首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As rapid divisions without growth generate progressively smaller cells within an embryo, mitotic chromosomes must also decrease in size to permit their proper segregation, but this scaling phenomenon is poorly understood. We demonstrated previously that nuclear and spindle size scale between egg extracts of the related frog species Xenopus tropicalis and Xenopus laevis, but show here that dimensions of isolated mitotic sperm chromosomes do not differ. This is consistent with the hypothesis that chromosome scaling does not occur in early embryonic development when cell and spindles sizes are large and anaphase B segregates chromosomes long distances. To recapitulate chromosome scaling during development, we combined nuclei isolated from different stage Xenopus laevis embryos with metaphase-arrested egg extracts. Mitotic chromosomes derived from nuclei of cleaving embryos through the blastula stage were similar in size to replicated sperm chromosomes, but decreased in area approximately 50% by the neurula stage, reproducing the trend in size changes observed in fixed embryos. Allowing G2 nuclei to swell in interphase prior to mitotic condensation did not increase mitotic chromosome size, but progression through a full cell cycle in egg extract did, suggesting that epigenetic mechanisms determining chromosome size can be altered during DNA replication. Comparison of different sized mitotic chromosomes assembled in vitro provides a tractable system to elucidate underlying molecular mechanisms.  相似文献   

2.
As rapid divisions without growth generate progressively smaller cells within an embryo, mitotic chromosomes must also decrease in size to permit their proper segregation, but this scaling phenomenon is poorly understood. We demonstrated previously that nuclear and spindle size scale between egg extracts of the related frog species Xenopus tropicalis and Xenopus laevis but show here that dimensions of isolated mitotic sperm chromosomes do not differ. This is consistent with the hypothesis that chromosome scaling does not occur in early embryonic development when cell and spindle sizes are large and anaphase B segregates chromosomes long distances. To recapitulate chromosome scaling during development, we combined nuclei isolated from different stage Xenopus laevis embryos with metaphase-arrested egg extracts. Mitotic chromosomes derived from nuclei of cleaving embryos through the blastula stage were similar in size to replicated sperm chromosomes but decreased in area approximately 50% by the neurula stage, reproducing the trend in size changes observed in fixed embryos. Allowing G2 nuclei to swell in interphase prior to mitotic condensation did not increase mitotic chromosome size, but progression through a full cell cycle in egg extract did, suggesting that epigenetic mechanisms determining chromosome size can be altered during DNA replication. Comparison of different sized mitotic chromosomes assembled in vitro provides a tractable system to elucidate underlying molecular mechanisms.Key words: mitotic chromosomes, Xenopus, egg extracts, intracellular scaling, spindle, embryogenesis, cell division  相似文献   

3.
4.
Mitotic chromosome condensation in vertebrates   总被引:1,自引:0,他引:1  
Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes of proteins and their co-operation in establishing the final mitotic chromosome structure.  相似文献   

5.

Background  

Somatic cell nuclear transfer (SCNT) provides an appealing alternative for the preservation of genetic material in non-domestic and endangered species. An important prerequisite for successful SCNT is the availability of good quality donor cells, as normal embryo development is dependent upon proper reprogramming of the donor genome so that embryonic genes can be appropriately expressed. The characteristics of donor cell lines and their ability to produce embryos by SCNT were evaluated by testing the effects of tissue sample collection (DART biopsy, PUNCH biopsy, post-mortem EAR sample) and culture initiation (explant, collagenase digestion) techniques.  相似文献   

6.
Mitotic chromosome structure has been the cell biology equivalent of a 'riddle, wrapped in a mystery, inside an enigma'. Observations that genetic knockout or knockdown of condensin subunits or topoisomerase II cause only minimal perturbation in overall chromosome condensation, together with analysis of early stages of chromosome condensation and effects produced by histone H1 depletion, suggest a need to reconsider textbook models of mitotic chromosome condensation and organization.  相似文献   

