首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective inhibitors of factor Xa (FXa) are widely recognized as useful therapeutic tools for stroke prevention in non-valvular atrial fibrillation or venous thrombosis. Thrombin, which is rapidly generated from pro-thrombin through the activation of factor X to FXa, acts as a potent activator of human platelets. Thus, the reduction of thrombin generation by FXa inhibitor eventually causes a suppressive effect on platelet aggregation. However, little is known whether FXa inhibitors directly affect the function of human platelets. We have previously reported that collagen induces the phosphorylation of heat shock protein 27 (HSP27), a low-molecular weight heat shock protein via Rac-dependent activation of p44/p42 mitogen-activated protein (MAP) kinase in human platelets, eventually resulting in the release of HSP27. In the present study, we investigated the direct effect of FXa inhibitor on the collagen-induced human platelet activation. Rivaroxaban as well as edoxaban significantly reduced the collagen-induced phosphorylation of both HSP27 and p44/p42 MAP kinase without affecting the platelet aggregation. Rivaroxaban significantly inhibited the release of phosphorylated HSP27 from collagen-stimulated platelets but not the secretion of platelet derived growth factor-AB. In patients administrated with rivaroxaban, the collagen-induced levels of phosphorylated HSP27 were markedly diminished after 2 days of administration, which failed to affect the platelet aggregation. These results strongly suggest that FXa inhibitor reduces the collagen-stimulated release of phosphorylated HSP27 from human platelets due to the inhibition of HSP27 phosphorylation via p44/p42 MAP kinase.  相似文献   

2.
Seven of the 10 mammalian small heat shock proteins (sHSP) are expressed in muscle where they constitute 3% or more of total protein. sHSPs interact with one another, and these interactions are believed to be important for their functions. In cell types expressing multiple sHSPs, it is of interest to know which sHSPs interact with one another. We have previously shown that HSP22 interacts with itself as well as with HSP27, MKBP, and cvHSP. Using yeast two-hybrid assays and F?rster resonance energy transfer microscopy, we now show that HSP22 also can interact with two additional members of the sHSP family, alphaB-crystallin and HSP20. We also show that HSP22 is found in HPLC fractions of primate cardiac muscle containing high molecular weight complexes that include alphaB-crystallin and HSP20. Our results suggest that a variety of oligomers composed of different proportions of different sHSPs may form in cell types expressing multiple sHSPs.  相似文献   

3.
Thin-filament regulation of smooth muscle contraction involves phosphorylation, association, and dissociation of contractile proteins in response to agonist stimulation. Phosphorylation of caldesmon weakens its association with actin leading to actomyosin interaction and contraction. Present data from colonic smooth muscle cells indicate that acetylcholine induced a significant association of caldesmon with PKCalpha and sustained phosphorylation of caldesmon at ser789. Furthermore, acetylcholine induced significant and sustained increase in the association of phospho-caldesmon with heat-shock protein (HSP)27 with concomitant increase in the dissociation of phospho-caldesmon from tropomyosin. At the thin filament level, HSP27 plays a crucial role in acetylcholine-induced association of contractile proteins. Present data from colonic smooth muscle cells transfected with non-phospho-HSP27 mutant cDNA indicate that the absence of phospho-HSP27 inhibits acetylcholine-induced caldesmon phosphorylation. Our results further indicate that the presence of phospho-HSP27 significantly enhances acetylcholine-induced sustained association of phospho-caldesmon with HSP27 with a concomitant increase in acetylcholine-induced dissociation of phospho-caldesmon from tropomyosin. We thus propose a model whereby upon acetylcholine-induced phosphorylation of caldesmon at ser789, the association of phospho-caldesmon (ser789) with phospho-HSP27 results in an essential conformational change leading to dissociation of phospho-caldesmon from tropomyosin. This leads to the sliding of tropomyosin on actin thus exposing the myosin binding sites on actin for actomyosin interaction.  相似文献   

