首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed to investigate whether third generation mobile phone radiation peaks result in event related potentials. Thirty-one healthy females participated. In this single-blind, cross-over design, a 15 minute mobile phone exposure was compared to two 15 minute sham phone conditions, one preceding and one following the exposure condition. Each participant was measured on two separate days, where mobile phone placement was varied between the ear and heart. EEG activity and radiofrequency radiation were recorded jointly. Epochs of 1200ms, starting 200ms before and lasting until 1000ms after the onset of a radiation peak, were extracted from the exposure condition. Control epochs were randomly selected from the two sham phone conditions. The main a-priori hypothesis to be tested concerned an increase of the area in the 240-500ms post-stimulus interval, in the exposure session with ear-placement. Using multilevel regression analyses the placement*exposure interaction effect was significant for the frontal and central cortical regions, indicating that only in the mobile phone exposure with ear-placement an enlarged cortical reactivity was found. Post-hoc analyses based on visual inspection of the ERPs showed a second significantly increased area between 500-1000ms post-stimulus for almost every EEG location measured. It was concluded that, when a dialing mobile phone is placed on the ear, its radiation, although unconsciously, is electrically detected by the brain. The question of whether or not this cortical reactivity results in a negative health outcome has to be answered in future longitudinal experiments.  相似文献   

2.
The present study investigates the effects of a weak (+/-200 microT(pk)), pulsed, extremely low frequency magnetic field (ELF MF) upon the human electroencephalogram (EEG). We have previously determined that exposure to pulsed ELF MFs can affect the EEG, notably the alpha frequency (8-13 Hz) over the occipital-parietal region of the scalp. In the present study, subjects (n = 32) were exposed to two different pulsed MF sequences (1 and 2, used previously) that differed in presentation rate, in order to examine the effects upon the alpha frequency of the human EEG. Results suggest that compared to sham exposure, alpha activity was lowered over the occipital-parietal regions of the brain during exposure to Sequence 1, while alpha activity over the same regions was higher after Sequence 2 exposure. These effects occurred after approximately 5 min of pulsed MF exposure. The results also suggest that a previous exposure to the pulsed MF sequence determined subjects' responses in the present experiment. This study supports our previous observation of EEG changes after 5 min pulsed ELF MF exposure. The results of this study are also consistent with existing EEG experiments of ELF MF and mobile phone effects upon the brain.  相似文献   

3.
The present study investigated the effects of 902.4 MHz Global System for Mobile Communications (GSM) mobile phone radiation on cerebral blood flow using positron emission tomography (PET) with the 15O‐water tracer. Fifteen young, healthy, right‐handed male subjects were exposed to phone radiation from three different locations (left ear, right ear, forehead) and to sham exposure to test for possible exposure effects on brain regions close to the exposure source. Whole‐brain [15O]H2O–PET images were acquired 12 times, 3 for each condition, in a counterbalanced order. Subjects were exposed for 5 min in each scan while performing a simple visual vigilance task. Temperature was also measured in the head region (forehead, eyes, cheeks, ear canals) during exposure. The exposure induced a slight temperature rise in the ear canals but did not affect brain hemodynamics and task performance. The results provided no evidence for acute effects of short‐term mobile phone radiation on cerebral blood flow. Bioelectromagnetics 33:247–256, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
The goal of this study was to compare the cytotoxic and genotoxic effects of plutonium-239 alpha particles and GSM 900 modulated mobile phone (model Sony Ericsson K550i) radiation in the Allium cepa test. Three groups of bulbs were exposed to mobile phone radiation during 0 (sham), 3 and 9 h. A positive control group was treated during 20 min with plutonium-239 alpha-radiation. Mitotic abnormalities, chromosome aberrations, micronuclei and mitotic index were analyzed. Exposure to alpha-radiation from plutonium-239 and exposure to modulated radiation from mobile phone during 3 and 9 h significantly increased the mitotic index. GSM 900 mobile phone radiation as well as alpha-radiation from plutonium-239 induced both clastogenic and aneugenic effects. However, the aneugenic activity of mobile phone radiation was more pronounced. After 9 h of exposure to mobile phone radiation, polyploid cells, three-groups metaphases, amitoses and some unspecified abnormalities were detected, which were not registered in the other experimental groups. Importantly, GSM 900 mobile phone radiation increased the mitotic index, the frequency of mitotic and chromosome abnormalities, and the micronucleus frequency in a time-dependent manner. Due to its sensitivity, the A. cepa test can be recommended as a useful cytogenetic assay to assess cytotoxic and genotoxic effects of radiofrequency electromagnetic fields.  相似文献   

