首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
AimsProtection of cells from oxidative insult may be possible through direct scavenging of reactive oxygen species, or through stimulation of intracellular antioxidant defense mechanisms by induction of antioxidant gene expression. In this study we investigated the cytoprotective effect of chamomile and elucidated the underlying mechanisms.Main methodsThe cytoprotective effect of chamomile was examined on H2O2-induced cellular stress in RAW 264.7 murine macrophages.Key findingsRAW 264.7 murine macrophages treated with chamomile were protected from cell death caused by H2O2. Treatment with 50 μM H2O2 for 6 h caused significant increase in cellular stress accompanied by cell death in RAW 264.7 macrophages. Pretreatment with chamomile at 10–20 μg/mL for 16 h followed by H2O2 treatment protected the macrophages against cell death. Chamomile exposure significantly increased the expression of antioxidant enzymes viz. heme oxygenase-1 (HO-1), peroxiredoxin-1 (Prx-1), and thioredoxin-1 (Trx-1) in a dose-dependent manner, compared with their respective controls. Chamomile increased nuclear translocation of Nrf2 with increased phosphorylated Nrf2 levels, and binding to the antioxidant response element in the nucleus.SignificanceThese molecular findings for the first time provide insights into the mechanisms underlying the induction of phase 2 enzymes through the Keap1-Nrf2 signaling pathway by chamomile, and provide evidence that chamomile possesses antioxidant and cytoprotective properties.  相似文献   

4.
《Phytomedicine》2014,21(10):1189-1195
Oxidative stress resulting from accumulation of reactive oxygen species (ROS) is involved in cell death associated with neurological disorders such as stroke, Alzheimer's disease and traumatic brain injury. Antioxidant compounds that improve endogenous antioxidant defenses have been proposed for neural protection. The purpose of this study was to investigate the potential protective effects of total saponin in leaves of Panax notoginseng (LPNS) on oxidative stress and cell death in brain cells in vitro. Lactate dehydrogenase (LDH) assay indicated that LPNS (5 μg/ml) reduced H2O2-induced cell death in primary rat cortical astrocytes (23 ± 8% reduction in LDH release vs. control). Similar protection was found in oxygen and glucose deprivation/reoxygenation induced SH-SY5Y (a human neuroblastoma cell line) cell damage (78 ± 7% reduction vs. control). The protective effects of LPNS in astrocytes were associated with attenuation of reactive oxygen species (ROS) accumulation. These effects involved activation of Nrf2 (nuclear translocation) and upregulation of downstream antioxidant systems including heme oxygenase-1 (HO-1) and glutathione S-transferase pi 1 (GSTP1). These results demonstrate for the first time that LPNS has antioxidative effects which may be neuroprotective in neurological disorders.  相似文献   

5.
To examine the role of intracellular labile iron pool (LIP), ferritin (Ft), and antioxidant defence in cellular resistance to oxidative stress on chronic adaptation, a new H2O2-resistant Jurkat T cell line “HJ16” was developed by gradual adaptation of parental “J16” cells to high concentrations of H2O2. Compared to J16 cells, HJ16 cells exhibited much higher resistance to H2O2-induced oxidative damage and necrotic cell death (up to 3 mM) and had enhanced antioxidant defence in the form of significantly higher intracellular glutathione and mitochondrial ferritin (FtMt) levels as well as higher glutathione-peroxidase (GPx) activity. In contrast, the level of the Ft H-subunit (FtH) in the H2O2-adapted cell line was found to be 7-fold lower than in the parental J16 cell line. While H2O2 concentrations higher than 0.1 mM fully depleted the glutathione content of J16 cells, in HJ16 cells the same treatments decreased the cellular glutathione content to only half of the original value. In HJ16 cells, H2O2 concentrations higher than 0.1 mM increased the level of FtMt up to 4-fold of their control values but had no effect on the FtMt levels in J16 cells. Furthermore, while the basal cytosolic level of LIP was similar in both cell lines, H2O2 treatment substantially increased the cytosolic LIP levels in J16 but not in HJ16 cells. H2O2 treatment also substantially decreased the FtH levels in J16 cells (up to 70% of the control value). In contrast in HJ16 cells, FtH levels were not affected by H2O2 treatment. These results indicate that chronic adaptation of J16 cells to high concentrations of H2O2 has provoked a series of novel and specific cellular adaptive responses that contribute to higher resistance of HJ16 cells to oxidative damage and cell death. These include increased cellular antioxidant defence in the form of higher glutathione and FtMt levels, higher GPx activity, and lower FtH levels. Further adaptive responses include the significantly reduced cellular response to oxidant-mediated glutathione depletion, FtH modulation, and labile iron release and a significant increase in FtMt levels following H2O2 treatment.  相似文献   