4.
Interaction of human HSP22 (HSPB8) with other small heat shock proteins   总被引:8,自引:0,他引:8  
Mammalian small heat shock proteins (sHSP) are abundant in muscles and are implicated in both muscle function and myopathies. Recently a new sHSP, HSP22 (HSPB8, H11), was identified in the human heart by its interaction with HSP27 (HSPB1). Using phylogenetic analysis we show that HSP22 is a true member of the sHSP superfamily. sHSPs interact with each other and form homo- and hetero-oligomeric complexes. The function of these complexes is poorly understood. Using gel filtration HPLC, the yeast two-hybrid method, immunoprecipitation, cross-linking, and fluorescence resonance energy transfer microscopy, we report that (i). HSP22 forms high molecular mass complexes in the heart, (ii). HSP22 interacts with itself, cvHSP (HSPB7), MKBP (HSPB2) and HSP27, and (iii). HSP22 has two binding domains (N- and C-terminal) that are specific for different binding partners. HSP22 homo-dimers are formed through N-N and N-C interactions, and HSP22-cvHSP hetero-dimers through C-C interaction. HSP22-MKBP and HSP22-HSP27 hetero-dimers involve the N and C termini of HSP22 and HSP27, respectively, but appear to require full-length protein as a binding partner.  相似文献   

5.
6.
Extracellular heat-shock protein 72 (eHsp72) expression during exercise-heat stress is suggested to increase with the level of hyperthermia attained, independent of the rate of heat storage. This study examined the influence of exercise at various intensities to elucidate this relationship, and investigated the association between eHsp72 and eHsp27. Sixteen male subjects cycled to exhaustion at 60% and 75% of maximal oxygen uptake in hot conditions (40°C, 50% RH). Core temperature, heart rate, oxidative stress, and blood lactate and glucose levels were measured to determine the predictor variables associated with eHsp expression. At exhaustion, heart rate exceeded 96% of maximum in both conditions. Core temperature reached 39.7°C in the 60% trial (58.9 min) and 39.0°C in the 75% trial (27.2 min) (P < 0.001). The rate of rise in core temperature was 2.1°C h−1 greater in the 75% trial than in the 60% trial (P < 0.001). A significant increase and correlation was observed between eHsp72 and eHsp27 concentrations at exhaustion (P < 0.005). eHsp72 was highly correlated with the core temperature attained (60% trial) and the rate of increase in core temperature (75% trial; P < 0.05). However, no common predictor variable was associated with the expression of both eHsps. The similarity in expression of eHsp72 and eHsp27 during moderate- and high-intensity exercise may relate to the duration (i.e., core temperature attained) and intensity (i.e., rate of increase in core temperature) of exercise. Thus, the immuno-inflammatory release of eHsp72 and eHsp27 in response to exercise in the heat may be duration and intensity dependent.  相似文献   

7.
One of the monoclonal antibodies raised against mitotic HeLa cells (termed as mH3) recognized a 27-kDa protein and stained microtubules in the mitotic spindles of HeLa cells. Immunoscreening of a HeLa cDNA library revealed that mH3 antigen is a small heat shock protein, HSP27. Immunoprecipitation analysis using mH3 suggested that both alpha- and beta-tubulin are associated with HSP27. Further, sucrose-cushioned ultra centrifugation revealed that HSP27 is co-sedimented with taxol-stabilized microtubules. These results indicate that HSP27 associates with tubulin/microtubules in HeLa cells.  相似文献   

8.
Background: Human chemokine-like factor 1 (CKLF1), a recently discovered chemokine, has a broad spectrum of biological functions in immune-mediated diseases. It is highly expressed on Th2 lymphocytes and is a functional ligand for human CCR4. CKLF1 has a major role in the recruitment and activation of leucocytes, which plays an important role in the pathogenesis of allergic diseases. The present study was designed to determine the expression of CKLF1 in skin and serum in patients with atopic dermatitis (AD).Methods: The CKLF1 protein expression in skin lesion was analyzed by immunohistochemistry and ELISA. The mRNA expression of CKLF1 in skin lesion was detected by Real-time PCR. The serum levels of CKLF1, IgE, eotaxin, IL-4, IL-5, and IL-13 were measured by ELISA.Results: Histopathological changes in the skin of AD patients showed local inflammation with epidermal thickening and significant inflammatory cellular infiltration. Immunohistochemistry results demonstrated that CKLF1-staining positive cells were located in the epidermal and dermis, and that the CKLF1 expression in AD patients was significantly higher than that in normal control. The CKLF1 mRNA expression in AD patients was significantly higher than that in healthy controls. Serum CKLF1 and IgE levels were significantly increased in AD patients, as were the serum levels of IL-4, IL-5, IL-13 and eotaxin.Conclusions: Both CKLF1 protien and mRNA levels are overexpressed in the skin lesion of AD patients, along with an increase in serum CKLF1 level, indicating that CKLF1 may play an important role in the development of atopic dermatitis.  相似文献   