5.
The European multicenter project named GUARD involved nine centers and aimed to assess potential changes in auditory function as a consequence of exposure to low-intensity electromagnetic fields (EMFs) produced by GSM cellular phones. Participants were healthy young adults without any evidence of hearing or ear disorders. Auditory function was assessed immediately before and after exposure to EMFs, and only the exposed ear was tested. The procedure was conducted twice in a double blinded design, once with a genuine EMF exposure and once with a sham exposure (at least 24 h apart). Tests for assessment of auditory function were hearing threshold level (HTL), transient otoacoustic emissions (TEOAE), distortion product otoacoustic emissions (DPOAE), and auditory brainstem response (ABR). The exposure consisted of speech at a typical conversational level delivered via an earphone to one ear, plus genuine or sham EMF exposure. The EMF exposure used the output of a software-controlled consumer cellular phone at full power for 10 min. A system of phone positioning that allowed participants to freely move their heads without affecting exposure was used. Analysis of the data showed there were no effects of exposure to GSM mobile phone signals on the main measures of the status of the auditory system.  相似文献   

6.
Several studies show increases in activity for certain frequency bands (10–14 Hz) and visually scored parameters during sleep after exposure to radiofrequency electromagnetic fields. A shortened REM latency has also been reported. We investigated the effects of a double‐blind radiofrequency exposure (884 MHz, GSM signaling standard including non‐DTX and DTX mode, time‐averaged 10 g psSAR of 1.4 W/kg) on self‐evaluated sleepiness and objective EEG measures during sleep. Forty‐eight subjects (mean age 28 years) underwent 3 h of controlled exposure (7:30–10:30 PM; active or sham) prior to sleep, followed by a full‐night polysomnographic recording in a sleep laboratory. The results demonstrated that following exposure, time in Stages 3 and 4 sleep (SWS, slow‐wave sleep) decreased by 9.5 min (12%) out of a total of 78.6 min, and time in Stage 2 sleep increased by 8.3 min (4%) out of a total of 196.3 min compared to sham. The latency to Stage 3 sleep was also prolonged by 4.8 min after exposure. Power density analysis indicated an enhanced activation in the frequency ranges 0.5–1.5 and 5.75–10.5 Hz during the first 30 min of Stage 2 sleep, with 7.5–11.75 Hz being elevated within the first hour of Stage 2 sleep, and bands 4.75–8.25 Hz elevated during the second hour of Stage 2 sleep. No pronounced power changes were observed in SWS or for the third hour of scored Stage 2 sleep. No differences were found between controls and subjects with prior complaints of mobile phone‐related symptoms. The results confirm previous findings that RF exposure increased the EEG alpha range in the sleep EEG, and indicated moderate impairment of SWS. Furthermore, reported differences in sensitivity to mobile phone use were not reflected in sleep parameters. Bioelectromagnetics 32:4–14, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
The relationship between radiofrequency electromagnetic fields emitted from mobile phone and infertility is a matter of continuing debate. It is postulated that these radiations may affect the reproduction pattern spell by targeting biochemistry of sperm. In an attempt to expedite the issue, 70 days old Wistar rats (n?=?6) were exposed to mobile phone radiofrequency (RF) radiation for 2?h per day for 45 days and data compared with sham exposed (n?=?6) group. A significant decrease (P?相似文献   

8.
The relationship between radiofrequency electromagnetic fields emitted from mobile phone and infertility is a matter of continuing debate. It is postulated that these radiations may affect the reproduction pattern spell by targeting biochemistry of sperm. In an attempt to expedite the issue, 70 days old Wistar rats (n = 6) were exposed to mobile phone radiofrequency (RF) radiation for 2 h per day for 45 days and data compared with sham exposed (n = 6) group. A significant decrease (P < 0.05) in the level of testosterone and an increase in caspase-3 activity were found in the RF-exposed animals. Distortions in sperm head and mid piece of sperm mitochondrial sheath were also observed as captured by Transmission Electron Microscope (TEM). In addition, progeny from RF-exposed rats showed significant decreases in number and weight as compared with that of sham-exposed animals. A reduction in testosterone, an increase in caspase-3, and distortion in spermatozoa could be caused by overproduction of reactive oxygen species (ROS) in animals under mobile phone radiation exposure. Our findings on these biomarkers are clear indications of possible health implications of repeated exposure to mobile phone radiation.  相似文献   