6.
Aloe-emodin (AE) is one of the most important active components of Rheum officinale Baill. The present study aimed to investigate that AE could attenuate scopolamine-induced cognitive deficits via inhibiting acetylcholinesterase (AChE) activity and modulating oxidative stress. Kunming (KM) mice were received intraperitoneal injection of scopolamine (2 mg/kg) to induce cognitive impairment. Learning and memory performance were assessed in the Morris water maze (MWM). After behavioral testing, the mice were sacrificed and their hippocampi were removed for biochemical assays (superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA), AChE and acetylcholine (ACh)). In vitro, we also performed the AChE activity assay and H2O2-induced PC12 cells toxicity assay. After 2 h exposure to 200 μM H2O2 in PC12 cells, the cytotoxicity were evaluated by cell viability (MTT), nitric oxide (NO)/lactate dehydrogenase (LDH) release and intracellular reactive oxygen species (ROS) production. Our results confirmed that AE showed significant improvement in cognitive deficit in scopolamine-induced amnesia animal model. Besides, it increased SOD, GPx activities and ACh content, while decreased the level of MDA and AChE activity in AE treated mice. In addition, AE was found to inhibit AChE activity (IC50 = 18.37 μg/ml) in a dose-dependent manner. Furthermore, preincubation of PC12 cells with AE could prevent cytotoxicity induced by H2O2 and reduce significantly extracellular release of NO, LDH and intracellular accumulation of ROS. The study indicated that AE could have neuroprotective effects against Alzheimer’s disease (AD) via inhibiting the activity of AChE and modulating oxidative stress.  相似文献   

7.
Oxidative stress, induced by reactive oxygen species (ROS), is implicated in the pathogenesis of plaque formation and instability. During this ongoing oxidative process, cells in the vasculature are exposed to the atherogenicity of the plaque; previous studies have suggested that the arterial plaque, apart from being a consequence of the development of atherosclerosis, is also a cause of its progression.ObjectiveIn this study, we challenged this idea by investigating the effect of carotid plaque lipid extract on the human monocyte antioxidant system.Methods and ResultsExposure of monocytes to carotid plaque lipid extract (LE) for up to 72 h resulted in a significant increase in the ROS level (170%), with a simultaneous rise of 177% in glutathione oxidation. Experiments revealed a significant decrease, in the intracellular antioxidant enzyme activity of CAT, GPx and TRxR, (by 17, 33 and 43%, respectively). Although the activity of these enzymes subsequently returned to those of the controls, the levels of ROS did not decrease but rather continued increasing with extended LE exposure. Intriguingly, intracellular SOD activity rose significantly and remained high (176%), implying that endogenously produced H2O2, and not O2·¯ < is the factor that promotes the oxidative stress resulting from the presence of LE.ConclusionLipids from the atherosclerotic plaque may contribute to the progression of atherogenic conditions in adjacent regions by weakening the cellular antioxidant system and promoting oxidative stress, mainly through H2O2 production.  相似文献   

8.
9.
The proteasome inhibitor MG132 has been shown to induce apoptotic cell death through the formation of reactive oxygen species (ROS). Here, we evaluated the effects of MG132 on the growth and death of As4.1 juxtaglomerular cells in relation to ROS and glutathione (GSH) levels. MG132 inhibited the growth of As4.1 cells with an IC50 of approximately 0.3–0.4 μM at 48 h and induced cell death, which was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm), Bcl-2 decrease, activation of caspase-3 and -8, and PARP cleavage. MG132 increased intracellular ROS levels including O2? and GSH depleted cell numbers. N-acetyl cysteine (NAC, a well-known antioxidant) significantly decreased ROS level and GSH depleted cell numbers in MG132-treated As4.1 cells, along with the prevention of cell growth inhibition, cell death and MMP (ΔΨm) loss. NAC also decreased the caspase-3 activity of MG132. l-Buthionine sulfoximine (BSO; an inhibitor of GSH synthesis) or diethyldithiocarbamate (DDC; an inhibitor of Cu/Zn-SOD) did not affect cell growth, death, ROS and GSH levels in MG132-treated As4.1 cells. Conclusively, MG132 reduced the growth of As4.1 cells via apoptosis. The changes of ROS and GSH by MG132 were involved in As4.1 cell growth and death.  相似文献   

