首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The formation of nano-scale ordered amyloid fibrils is the hallmark of several diseases of unrelated origin. We have suggested, based on experimental and bioinformatic analysis, that aromatic interactions may provide energetic contribution as well as order and directionality in the molecular-recognition and self-association processes that lead to the formation of these assemblies. Our model recently gained directed support from high-resolution X-ray and electron diffraction and solid-state NMR structures of amyloid fibrils as well as parameter-free models and molecular dynamics studies. Our mechanistic insights led to the development of novel inhibitors of amyloid fibrillization. Following this notion, we demonstrated that the diphenylalanine recognition motif of the Alzheimer’s β-amyloid polypeptide self-assembles into ordered peptide nanotubes with a remarkable persistence length and mechanical strength. It was also demonstrated that these peptide nanotubes could serve as a mold for the fabrication of metals and building blocks of novel electrochemical platform. We also reveal that diphenylglycine, a similar analogue and the simplest aromatic peptide, forms spherical nanometric assemblies. Both the nanotubes and nanospheres assemble efficiently and have remarkable stability. These properties of the peptide nanostructures, taken together with their biological compatibility and remarkable thermal and chemical stability, may provide very important tools for future nanotechnology applications.  相似文献   

2.
《朊病毒》2013,7(1):32-35
The formation of amyloid fibrils is the hallmark of more than twenty human disorders of unrelated etiology. In all these cases, ordered fibrillar protein assemblies with a diameter of 7-10 nm are being observed. In spite of the great clinical important of amyloid-associated diseases, the molecular recognition and self-assembly processes that lead to the formation of the fibrils are not fully understood. One direction to decipher the mechanism of amyloid formation is the use of short peptides fragments as model systems. Short peptide fragments, as short as pentapeptides, were shown to form typical amyloid assemblies in vitro that have ultrastructural, biophysical, and cytotoxic properties, as those of assemblies that are being formed by full length polypeptides. When we analyzed such short fragments, we identified the central role of aromatic moieties in the ability to aggregate into ordered nano-fibrillar structures. This notion allowed us to discover additional very short amyloidogenic peptides as well as other aromatic peptide motifs, which can form various assemblies at the nano-scale (including nanotubes, nanospheres, and macroscopic hydrogels with nano-scale order). Other practical utilization of this concept, together with novel β-breakage methods, is their use for the development of novel classes of amyloid formation inhibitors.  相似文献   

3.
The properties and characteristics shared by amyloid fibrils formed from disease and non-disease associated proteins that are unrelated in sequence and structure offer the prospect that model systems can be used to systematically assess the factors that predispose a native protein to form amyloid fibrils. Based on a de novo design approach, we recently reported a unique switch peptide model system, ccbeta, that forms a three-stranded coiled-coil structure at low temperatures and which can be easily converted to amyloid fibrils by increasing the temperature. To simplify the system further, we describe here the redesign of a two-stranded ccbeta coiled-coil variant and its detailed analysis by a variety of biophysical methods. Compared with the original design, the characteristics of the peptide make it even simpler to elucidate and validate fundamental principles of amyloid fibril-formation.  相似文献   

4.
The assembly of amyloidogenic peptides and proteins, such as the β-amyloid peptide, α-synuclein, huntingtin, tau, and islet amyloid polypeptide, into amyloid fibrils and oligomers is directly linked to amyloid diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases, frontotemporal dementias, and type II diabetes. Although amyloid oligomers have emerged as especially important in amyloid diseases, high-resolution structures of the oligomers formed by full-length amyloidogenic peptides and proteins have remained elusive. Investigations of oligomers assembled from fragments or stabilized β-hairpin segments of amyloidogenic peptides and proteins have allowed investigators to illuminate some of the structural, biophysical, and biological properties of amyloid oligomers. Here, we summarize recent advances in the application of these peptide model systems to investigate and understand the structures, biological properties, and biophysical properties of amyloid oligomers.  相似文献   