9.
Most of the members of the superfamily of mammalian small heat shock or stress proteins are abundant in muscles where they play a role in muscle function and maintenance of muscle integrity. One member of this protein superfamily, human HSP27, is rapidly phosphorylated on three serine residues (Ser(15), Ser(78), and Ser(82)) during cellular response to a number of extracellular factors. To understand better the role of HSP27, we performed a yeast two-hybrid screen of a human heart cDNA library for HSP27-interacting proteins. By using the triple aspartate mutant, a mimic of phosphorylated HSP27, as "bait" construct, a protein with a molecular mass of 21.6 kDa was identified as an HSP27-binding protein. Sequence analysis revealed that this new protein shares an overall sequence identity of 33% with human HSP27. This protein also contains the alpha-crystallin domain in its C-terminal half, a hallmark of the superfamily of small stress proteins. Thus, the new protein itself is a member of this protein superfamily, and consequently we designated it HSP22. According to the two-hybrid data, HSP22 interacts preferentially with the triple aspartate form of HSP27 as compared with wild-type HSP27. HSP22 is expressed predominantly in muscles. In vitro, HSP22 is phosphorylated by protein kinase C (at residues Ser(14) and Thr(63)) and by p44 mitogen-activated protein kinase (at residues Ser(27) and Thr(87)) but not by MAPKAPK-2.  相似文献   

10.
Chaperones, also called heat shock proteins (HSPs), transiently interact with proteins to aid their folding, trafficking, and degradation, thereby directly influencing the transport of newly synthesized molecules. Induction of chaperones provides a potential therapeutic approach for protein misfolding disorders, such as peripheral myelin protein 22 (PMP22)-associated peripheral neuropathies. Cytosolic aggregates of PMP22, linked with a demyelinating Schwann cell phenotype, result in suppression of proteasome activity and activation of proteostatic mechanisms, including the heat shock pathway. Although the beneficial effects of chaperones in preventing the aggregation and improving the trafficking of PMP22 have been repeatedly observed, the requirement for HSP70 in events remains elusive. In this study, we show that activation of the chaperone pathway in fibroblasts from PMP22 duplication-associated Charcot–Marie–Tooth disease type 1A patient with an FDA-approved small molecule increases HSP70 expression and attenuates proteasome dysfunction. Using cells from an HSP70.1/3−/− (inducible HSP70) mouse model, we demonstrate that under proteotoxic stress, this chaperone is critical in preventing the aggregation of PMP22, and this effect is aided by macroautophagy. When examined at steady-state, HSP70 appears to play a minor role in the trafficking of wild-type-PMP22, while it is crucial for preventing the buildup of the aggregation-prone Trembler-J-PMP22. HSP70 aids the processing of Trembler-J-PMP22 through the Golgi and its delivery to lysosomes via Rab7-positive vesicles. Together, these results demonstrate a key role for inducible HSP70 in aiding the processing and hindering the accumulation of misfolded PMP22, which in turn alleviates proteotoxicity within the cells.  相似文献   

11.

Objective

To analyse if platelet responsiveness to aspirin (ASA) may be associated with a different ability of platelets to generate nitric oxide (NO).

Patients/Methods

Platelets were obtained from 50 patients with stable coronary ischemia and were divided into ASA-sensitive (n = 26) and ASA-resistant (n = 24) using a platelet functionality test (PFA-100).