10.
Aim and objectiveHippophae rhamnoides is an edible, nutrient rich plant found in the northern regions of India. It belongs to the family Elaeagnaceae and is well known for its traditional pharmacological activities. The present study was aimed to investigate the antioxidant and neuroprotective activities of H. rhamnoides.MethodologyThe hydroalcoholic extract of H. rhamnoides was evaluated for free radical scavenging activity using DPPH, hydroxyl radical scavenging and ferric thiocyanate assays. In vitro neuroprotective activity was assessed on human neuroblastoma cell line-IMR32 against hydrogen peroxide (H2O2) induced cytotoxicity. The neuroprotective effect was determined by measuring the cell viability through tetrazolium dye MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reducing assay and propidium iodide (PI) staining. Also the intracellular reactive oxygen species (ROS) activity was assessed using dichloro-dihydro-fluorescein diacetate (DCFDA) assay by flowcytometer.ResultsThe results of the study demonstrated that H. rhamnoides extract possesses potential free radical scavenging activity. The IC50 value for DPPH and OH radical scavenging assay was 70.92 μg/ml and 0.463 mg/ml, also the extract was also found to have considerable level of lipid peroxidation activity. The neuroprotective effect of H. rhamnoides was confirmed by its cell viability enhancing capacity against hydrogen peroxide induced cell cytotoxicity. The extract acted on IMR32 cells in a dose dependent manner as observed through PI and MTT assays. The percentage intracellular ROS activity was reduced by 60–70% in treated cells compared to H2O2 control.ConclusionThus the outcome of the study suggests that H. rhamnoides acts as a neuroprotectant against oxidative stress induced neurodegeneration.  相似文献   

11.
AimsRecent interest has focused on plant antioxidants as potentially useful neuroprotective agents. In most studies only the genuine forms of flavonoids were used, although they are rapidly metabolized. Therefore, we have compared protective activities of two flavonoids (luteolin, quercetin) and two of their bioavailable metabolites (3,4-DHPAA and 3,4-DHT) against oxidative stress, induced by peroxides (t-BHP, H2O2) and iron (FeSO4), in neuronal PC12 cells.Main methodsWe have measured their effect on the prevention of cell death (MTT assay), glutathione depletion (GSH assay), lipid peroxidation (MDA assay) and production of ROS (DCF assay). Differentiated PC12 cells were used as a model system of neuronal cells. The compounds (concentration range 6–25 µmol/L) were tested in preincubation and coincubation experiments.Key findingsIn MTT and DCF assays all tested compounds showed excellent protection. When cells were exposed to peroxides, both metabolites increased GSH levels less efficiently than their parent flavonoids in both types of incubations. Following exposure to iron, only coincubation significantly prevented GSH depletion and the metabolites surprisingly mimicked the suppressive effect of flavonoids. MDA levels induced by all stressors were reduced more potently during coincubation than during preincubation with polyphenols. While the lipophilic metabolite 3,4-DHT exerted excellent antilipoperoxidant activity, the hydrophilic metabolite 3,4-DHPAA was less effective.SignificanceThese results demonstrate that most of the protective effects of flavonoids against oxidative stress in PC12 cells are continued despite biodegradation of the parent flavonoids. In general, the lipophilic metabolite 3,4-DHT was more active than the hydrophilic 3,4-DHPAA.  相似文献   