7.
Measurements of apparent diffusion coefficient (ADC) using magnetic resonance imaging (MRI) have been suggested as potential imaging biomarkers for monitoring tumor response to treatment. However, conventional pulsed-gradient spin echo (PGSE) methods incorporate relatively long diffusion times, and are usually sensitive to changes in cell density and necrosis. Diffusion temporal spectroscopy using the oscillating gradient spin echo (OGSE) sequence is capable of probing short length scales, and may detect significant intracellular microstructural changes independent of gross cell density changes following anti-cancer treatment. To test this hypothesis, SW620 xenografts were treated by barasertib (AZD1152), a selective inhibitor of Aurora B kinase which causes SW620 cancer cells to develop polyploidy and increase in size following treatment, ultimately leading to cell death through apoptosis. Following treatment, the ADC values obtained by both the PGSE and low frequency OGSE methods increased. However, the ADC values at high gradient frequency (i.e. short diffusion times) were significantly lower in treated tumors, consistent with increased intracellular restrictions/hindrances. This suggests that ADC values at long diffusion times are dominated by tumor microstructure at long length scales, and may not convey unambiguous information of subcellular space. While the diffusion temporal spectroscopy provides more comprehensive means to probe tumor microstructure at various length scales. This work is the first study to probe intracellular microstructural variations due to polyploidy following treatment using diffusion MRI in vivo. It is also the first observation of post-treatment ADC changes occurring in opposite directions at short and long diffusion times. The current study suggests that temporal diffusion spectroscopy potentially provides pharmacodynamic biomarkers of tumor early response which distinguish microstructural variations following treatment at both the subcellular and supracellular length scales.  相似文献   

8.
Cells in the root meristem are organised in longitudinal files. Repeated transverse cell divisions in these files are the prime cause of root growth. Because of the orientation of the cell divisions, we expected to find mitoses with an spindle axis parallel to the file axis. However, we observed in the root cortex ofVicia faba large number of oblique chromosome orientations. From metaphase to telophase there was a dramatic increase of the rotation of the spindle axis. Measurements of both the size of the cortex cells and the chromosome configurations indicated that most cells were too small for an orientation of the spindle parallel to the file axis. Space limitation force the spindle into an oblique position. Despite this spindle axis rotation, most daughter cells remained within the original cell file. Only in extremely flat cells did the position of the daughter nuclei forced the cell to set a plane of division parallel to the file axis, which result in side-by-side orientation of the daughter cells. Telophase spindle axis rotations are also observed inCrepis capillaris andPetunia hybrida.. These species have respectively medium and small sized chromosomes compared toVicia. Since space limitation, which causes the rotation, depends both on cell and chromosome size, the frequency and extent of the phenomenon in former two species is comparatively low.  相似文献   

9.
In Drosophila, like most ectotherms, development at low temperature reduces growth rate but increases final adult size. Cultures were shifted from 25 degrees C to low (16.5 degrees C) or to high (29 degrees C) temperature at regular intervals through larval and pupal stages, and the flies of both sexes showed an increase or decrease, respectively, in the size of thorax, wing and abdominal tergite. Size changes in the wing blade resulted from changes in the size of the epidermal cells (with only a small increase in cell number in males reared at low temperature). The temperature-shifts became less effective as they were made at successively later developmental stages, demonstrating a cumulative effect of temperature on adult size. The thorax and wing develop from the same imaginal disc, with most cell division occurring in larval stages, but they differ in timing of temperature sensitivity, which extends only to pupariation or into the late pupal stage, respectively. Growth of the adult abdomen occurs largely after pupariation but its size is temperature-sensitive through both larval and pupal stages. We discuss growth control in Drosophila and the likely effects of temperature on food assimilation, growth efficiency and allocation of nutrients to the production of different tissues.  相似文献   