9.
We investigated whether the pulsed high frequency electromagnetic field (EMF) emitted by a mobile phone has short term effects on the human motor cortex. We measured motor evoked potentials (MEPs) elicited by single pulse transcranial magnetic stimulation (TMS), before and after mobile phone exposure (active and sham) in 10 normal volunteers. Three sites were stimulated (motor cortex (CTX), brainstem (BST) and spinal nerve (Sp)). The short interval intracortical inhibition (SICI) of the motor cortex reflecting GABAergic interneuronal function was also studied by paired pulse TMS method. MEPs to single pulse TMS were also recorded in two patients with multiple sclerosis showing temperature dependent neurological symptoms (hot bath effect). Neither MEPs to single pulse TMS nor the SICI was affected by 30 min of EMF exposure from mobile phones or sham exposure. In two MS patients, mobile phone exposure had no effect on any parameters of MEPs even though conduction block occurred at the corticospinal tracts after taking a bath. As far as available methods are concerned, we did not detect any short-term effects of 30 min mobile phone exposure on the human motor cortical output neurons or interneurons even though we can not exclude the possibility that we failed to detect some mild effects due to a small sample size in the present study. This is the first study of MEPs after electromagnetic exposure from a mobile phone in neurological patients.  相似文献   

10.
Resting EEG is affected by exposure to a pulsed ELF magnetic field   总被引:8,自引:0,他引:8  
An increasing number of reports have demonstrated a significant effect of extremely low frequency magnetic fields (ELF MFs) on aspects of animal and human behavior. Recent studies suggest that exposure to ELF MFs affects human brain electrical activity as measured by electroencephalography (EEG), specifically within the alpha frequency (8-13 Hz). Here we report that exposure to a pulsed ELF MF with most power at frequencies between 0 and 500 Hz, known to affect aspects of analgesia and standing balance, also affects the human EEG. Twenty subjects (10 males; 10 females) received both a magnetic field (MF) and a sham session in a counterbalanced design for 15 min. Analysis of variance (ANOVA) revealed that alpha activity was significantly higher over the occipital electrodes (O1, Oz, O2) [F(1,16) = 6.858; P =.019, eta2 = 0.30] and marginally higher over the parietal electrodes (P3, Pz, P4) [F(1,16) = 4.251; P =.056, eta2 = 0.21] post MF exposure. This enhancement of alpha activity was transient, as it marginally decreased over occipital [F(1,16) = 4.417; P =.052; eta2 = 0.216] and parietal electrodes [F(1,16) = 4.244; P =.056; eta2 = 0.21] approximately 7 min after MF exposure compared to the sham exposure. Significantly higher occipital alpha activity is consistent with other experiments examining EEG responses to ELF MFs and ELF modulated radiofrequency fields associated with mobile phones. Hence, we suggest that this result may be a nonspecific physiological response to the pulsed MFs.  相似文献   

11.
Potential effects of a 30 min exposure to third generation (3G) Universal Mobile Telecommunications System (UMTS) mobile phone‐like electromagnetic fields (EMFs) were investigated on human brain electrical activity in two experiments. In the first experiment, spontaneous electroencephalography (sEEG) was analyzed (n = 17); in the second experiment, auditory event‐related potentials (ERPs) and automatic deviance detection processes reflected by mismatch negativity (MMN) were investigated in a passive oddball paradigm (n = 26). Both sEEG and ERP experiments followed a double‐blind protocol where subjects were exposed to either genuine or sham irradiation in two separate sessions. In both experiments, electroencephalograms (EEG) were recorded at midline electrode sites before and after exposure while subjects were watching a silent documentary. Spectral power of sEEG data was analyzed in the delta, theta, alpha, and beta frequency bands. In the ERP experiment, subjects were presented with a random series of standard (90%) and frequency‐deviant (10%) tones in a passive binaural oddball paradigm. The amplitude and latency of the P50, N100, P200, MMN, and P3a components were analyzed. We found no measurable effects of a 30 min 3G mobile phone irradiation on the EEG spectral power in any frequency band studied. Also, we found no significant effects of EMF irradiation on the amplitude and latency of any of the ERP components. In summary, the present results do not support the notion that a 30 min unilateral 3G EMF exposure interferes with human sEEG activity, auditory evoked potentials or automatic deviance detection indexed by MMN. Bioelectromagnetics 34:31–42, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
The effects of the mobile phone (MP) electromagnetic fields on electroencephalography (EEG) and event-related potentials (ERP) were examined. With regard to the reported effects of MP on sleep, 22 patients with narcolepsy-cataplexy were exposed or sham exposed for 45 min to the MP (900 MHz, specific absorption rate 0.06 W/kg) placed close to the right ear in a double blind study. There were no changes of the EEG recorded after the MP exposure. A subgroup of 17 patients was studied on visual ERP recorded during the MP exposure. Using an adapted "odd-ball" paradigm, each patient was instructed to strike a key whenever rare target stimuli were presented. There were three variants of target stimuli (horizontal stripes in (i) left, (ii) right hemifields or (iii) whole field of the screen). The exposure enhanced the positivity of the ERP endogenous complex solely in response to target stimuli in the right hemifield of the screen (P < 0.01). The reaction time was shortened by 20 ms in response to all target stimuli (P < 0.05). In conclusion, the electromagnetic field of MP may suppress the excessive sleepiness and improve performance while solving a monotonous cognitive task requiring sustained attention and vigilance.  相似文献   