12.
Pyruvate dehydrogenase (PDHC) and α-ketoglutarate dehydrogenase complex (KGDHC) are important sources of reactive oxygen species (ROS). In addition, it has been found that mitochondria can also serve as sinks for cellular hydrogen peroxide (H2O2). However, the ROS forming and quenching capacity of liver mitochondria has never been thoroughly examined. Here, we show that mouse liver mitochondria use catalase, glutathione (GSH), and peroxiredoxin (PRX) systems to quench ROS. Incubation of mitochondria with catalase inhibitor 3-amino-1,2,4-triazole (triazole) induced a significant increase in pyruvate or α-ketoglutarate driven O2/H2O2 formation. 1-Choro-2,4-dinitrobenzene (CDNB), which depletes glutathione (GSH), elicited a similar effect. Auranofin (AF), a thioredoxin reductase-2 (TR2) inhibitor which disables the PRX system, did not significantly change O2/H2O2 formation. By contrast catalase, GSH, and PRX were all required to scavenging extramitochondrial H2O2. In this study, the ROS forming potential of PDHC, KGDHC, Complex I, and Complex III was also profiled. Titration of mitochondria with 3-methyl-2-oxovaleric acid (KMV), a specific inhibitor for O2/H2O2 production by KGDHC, induced a ~ 86% and ~ 84% decrease in ROS production during α-ketoglutarate and pyruvate oxidation. Titration of myxothiazol, a Complex III inhibitor, decreased O2/H2O2 formation by ~ 45%. Rotenone also lowered ROS production in mitochondria metabolizing pyruvate or α-ketoglutarate indicating that Complex I does not contribute to ROS production during forward electron transfer from NADH. Taken together, our results indicate that KGDHC and Complex III are high capacity sites for O2/H2O2 production in mouse liver mitochondria. We also confirm that catalase plays a role in quenching either exogenous or intramitochondrial H2O2.  相似文献   

13.
AimsRed blood cells (RBCs) have an extensive antioxidant system designed to eliminate the formation of reactive oxygen species (ROS). Nevertheless, RBC oxidant stress has been demonstrated by the formation of a fluorescent heme degradation product (excitation (ex) 321 nm, emission (em) 465 nm) both in vitro and in vivo. We investigated the possibility that the observed heme degradation results from ROS generated on the membrane surface that are relatively inaccessible to the cellular antioxidants.Main methodsMembrane and cytosol were separated by centrifugation and the fluorescence intensity and emission maximum were measured. The effect on the maximum emission of adding oxidized and reduced hemoglobin to the fluorescent product formed when hemin is degraded by hydrogen peroxide (H2O2) was studied.Key findings90% of the fluorescent heme degradation products in hemolysates are found on the membrane. Furthermore, these products are not transferred from the cytosol to the membrane and must, therefore, be formed on the membrane. We also showed that the elevated level of heme degradation in HbCC cells that is attributed to increased oxidative stress was found on the membrane.SignificanceThese results suggest that, although ROS generated in the cytosol are neutralized by antioxidant enzymes, H2O2 generated by the membrane bound hemoglobin is not accessible to the cytosolic antioxidants and reacts to generate fluorescent heme degradation products. The formation of H2O2 on the membrane surface can explain the release of ROS from the RBC to other tissues and ROS damage to the membrane that can alter red cell function and lead to the removal of RBCs from circulation by macrophages.  相似文献   

14.
Cancer cells are highly metabolically active and produce high levels of reactive oxygen species (ROS). Drug resistance in cancer cells is closely related to their redox status. The role of ROS and its impact on cancer cell survival seems far from elucidation. The mechanisms through which glioblastoma cells overcome aberrant ROS and oxidative stress in a milieu of hypermetabolic state is still elusive. We hypothesize that the formidable growth potential of glioma cells is through manipulation of tumor microenvironment for its survival and growth, which can be attributed to an astute redox regulation through a nexus between activation of N‐methyl‐d ‐aspartate receptor (NMDAR) and glutathione (GSH)‐based antioxidant prowess. Hence, we examined the NMDAR activation on intracellular ROS level, and cell viability on exposure to hydrogen peroxide (H2O2), and antioxidants in glutamate‐rich microenvironment of glioblastoma. The activation of NMDAR attenuated the intracellular ROS production in LN18 and U251MG glioma cells. MK‐801 significantly reversed this effect. On evaluation of GSH redox cycle in these cells, the level of reduced GSH and glutathione reductase (GR) activity were significantly increased. NMDAR significantly enhanced the cell viability in LN18 and U251MG glioblastoma cells, by attenuating exogenous H2O2‐induced oxidative stress, and significantly increased catalase activity, the key antioxidant that detoxifies H2O2. We hereby report an unexplored role of NMDAR activation induced protection of the rapidly multiplying glioblastoma cells against both endogenous ROS as well as exogenous oxidative challenges. We propose potentiation of reduced GSH, GR, and catalase in glioblastoma cells through NMDAR as a novel rationale of chemoresistance in glioblastoma.  相似文献   