10.
The assembly and maintenance of eukaryotic flagella are regulated by intraflagellar transport (IFT), the bidirectional traffic of IFT particles (recently renamed IFT trains) within the flagellum. We previously proposed the balance-point length control model, which predicted that the frequency of train transport should decrease as a function of flagellar length, thus modulating the length-dependent flagellar assembly rate. However, this model was challenged by the differential interference contrast microscopy observation that IFT frequency is length independent. Using total internal reflection fluorescence microscopy to quantify protein traffic during the regeneration of Chlamydomonas reinhardtii flagella, we determined that anterograde IFT trains in short flagella are composed of more kinesin-associated protein and IFT27 proteins than trains in long flagella. This length-dependent remodeling of train size is consistent with the kinetics of flagellar regeneration and supports a revised balance-point model of flagellar length control in which the size of anterograde IFT trains tunes the rate of flagellar assembly.  相似文献   

11.
12.
Response of species to their environment is dependent on the scales that individuals interact with landscapes. Several life‐history traits have been suggested to influence scales of response to landscapes, but little empirical work has addressed this issue, limiting our ability to predict the relevant scale(s) at which species respond to their environment. Body size is frequently hypothesized to be relevant for predicting the effects of landscape structure on species given correlations between body size and various measures of mobility or perceptual range, yet evidence of this relationship remains equivocal. We conducted a meta‐analysis of 22 studies to address the question of whether body size is related to the characteristic scale at which bird species respond to landscape structure. On the basis of correlation coefficients and linear mixed models, we show that body size is positively related to the characteristic scale of response to landscapes. The strength of this relationship is less than body size – dispersal allometries, suggesting that response to landscapes may be influenced, in part, by factors other than dispersal (e.g. territory size). However, the strength of the observed body size – scale relationship may have been affected by several factors, including limitations in the range of body sizes and landscape extents tested. Our findings suggest that life‐history traits mediate aspects of the scales at which species respond to the landscape and contribute to developing a more predictive framework for investigating scalar relationships in nature.  相似文献   

13.
During cell division, the chromatin is compacted and resolved into discrete mitotic chromosomes whose proper formation is essential for the faithful distribution of the replicated genome to the daughter cells. Chromatin within mitotic chromosomes is packaged in an orderly and reproducible fashion, but the nature of this higher-order structure has remained elusive, as have the mechanisms of its establishment. Here we provide an overview of how the functional dissection of a non-histone protein complex, condensin, has contributed to our understanding of mitotic chromosomes. Recent studies have revealed that mitotic chromosome formation involves two events: chromatin compaction and establishment of a stable intrinsic higher-order structure. Surprisingly, condensin is only required for the second of these events.  相似文献   

14.
Bacterial cells change size dramatically with change in growth rate, but the ratio between cell volume and the number of copies of the origin of chromosome replication (oriC) is roughly constant at the time of initiation of DNA replication at almost all growth rates. Recent research on the inactivation of initiator protein (DnaA) and depletion of DnaA pools by the high-affinity DnaA-binding locus datA allows us to propose a simple model to explain the long-standing question of how Escherichia coli couples DNA replication to cell size.  相似文献   

15.
We have previously reported that the CD4+ T lymphocyte response against nuclear human CMV IE1 protein depends in part on endogenous MHC class II presentation. To optimize presentation by HLA-DR of the nuclear IE1 protein and increase the response by CD4+ T cells, we have constructed two different adenovirus vectors containing mutant versions of IE1, containing a HLA-DR3 epitope, fused to GFP. The first construct consisted of a sequence of 46 aa encoded by exon 4, called GFP-IE1 (86-131). The second construct consisted of the whole IE1 mutated on exon 4 nuclear localization signals, identified in this study, and deleted of already known exon 2 nuclear localization signals (GFP-IE1M). Both of these IE1 vectors expressed proteins with cytoplasmic localization, as evidenced by GFP expression, as opposed to control GFP-IE1, which was nuclear. GFP-IE1 (86-131) induced IE1-specific CD4+ T cell clone response that was >30-fold more potent than that against GFP-IE1 and GFP-IE1M. The CD4+ T cell response was due to endogenous presentation followed by exogenous presentation at later time points. Presentation was dependent on both proteasome and acidic compartments. GFP-IE1 (86-131) was rapidly degraded by the APC, which may account for better presentation. Our data show potentiation of the CD4+ T cell response to a specific epitope through shortening and relocation of an otherwise nuclear protein and suggest applications in vaccination.  相似文献   