Results

ASA-sensitive platelets tended to release more NO (determined as nitrite + nitrate) than ASA-resistant platelets but it did not reach statistical significance. Protein expression of nitric oxide synthase 3 (NOS3) was higher in ASA-sensitive than in ASA-resistant platelets but there were no differences in the platelet expression of nitric oxide synthase 2 (NOS2) isoform. The highest NOS3 expression in ASA-sensitive platelets was independent of the presence of T-to-C mutation at nucleotide position −786 (T−786→C) in the NOS3-coding gene. However, platelet content of phosphorylated NOS3 at Serine (Ser)1177, an active form of NOS3, was higher in ASA-sensitive than in ASA-resistant platelets. The level of platelet NOS3 Ser1177 phosphorylation was positively associated with the closure time in the PFA-100 test. In vitro, collagen failed to stimulate the aggregation of ASA-sensitive platelets, determined by lumiaggregometry, and it was associated with a significant increase (p = 0.018) of NOS3 phosphorylation at Ser1177. On the contrary, collagen stimulated the aggregation of ASA-resistant platelets but did not significantly modify the platelet content of phosphorylated NOS3 Ser1177. During collagen stimulation the release of NO from ASA-sensitive platelets was significantly enhanced but it was not modified in ASA-resistant platelets.

Conclusions

Functional platelet responsiveness to ASA was associated with the platelet content of phosphorylated NOS3 at Ser1177.  相似文献   

12.
In oligodendrogliomas, 1p loss of heterozygosity (LOH) is a predictor of good prognosis and treatment response. In contrast, in uveal melanomas, LOH of chromosome 3 has been linked to poor prognosis and downregulation of Hsp27. In the present study, we have analyzed the expression of heat-shock proteins (Hsps) to characterize subtypes of gliomas and their histopathologic features and to correlate with other molecular markers including LOH of 1p. Biopsies from patients with primary gliomas (n = 65) were analyzed by immunohistochemistry, chromogenic in situ hybridization and fluorescent in situ hybridization and methylation-specific PCR (MSP). Elevated Hsp27 and total Hsp70 expression levels were associated with high-grade astrocytomas (p = 0.0001 and p = 0.01, respectively). In grade III oligodendrogliomas, the Hsp27 levels were significantly higher (p = 0.03). Low O6-methylguanine-DNA methyltransferase (MGMT) expression was associated with grade II astrocytomas. Elevated β-catenin expression was associated with grade III/IV astrocytomas (p = 0.003); p53 (+) tumors were more frequently found in grade III/IV astrocytomas (p = 0,001). LOH on 1p was associated with oligodendroglial tumours. In addition, a higher Hsp27 expression correlated with LOH of 1p (p = 0.017); this was also tested in two glioma cell lines. MSP was successful in only six samples. No significant correlations were found for the other markers. In conclusion, in oligodendroglial tumors, Hsp27 appeared as a surrogate marker of LOH of 1p which could also help to predict the disease prognosis. In gliomas, p53, Hsp27, Hsp70, MGMT, and β-catenin correlated with histopathological characteristics, suggesting that these markers could predict the disease outcome and the response to treatments.  相似文献   

13.
Phosphorylation of receptor tyrosine kinases (RTKs) has a key role in cellular functions contributing to the malignant phenotype of tumor cells. We and others have previously demonstrated that RTK ROR1 is overexpressed in chronic lymphocytic leukemia (CLL). Silencing siRNA downregulated ROR1 and induced apoptosis of CLL cells. In the present study we analysed ROR1 isoforms and the phosphorylation pattern in CLL cells (n=38) applying western blot and flow-cytometry using anti-ROR1 antibodies and an anti-phospho-ROR1 antibody against the TK domain. Two major ROR1 bands with the size of 105 and 130 kDa respectively were identified, presumably representing unglycosylated (immature) and glycosylated (mature) ROR1 respectively as well as a 260 kDa band which may represent dimerized ROR1. A ROR1 band of 64 kDa that may correspond to a C-terminal fragment was also noted, present only in the nucleus. The 105 kDa ROR1 isoform was more frequently expressed in non-progressive as compared to progressive CLL patients (p=0.03). The 64, 105, 130 and 260 kDa bands were constitutively phosphorylated both at tyrosine and serine residues. Phosphorylation intensity of the mature (130 kDa) isoform was significantly higher in progressive than in non-progressive disease (p<0.001). Incubation of CLL cells with a mouse anti-ROR1 KNG or an anti-ROR1 CRD mAb respectively induced dephosphorylation of ROR1 before entering apoptosis. In conclusion CLL cells expressed different isoforms of ROR1 which were constitutively phosphorylated. The mature, phosphorylated ROR1 isoform was associated with a progressive disease stage. Targeting ROR1 by mAbs induced specific dephosphorylation and leukemic cell death. ROR1 might be an interesting therapeutic target.  相似文献   