13.
Findings from prior studies of possible health and physiological effects from mobile phone use have been inconsistent. Exposure periods in provocation studies have been rather short and personal characteristics of the participants poorly defined. We studied the effect of radiofrequency field (RF) on self-reported symptoms and detection of fields after a prolonged exposure time and with a well defined study group including subjects reporting symptoms attributed to mobile phone use. The design was a double blind, cross-over provocation study testing a 3-h long GSM handset exposure versus sham. The study group was 71 subjects age 18-45, including 38 subjects reporting headache or vertigo in relation to mobile phone use (symptom group) and 33 non-symptomatic subjects. Symptoms were scored on a 7-point Likert scale before, after 1(1/2) and 2(3/4) h of exposure. Subjects reported their belief of actual exposure status. The results showed that headache was more commonly reported after RF exposure than sham, mainly due to an increase in the non-symptom group. Neither group could detect RF exposure better than by chance. A belief that the RF exposure had been active was associated with skin symptoms. The higher prevalence of headache in the non-symptom group towards the end of RF exposure justifies further investigation of possible physiological correlates. The current study indicates a need to better characterize study participants in mobile phone exposure studies and differences between symptom and non-symptom groups.  相似文献   

14.
Recently, there have been several reports referring to detrimental effects due to radio frequency electromagnetic fields (RF-EMF) exposure. Special attention was given to investigate the effect of mobile phone exposure on the rat brain. Since the integrative mechanism of the entire body lies in the brain, it is suggestive to analyze its biochemical aspects. For this, 35-day old Wistar rats were exposed to a mobile phone for 2 h per day for a duration of 45 days where specific absorption rate (SAR) was 0.9 W/Kg. Animals were divided in two groups: sham exposed (n = 6) and exposed group (n = 6).

Our observations indicate a significant decrease (P < 0.05) in the level of glutathione peroxidase, superoxide dismutase, and an increase in catalase activity. Moreover, protein kinase shows a significant decrease in exposed group (P < 0.05) of hippocampus and whole brain. Also, a significant decrease (P < 0.05) in the level of pineal melatonin and a significant increase (P < 0.05) in creatine kinase and caspase 3 was observed in exposed group of whole brain as compared with sham exposed. Finally, a significant increase in the level of ROS (reactive oxygen species) (P < 0.05) was also recorded.

The study concludes that a reduction or an increase in antioxidative enzyme activities, protein kinase C, melatonin, caspase 3, and creatine kinase are related to overproduction of reactive oxygen species (ROS) in animals under mobile phone radiation exposure. Our findings on these biomarkers are clear indications of possible health implications.  相似文献   

15.

Background  

Use of mobile phones has widely increased over the past decade. However, in spite of the extensive research, the question of potential health effects of the mobile phone radiation remains unanswered. We have earlier proposed, and applied, proteomics as a tool to study biological effects of the mobile phone radiation, using as a model human endothelial cell line EA.hy926. Exposure of EA.hy926 cells to 900 MHz GSM radiation has caused statistically significant changes in expression of numerous proteins. However, exposure of EA.hy926 cells to 1800 MHz GSM signal had only very small effect on cell proteome, as compared with 900 MHz GSM exposure. In the present study, using as model human primary endothelial cells, we have examined whether exposure to 1800 MHz GSM mobile phone radiation can affect cell proteome.  相似文献   