15.
Yang YT  Whiteman M  Gieseg SP 《Life sciences》2012,90(17-18):682-688
AimsMacrophages must function in an inflammatory environment of high oxidative stress due to the production of various oxidants. Hypochlorous acid (HOCl) is a potent cytotoxic agent generated by neutrophils and macrophages within inflammatory sites. This study determines whether glutathione is the key factors governing macrophage resistance to HOCl.Main methodsHuman monocyte derived macrophages (HMDM) were differentiated from human monocytes prepared from human blood. The HMDM cells were exposed to micromolar concentrations of HOCl and the timing of the cell viability loss was measured. Cellular oxidative damage was measured by loss of glutathione, cellular ATP, tyrosine oxidation, and inactivation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH).Key findingsHOCl causes a rapid loss in HMDM cell viability above threshold concentrations. The cell death occurred within 10 min of treatment with the morphological characteristics of necrosis. The HOCl caused the extensive cellular protein oxidation with the loss of tyrosine residue and inactivation of GAPDH, which was accompanied with the loss of cellular ATP. This cellular damage was only observed after the loss of intracellular GSH from the cell. Removal of intracellular GSH with diethyl maleate (DEM) increased the cells' sensitivity to HOCl damage while protecting the intracellular GSH pool with the antioxidant 7,8-dihydroneopterin prevented the HOCl mediated viability loss. Variations in the HOCl LD50 for inducing cell death were strongly correlated with initial intracellular GSH levels.SignificanceIn HMDM cells scavenging of HOCl by intracellular glutathione is sufficient to protect against oxidative loss of key metabolic functions within the cells.  相似文献   

16.
(1) Morroniside belongs to an extensive group of natural iridorid glycosides. In the present study, using human neuroblastoma SH-SY5Y cells, we have investigated the protective effects of this compound on modifications in endogenous reduced glutathione (GSH), intracellular oxygen species (ROS) and apoptotic death on H2O2-mediated cytoxicity. (2) Incubation of cells with morroniside led to a significant dose-dependent elevation of cellular GSH accompanied by a marked protection against H2O2-mediated toxicity. Morroniside at 1–100 μM inhibited the formation of ROS and the activation of caspase-3 and 9, and the upregulation of Bcl-2, whereas no significant change occurred in Bax levels. (3) The results indicated that the anti-oxidative and anti-apoptotic properties render this natural compound potentially protective against H2O2-induced cytotoxicity. (4) This study suggested that intracellular GSH appeared to be an important factor in morroniside-mediated cytoprotection against H2O2-toxicity in SH-SY5Y cells.  相似文献   

17.
Oxidative stress-mediated cell death in cardiomyocytes reportedly plays an important role in many cardiac pathologies. Our previous report demonstrated that mitochondrial SIRT3 plays an essential role in mediating cell survival in cardiac myocytes, and that resveratrol protects cardiomyocytes from oxidative stress-induced apoptosis by activating SIRT3. However, the exact mechanism by which SIRT3 prevents oxidative stress remains unknown. Here, we show that exposure of H9c2 cells to 50 μM H2O2 for 6 h caused a significant increase in cell death and the down-regulation of SIRT3. Reactive oxygen species (ROS)-mediated NF-κB activation was involved in this SIRT3 down-regulation. The SIRT3 activator, resveratrol, which is considered an important antioxidant, protected against H2O2-induced cell death, whereas the SIRT inhibitor, nicotinamide, enhanced cell death. Moreover, resveratrol negatively regulated H2O2-induced NF-κB activation, whereas nicotinamide enhanced H2O2-induced NF-κB activation. We also found that SOD2, Bcl-2 and Bax, the downstream genes of NF-κB, were involved in this pathological process. These results suggest that SIRT3 protects cardiomyocytes exposed to oxidative stress from apoptosis via a mechanism that may involve the NF-κB pathway.  相似文献   