14.
High expression of Hsp27 in glioma cells has been closely associated with tumor cell proliferation and apoptosis inhibition. The aim of the present study was to asses the effects of rosmarinic acid (RA) on Hsp27 expression and apoptosis in non-transfected and transfected human U-87 MG cells. The effect of rosmarinic acid was compared to quercetin, which is known to be a good Hsp27 inhibitor. In order to block the expression of Hsp27 gene (HSPB1), transfection with specific siRNAs was performed. Western blotting technique was used to assess the Hsp27 expression, and caspase-3 colorimetric activity assay was performed to determine apoptosis induction. According to the results, it was found that RA and quercetin effectively silenced Hsp27 and both agents induced apoptosis by activating the caspase-3 pathway. Eighty and 215 μM RA decreased the level of Hsp27 by 28.8 and 46.7% and induced apoptosis by 30 and 54%, respectively. For the first time, we reported that rosmarinic acid has the ability to trigger caspase-3 induced apoptosis in human glioma cells. As a result of siRNA transfection, the Hsp27 gene was silenced by ~?50% but did not cause a statistically significant change in caspase-3 activation. It was also observed that apoptosis was induced at a higher level as a result of Hsp27 siRNA and subsequent quercetin or RA treatment. siRNA transfection and 215 μM RA treatment suppressed Hsp27 expression level by 90.5% and increased caspase-3 activity by 58%. Herein, we demonstrated that RA administered with siRNA seems to be a potent combination for glioblastoma therapy.  相似文献   

15.
This case-control study aimed to investigate whether the levels of Hsp70 (HSPA1A) and Hsp27 (HSPB1) in plasma and lymphocytes were associated with the risk of chronic obstructive pulmonary disease (COPD) among coal workers. A total of 76 COPD cases and 48 age-matched healthy controls from a group of coal workers were included. The case group consisted of 35 COPD patients whose condition was complicated with coal workers’ pneumoconiosis (CWP) and 41 COPD patients without CWP. Heat shock proteins (Hsps) in plasma and lymphocytes were detected by ELISA and flow cytometry, respectively. Multiple logistic regression models were applied to estimate the association between Hsp levels and COPD risk. Our results showed that plasma Hsp70 and lymphocyte Hsp27 levels were significantly higher and plasma Hsp27 levels were significantly lower in COPD cases than in controls (p < 0.01). No significant differences in lymphocyte Hsp70 levels were found between COPD cases and the matched subjects. Higher plasma Hsp70 levels (odds ratio (OR) = 13.8, 95 % confidence interval (CI) = 5.7–33.5) and lower plasma Hsp27 levels (OR = 4.6, 95 % CI = 2.0–10.5) were significantly associated with an increased risk of COPD after adjusting for confounders. Higher lymphocyte Hsp27 levels were only associated with an increased risk of COPD with CWP (OR = 6.6, 95 % CI = 2.0–22.1) but not with an increased risk of COPD without CWP (OR = 3.0, 95 % CI = 0.9–8.9). Additionally, there were strong joint effects of different Hsps on COPD risk. These results showed that higher levels of plasma Hsp70 and lower levels of plasma Hsp27 might be associated with an increased risk of COPD among coal workers. They may have the potential to serve as monitoring markers for COPD in coal workers.  相似文献   