16.
Recently, there have been several reports referring to detrimental effects due to radio frequency electromagnetic fields (RF-EMF) exposure. Special attention was given to investigate the effect of mobile phone exposure on the rat brain. Since the integrative mechanism of the entire body lies in the brain, it is suggestive to analyze its biochemical aspects. For this, 35-day old Wistar rats were exposed to a mobile phone for 2?h per day for a duration of 45 days where specific absorption rate (SAR) was 0.9?W/Kg. Animals were divided in two groups: sham exposed (n?=?6) and exposed group (n?=?6). Our observations indicate a significant decrease (P?相似文献   

17.
The aim of this study was to investigate effect of radiofrequency radiation (RFR) emitted from mobile phones on DNA damage in follicle cells of hair in the ear canal. The study was carried out on 56 men (age range: 30–60 years old)in four treatment groups with n = 14 in each group. The groups were defined as follows: people who did not use a mobile phone (Control), people use mobile phones for 0–30 min/day (second group), people use mobile phones for 30–60 min/day (third group) and people use mobile phones for more than 60 min/day (fourth group). Ear canal hair follicle cells taken from the subjects were analyzed by the Comet Assay to determine DNA damages. The Comet Assay parameters measured were head length, tail length, comet length, percentage of head DNA, tail DNA percentage, tail moment, and Olive tail moment. Results of the study showed that DNA damage indicators were higher in the RFR exposure groups than in the control subjects. In addition, DNA damage increased with the daily duration of exposure. In conclusion, RFR emitted from mobile phones has a potential to produce DNA damage in follicle cells of hair in the ear canal. Therefore, mobile phone users have to pay more attention when using wireless phones.  相似文献   

18.
The aim of this study was to examine thermal and local blood flow responses in the head area of the preadolescent boys during exposure to radiofrequency (RF) electromagnetic fields produced by a GSM mobile phone. The design was a double-blinded sham-controlled study of 26 boys, aged 14-15 years. The SAR distribution was calculated and modelled in detail. The duration of the sham periods and exposures with GSM 900 phone was 15 min each, and the tests were carried out in a climatic chamber in controlled thermoneutral conditions. The ear canal temperatures were registered from both ear canals, and the skin temperatures at several sites of the head, trunk and extremities. The local cerebral blood flow was monitored by a near-infrared spectroscopy (NIRS), and the autonomic nervous system function by recordings of ECG and continuous blood pressure. During the short-term RF exposure, local cerebral blood flow did not change, the ear canal temperature did not increase significantly and autonomic nervous system was not interfered. The strengths of this study were the age of the population, multifactorial physiological monitoring and strictly controlled thermal environment. The limitations of the study were large inter-individual variation in the physiological responses, and short duration of the exposure. Longer provocation protocols, however, might cause in children distress related confounding physiological responses.  相似文献   

19.
Nine small radiation shields made to adhere to the case of mobile phones were tested at 914 and 1880 MHz. Five popular products were tested because advertisements typically claim they are up to 99% effective in blocking radio frequency (RF) radiation emitted from mobile phones. Also, four other conceptually unusual products were tested because advertisements typically claim they emit oscillations that counteract the RF radiation from mobile phones. Each shield was tested on the same mobile phone, and measurements were made to compare the absorption of RF energy in the head with and without each shield attached to the phone. The phone was positioned against a head model, and an automated measurement process was used to determine specific absorption rate (SAR) in the same way it is used at Motorola to test the compliance of mobile phones with respect to human exposure limits. The location of the peak SAR was not observed to change with any of the shields attached to the phone, and the 1 g, peak spatial average SAR did not change by any statistically significant amount. These results indicate the small shields are ineffective in reducing the exposure of the head to RF energy emitted by a mobile phone.  相似文献   

20.
The aim of this study was to explore the prevalence, nature and determinants of concerns about mobile phone radiation. We used data from a 2006 telephone survey of 1004 people aged 15+ years in Denmark. Twenty‐eight percent of the respondents were concerned about exposure to mobile phone radiation; radiation from masts was of concern to about 15%. In contrast, 82% were concerned about pollution. Nearly half of the respondents considered the mortality risk of 3G phones and masts to be of the same order of magnitude as being struck by lightning (0.1 fatalities per million people per year) while 7% thought it was equivalent to tobacco‐induced lung cancer (~500 fatalities per million per year). Among women, concerns about mobile phone radiation were positively associated with educational attainment, perceived mobile phone mortality risk and concerns about unknown consequences of new technologies. More than two thirds of the respondents felt that they had received inadequate public information about the 3G system. The results of the study indicate that the majority of the population has little concern about mobile phone radiation while a small minority is very concerned. Bioelectromagnetics 30:393–401, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号