studied. We have evaluated survival of tested FLAB in honey bee gut, their susceptibility to antibiotics (ampicillin, erythromycin, tylosin), cell surface hydrophobicity, auto-aggregation ability, co-aggregation with model pathogenic bacteria, biofilm formation capacity, and effect of studied FLAB, added to sucrose syrup bee diet, on longevity of honey bees. The tested FLAB exhibited good gastrointestinal tract tolerance and high antibiotic susceptibility, which are important criteria in the screening of probiotic candidates. It was also found that all FLAB studied have high cell surface hydrophobicity and fulfil next selection criterion for their use as probiotics. Symbionts of A. mellifera showed also auto- and co-aggregation capacities regarded as valuable features for biofilm formation and inhibition of pathogens adhesion to the bee gut cells. Biofilm-development ability is a desired characteristic of probiotic lactic acid bacteria. As indicated by quantitative crystal violet-stained microplate assay and confocal laser scanning microscopy imaging, all studied A. mellifera gut isolates exhibit a biofilm positive phenotype. Moreover, it was also documented, on honey bees kept in cages, that supplementation of A. mellifera sucrose diet with FLAB decreases mortality and improves significantly longevity of honey bees. Presented research showed that A. mellifera FLAB symbionts are good candidates for application as probiotics.  相似文献   

18.
The main goal of our study was to evaluate the effect of the individual administration of five lyophilized lactic acid bacteria strains (Lactobacillus fermentum 428ST, Lactobacillus rhamnosus E4.2, Lactobacillus plantarum FCA3, Lactobacillus sp. 34.1, Weissella paramesenteroides FT1a) against the in vitro simulated microbiota of the human colon using the GIS1 system. The influence on the metabolic activity was also assessed by quantitative determination of proteins and polysaccharides at each segment of human colon. The obtained results indicated that the lactic acid bacteria L. rhamnosus E4.2 and W. paramesenteroides FTa1 had better efficiency in synthesising exopolysaccharides and also a better probiotic potential and therefore could be recommended for use in probiotics products or food industry.  相似文献   

19.
Dental caries is induced by oral biofilm containing Streptococcus mutans. Probiotic bacteria were mainly studied for effect on the gastrointestinal tract and have been known to promote human health. However, the information of probiotics for oral health has been lack yet. In this study, we investigated influence of various probiotics on oral bacteria or cariogenic biofilm and evaluated candidate probiotics for dental caries among them. The antimicrobial activity of the spent culture medium of probiotics for oral streptococci was performed. Probiotics were added during the biofilm formation with salivary bacteria including S. mutans. The oral biofilms were stained with a fluorescent dye and observed using the confocal laser scanning microscope. To count bacteria in the biofilm, the bacteria were plated on MSB and BHI agar plates after disrupting the biofilm and cultivated. Glucosyltransferases (gtfs) expression of S. mutans and integration of lactobacilli into the biofilm were evaluated by real-time RT-PCR. Among probiotics, Lactobacillus species strongly inhibited growth of oral streptococci. Moreover, Lactobacillus species strongly inhibited formation of cariogenic biofilm model. The expression of gtfs was significantly reduced by Lactobacillus rhamnosus. The integration of L. rhamnosus into the biofilm model did not exhibit. However, L. acidophilus and L casei integrated into the biofilm model. These results suggest that L. rhamnosus may inhibit oral biofilm formation by decreasing glucan production of S. mutans and antibacterial activity and did not integrate into oral biofilm, which can be a candidate for caries prevention strategy.  相似文献   

20.
《遗传学报》2021,48(8):716-726
The vaginal microbiota is less complex than the gut microbiota, and the colonization of Lactobacillus in the female vagina is considered to be critical for reproductive health. Oral probiotics have been suggested as promising means to modulate vaginal homeostasis in the general population. In this study, 60 Chinese women were followed for over a year before, during, and after treatment with the probiotics Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14. Shotgun metagenomic data of 1334 samples from multiple body sites did not support a colonization route of the probiotics from the oral cavity to the intestinal tract and then to the vagina. Our analyses enable the classification of the cervicovaginal microbiome into a stable state and a state of dysbiosis. The microbiome in the stable group steadily maintained a relatively high abundance of Lactobacilli over one year, which was not affected by probiotic intake, whereas in the dysbiosis group, the microbiota was more diverse and changed markedly over time. Data from a subset of the dysbiosis group suggests this subgroup possibly benefited from supplementation with the probiotics,indicating that probiotics supplementation can be prescribed for women in a subclinical microbiome setting of dysbiosis, providing opportunities for targeted and personalized microbiome reconstitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号