16.
To search for reliable biomarkers and drug targets for management of hepatocellular carcinoma (HCC), we performed a global proteomic analysis of a pair of HCC cell lines with distinct differentiation statuses using 2-DE coupled with MALDI-TOF MS. In total, 106 and 55 proteins were successfully identified from the total cell lysate and the cytosolic, nuclear and membrane fractions in well-differentiated (HepG2) and poorly differentiated (SK-Hep–1) HCC clonal variants, respectively. Among these proteins, nine spots corresponding to proteins differentially expressed between HCC cell types were selected and confirmed by immunofluorescence staining and western blotting. Notably, Annexin 1 (ANX1), ANX–2, vimentin and stress-associated proteins, such as GRP78, HSP75, HSC–70, protein disulfide isomerase (PDI), and heat shock protein–27 (HSP27), were exclusively up-regulated in SK-Hep–1 cells. Elevated levels of ANX–4 and antioxidant/metabolic enzymes, such as MnSOD, peroxiredoxin, NADP-dependent isocitrate dehydrogenase, α-enolase and UDP-glucose dehydrogenase, were observed in HepG2 cells. We functionally demonstrated that ANX1 and HSP27 were abundantly overexpressed only in highly invasive types of HCC cells, such as Mahlavu and SK-Hep–1. Knockdown of ANX1 or HSP27 in HCC cells resulted in a severe reduction in cell migration. The in-vitro observations of ANX1 and HSP27 expressions in HCC sample was demonstrated by immunohistochemical stains performed on HCC tissue microarrays. Poorly differentiated HCC tended to have stronger ANX1 and HSP27 expressions than well-differentiated or moderately differentiated HCC. Collectively, our findings suggest that ANX1 and HSP27 are two novel biomarkers for predicting invasive HCC phenotypes and could serve as potential treatment targets.  相似文献   