16.
Mitotic remodeling of the replicon and chromosome structure   总被引:8,自引:0,他引:8  
Lemaitre JM  Danis E  Pasero P  Vassetzky Y  Méchali M 《Cell》2005,123(5):787-801
Animal cloning by nuclear-transfer experiments frequently fails due to the inability of transplanted nuclei to support normal embryonic development. We show here that the formation of mitotic chromosomes in the egg context is crucial for adapting differentiated nuclei for early development. Differentiated erythrocyte nuclei replicate inefficiently in Xenopus eggs but do so as rapidly as sperm nuclei if a prior single mitosis is permitted. This mitotic remodeling involves a topoisomerase II-dependent shortening of chromatin loop domains and an increased recruitment of replication initiation factors onto chromatin, leading to a short interorigin spacing characteristic of early developmental stages. It also occurs within each early embryonic cell cycle and dominantly regulates initiation of DNA replication for the subsequent S phase. These results indicate that mitotic conditioning is crucial to reset the chromatin structure of differentiated adult donor cells for embryonic DNA replication and suggest that it is an important step in nuclear cloning.  相似文献   

17.
18.
Mitotic chromosome doubling of plant tissues in vitro   总被引:4,自引:0,他引:4  
In vitro chromosome doubling can be induced by several antimitotic agents. The most commonly used are colchicine, oryzalin and trifluralin. The process of induced chromosome doubling in vitro consists of a typical succession of sub-processes, including an induction phase and a confirmation protocol to measure the rate of success. The induction step depends on a large number of variables: media, antimitotic agents, explant types, exposure times and concentrations. Flow cytometry is the pre-eminent method for evaluation of the induced polyploidization. However, alternative confirmation methods, such as chromosome counts and morphological observations, are also used. Since polyploidization has many consequences for plant growth and development, chromosome doubling has been intensively studied over the years and has found its way to several applications in plant breeding. This review gives an overview of the common methods of chromosome doubling in vitro, the history of the technique, and progress made over the years. The applications of chromosome doubling in a broader context are also discussed.  相似文献   

19.
Plant nuclear genome size (GS) varies over three orders of magnitude and is correlated with cell size and growth rate. We explore whether these relationships can be owing to geometrical scaling constraints. These would produce an isometric GS-cell volume relationship, with the GS-cell diameter relationship with the exponent of 1/3. In the GS-cell division relationship, duration of processes limited by membrane transport would scale at the 1/3 exponent, whereas those limited by metabolism would show no relationship. We tested these predictions by estimating scaling exponents from 11 published datasets on differentiated and meristematic cells in diploid herbaceous plants. We found scaling of GS-cell size to almost perfectly match the prediction. The scaling exponent of the relationship between GS and cell cycle duration did not match the prediction. However, this relationship consists of two components: (i) S phase duration, which depends on GS, and has the predicted 1/3 exponent, and (ii) a GS-independent threshold reflecting the duration of the G1 and G2 phases. The matches we found for the relationships between GS and both cell size and S phase duration are signatures of geometrical scaling. We propose that a similar approach can be used to examine GS effects at tissue and whole plant levels.  相似文献   

20.
Cuadras J  Marti A 《Tissue & cell》1992,24(2):191-202
The morphology and ultrastructure of cell nuclei in neurons of the third abdominal ganglion of crayfish were studied from alternating series of ultrathin and semithin sections. The ganglion contains approximately 850 neurons with sizes between 10 and 200 mum. Cell nuclei show a great variability. Their size, the chromatin distribution, the number of nuclear pores, the degree of nucleolar segregation and the size of nucleolus vary in close relationships with the cell size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号