18.
The aim of this work was to study the antioxidant activity and the protective effect of 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone (DMC), the main compound from the buds of Cleistocalyx operculatus, on human umbilical vein endothelial cells against cytotoxicity induced by H2O2. The antioxidant activities of DMC were measured by ABTS assay, ferric reducing antioxidant power (FRAP) and hydroxyl radical scavenging activity, and protective effects of DMC on human umbilical vein endothelial cells against cytotoxicity induced by H2O2 were tested. DMC was found to have high ABTS radical scavenging activity (176.5 ± 5.2 μmol trolox equivalents/500 μmol DMC) and strong ferric reducing antioxidant power (213.3 ± 5.8 μmol trolox equivalents/500 μmol DMC). In addition, DMC scavenged the hydroxyl radicals, with IC50 values of 243.7 ± 6.3 μM, slightly lower than the reference antioxidant ascorbic acid (ASC). Moreover, DMC could protect the human umbilical vein endothelial cells against H2O2-induced cytotoxicity by decrease intracellular and extracellular ROS levels, reduction in catalase (CAT) activity and increment in malondialdehyde (MDA) level. These results suggested that DMC has the potential to be used in the therapy of oxidative damage.  相似文献   

19.
Summary

Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), superoxide anion (O2?), and hydroxyl radical (OH?) have been implicated in mediating various pathological events such as cancer, atherosclerosis, diabetes, ischemia, inflammatory diseases, and the aging process. The glutathione (GSH) redox cycle and antioxidant enzymes—superoxide dismutase (SOD) and catalase (CAT)—play an important role in scavenging ROS and preventing cell injury. Pycnogenol has been shown to protect endothelial cells against oxidant-induced injury. The present study determined the effects of pycnogenol on cellular metabolism of H2O2 and O2? and on glutathione-dependent and -independent antioxidant enzymes in bovine pulmonary artery endothelial cells (PAEC). Confluent monolayers of PAEC were incubated with pycnogenol, and oxidative stress was triggered by hypoxanthine and xanthine oxidase or H2O2. Pycnogenol caused a concentration-dependent enhancement of H2O2 and O2? clearance. It increased the intracellular GSH content and the activities of GSH peroxidase and GSH disulfide reductase. It also increased the activities of SOD and CAT. The results suggest that pycnogenol promotes a protective antioxidant state by upregulating important enzymatic and nonenzymatic oxidant scavenging systems.  相似文献   

20.
BackgroundWhen redox balance is lost in the brain, oxidative stress can cause serious damage that leads to neuronal loss, in congruence with neurodegenerative diseases. Aucubin (AU) is an iridoid glycoside and that is one of the active constituents of Eucommia ulmoides, has many pharmacological effects such as anti-inflammation, anti-liver fibrosis, and anti-atherosclerosis.PurposeThe present study aimed to evaluate the inhibitory effects of AU on cell oxidative stress against hydrogen peroxide (H2O2)-induced injury in SH-SY5Y cells in vitro.MethodsSH-SY5Y cells were simultaneously treated with AU and H2O2 for 24 h. Cell viability was measured by CCK-8. Additionally, mitochondrial membrane depolarization, reactive oxygen species (ROS) generation, and cell apoptosis were measured by flow cytometry.ResultsThe results showed that AU can significantly increase the H2O2-induced cell viability and the mitochondrial membrane potential, decrease the ROS generation, malondialdehyde (MDA), and increase glutathione (GSH) contents and the superoxide dismutase (SOD) activity. We also found that H2O2 stimulated the production of nitric oxide (NO), which could be reduced by treatment with AU through inhibiting the inducible nitric oxide synthase (iNOS) protein expression. In H2O2-induced SH-SY5Y cells, the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) content and cell apoptosis were significantly reduced by AU treatment through nuclear factor E2-related factor 2/hemo oxygenase-1 (Nrf2/HO-1) activation, inhibiting the expression of p-NF-κB/NF-κB and down-regulating MAPK and Bcl-2/Bax pathways.ConclusionThese results indicate that AU can reduce inflammation and oxidative stress through the NF-κB, Nrf2/HO-1, and MAPK pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号