17.
18.
In Alzheimer disease (AD) and frontotemporal dementia the microtubule-associated protein Tau becomes progressively hyperphosphorylated, eventually forming aggregates. However, how Tau dysfunction is associated with functional impairment is only partly understood, especially at early stages when Tau is mislocalized but has not yet formed aggregates. Impaired axonal transport has been proposed as a potential pathomechanism, based on cellular Tau models and Tau transgenic mice. We recently reported K369I mutant Tau transgenic K3 mice with axonal transport defects that suggested a cargo-selective impairment of kinesin-driven anterograde transport by Tau. Here, we show that kinesin motor complex formation is disturbed in the K3 mice. We show that under pathological conditions hyperphosphorylated Tau interacts with c-Jun N-terminal kinase- interacting protein 1 (JIP1), which is associated with the kinesin motor protein complex. As a result, transport of JIP1 into the axon is impaired, causing JIP1 to accumulate in the cell body. Because we found trapping of JIP1 and a pathological Tau/JIP1 interaction also in AD brain, this may have pathomechanistic implications in diseases with a Tau pathology. This is supported by JIP1 sequestration in the cell body of Tau-transfected primary neuronal cultures. The pathological Tau/JIP1 interaction requires phosphorylation of Tau, and Tau competes with the physiological binding of JIP1 to kinesin light chain. Because JIP1 is involved in regulating cargo binding to kinesin motors, our findings may, at least in part, explain how hyperphosphorylated Tau mediates impaired axonal transport in AD and frontotemporal dementia.The microtubule-associated protein Tau is predominantly found in the axonal compartment of neurons, where it binds to microtubules (1). In human brain, six isoforms of Tau are expressed, due to alternative splicing of exons 2, 3 and 10 (2). Tau consists of an amino-terminal projection domain followed by 3 or 4 microtubule binding repeats (3R or 4R), due to splicing of exon 10, and a carboxyl-terminal tail region. In the AD3 and FTD brain, Tau forms filamentous inclusions (3). They are found in nerve cell bodies and apical dendrites as neurofibrillary tangles (NFTs), in distal dendrites as neuropil threads, and in the abnormal neurites that are associated with some amyloid plaques (neuritic plaques) (3). Hyperphosphorylation of Tau is thought to be an initiating step (4), as it detaches Tau from microtubules and makes it prone to form aggregates (1, 5). Whereas in AD no mutations have been identified in the MAPT gene encoding Tau, so far 42 intronic and exonic mutations have been found in familial forms of FTD (6). Their identification assisted in the generation of transgenic mouse models that reproduce NFT formation and memory impairment (7).The models were also instrumental in testing hypotheses that had been brought forward to link Tau pathology to functional impairment (810). In particular, defects in axonal transport have been implicated in neurodegenerative disorders (11, 12). Tau binding to microtubules affects axonal transport (13), and in cell culture overexpression of Tau was shown to lead to impaired transport of mitochondria and vesicles (14, 15). Axonal transport defects have also been reproduced in wild-type Tau transgenic mice (16) and in K369I mutant Tau K3 mice (17), whereas Tau expression failed to inhibit axonal transport in other systems (18, 19). This apparent discrepancy may depend on the type of cargos analyzed and, specifically, the experimental paradigm, e.g. using phosphorylated (16, 17, 20) versus non-phosphorylated Tau (18).To dissect Tau-mediated axonal transport defects at a molecular level, we used K3 mice that overexpress human Tau carrying the pathogenic FTD K369I mutation (17). We observed a pronounced hyperphosphorylation of transgenic Tau in many brain areas. Clinically, the mice present with an early onset motor phenotype that is, at least in part, caused by impairment of axonal transport in neurons of the substantia nigra. Interestingly, only selected aspects of anterograde axonal transport were impaired, in particular those of kinesin-I motor complex-driven vesicles and mitochondria. Our data suggest a selective impairment of axonal transport rather than a generalized, non-selective blockage of microtubules that has been established in cell culture systems, which fail to phosphorylate Tau at the high levels that are found in vivo even under physiological conditions. More importantly, in AD and FTD Tau is even more phosphorylated, i.e. hyperphosphorylated at physiological sites and de novo at pathological sites, preventing it from binding to microtubules (1).Based on our findings of an impaired kinesin-I-driven axonal transport in the K3 mice, we speculated that hyperphosphorylated Tau may impair anterograde transport by interfering directly with components of the kinesin-I motor complex rather than disrupting the binding of the kinesin heavy chain (see below) to microtubules. Axonal transport along microtubules is mediated by members of the kinesin superfamily (KIF) of motor proteins (2123). The KIFs typically consist of an ATPase domain that interacts with microtubules and drives movement and a domain that links to cargos, either directly or indirectly, as in the case of KIF5, by assembling with the kinesin light chain (KLC) to form the kinesin-I (KIF5/KLC) motor complex (24). In addition, increasing evidence suggests that scaffolding proteins mediate and regulate the binding of cargos to KIFs (21, 2527). These include the scaffold protein JNK-interacting protein (JIP) that is involved in the linkage of cargos to the kinesin-I motor complex via KLC (25, 2833).Here, by using the K3 mouse model, we identified a novel interaction of Tau and JIP in neurons that causes a trapping of JNK interacting protein 1 (JIP1) in the cell body of K3 mice, cell culture systems, and human AD brain. We found that the pathological interaction of hyperphosphorylated Tau and JIP1 competes with the physiological binding of JIP1 to KLC.  相似文献   

19.
20.
Hyper-phosphorylated tau accumulates as insoluble fibrils in Alzheimer’s disease (AD) and related dementias. The strong correlation between phosphorylated tau and disease has led to an interest in understanding how cellular factors discriminate it from normal tau. Here, we screen a panel of chaperones containing tetratricopeptide repeat (TPR) domains to identify those that might selectively interact with phosphorylated tau. We find that the E3 ubiquitin ligase, CHIP/STUB1, binds 10-fold more strongly to phosphorylated tau than unmodified tau. The presence of even sub-stoichiometric concentrations of CHIP strongly suppresses aggregation and seeding of phosphorylated tau. We also find that CHIP promotes rapid ubiquitination of phosphorylated tau, but not unmodified tau, in vitro. Binding to phosphorylated tau requires CHIP’s TPR domain, but the binding mode is partially distinct from the canonical one. In cells, CHIP restricts seeding by phosphorylated tau, suggesting that it could be an important barrier in cell-to-cell spreading. Together, these findings show that CHIP recognizes a phosphorylation-dependent degron on tau, establishing a pathway for regulating the solubility and turnover of this pathological proteoform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号