5.
Protein aggregation and amyloid formation are associated with both pathological conditions in humans such as Alzheimer's disease and native functions such as peptide hormone storage in the pituitary secretory granules in mammals. Here, we studied amyloid fibrils formation by three neuropeptides namely physalaemin, kassinin and substance P of tachykinin family using biophysical techniques including circular dichroism, thioflavin T, congo red binding and microscopy. All these neuropeptides under study have significant sequence similarity with Aβ(25-35) that is known to form neurotoxic amyloids. We found that all these peptides formed amyloid-like fibrils in vitro in the presence of heparin, and these amyloids were found to be nontoxic in neuronal cells. However, the extent of amyloid formation, structural transition, and morphology were different depending on the primary sequences of peptide. When Aβ(25-35) and Aβ40 were incubated with each of these neuropeptides in 1:1 ratio, a drastic increase in amyloid growths were observed compared to that of individual peptides suggesting that co-aggregation of Aβ and these neuropeptides. The electron micrographs of these co-aggregates were dissimilar when compared with individual peptide fibrils further supporting the possible incorporation of these neuropeptides in Aβ amyloid fibrils. Further, the fibrils of these neuropeptides can seed the fibrils formation of Aβ40 and reduced the toxicity of preformed Aβ fibrils. The present study of amyloid formation by tachykinin neuropeptides is not only providing an understanding of the mechanism of amyloid fibril formation in general, but also offering plausible explanation that why these neuropeptide might reduce the cytotoxicity associated with Alzheimer's disease related amyloids.  相似文献   

6.
The process of amyloid fibril formation by the human calcitonin hormone is associated with medullary thyroid carcinoma. Based on the effect of pH on the fibrillization of human calcitonin, the analysis of conformationally constrained analogues of the hormone, and our suggestion regarding the role of aromatic residues in the process of amyloid fibril formation, we studied the ability of a short aromatic charged peptide fragment of calcitonin (NH(2)-DFNKF-COOH) to form amyloid fibrils. Here, using structural and biophysical analysis, we clearly demonstrate the ability of this short peptide to form well ordered amyloid fibrils. A shorter truncated tetrapeptide, NH(2)-DFNK-COOH, also formed fibrils albeit less ordered than those formed by the pentapeptide. We could not detect amyloid fibril formation by the NH(2)-FNKF-COOH tetrapeptide, the NH(2)-DFN-COOH tripeptide, or the NH(2)-DANKA-COOH phenylalanine to the alanine analogue of the pentapeptide. The formation of amyloid fibrils by rather hydrophilic peptides is quite striking, because it was speculated that hydrophobic interactions might play a key role in amyloid formation. This is the first reported case of fibril formation by a peptide as short as a tetrapeptide and one of very few cases of amyloid formation by pentapeptides. Because the aromatic nature seems to be the only common property of the various very short amyloid-forming peptides, it further supports our hypothesis on the role of aromatic interactions in the process of amyloid fibril formation.  相似文献   

7.
Ehud Gazit 《朊病毒》2007,1(1):32-35
The formation of amyloid fibrils is the hallmark of more than twenty human disorders of unrelated etiology. In all these cases, ordered fibrillar protein assemblies with a diameter of 7–10 nm are being observed. In spite of the great clinical important of amyloidassociated diseases, the molecular recognition and self-assembly processes that lead to the formation of the fibrils are not fully understood. One direction to decipher the mechanism of amyloid formation is the use of short peptides fragments as model systems. Short peptide fragments, as short as pentapeptides, were shown to form typical amyloid assemblies in vitro that have ultrastructural, biophysical, and cytotoxic properties, as those of assemblies that are being formed by full length polypeptides. When we analyzed such short fragments, we identified the central role of aromatic moieties in the ability to aggregate into ordered nano-fibrillar structures. This notion allowed us to discover additional very short amyloidogenic peptides as well as other aromatic peptide motifs, which can form various assemblies at the nano-scale (including nanotubes, nanospheres, and macroscopic hydrogels with nano-scale order). Other practical utilization of this concept, together with novel β breakage methods, is their use for the development of novel classes of amyloid formation inhibitors.Key Words: Alzheimer''s disease, amyloid disease, molecular recognition, nanostructures, protein aggregation, protein misfolding, self-assembly, type II diabetes  相似文献   

8.
Most of the disease causing proteins such as beta amyloid, amylin, and huntingtin protein, which are natively disordered, readily form fibrils consisting of beta-sheet polymers. Though all amyloid fibrils are made up of beta-sheet polymers, not all peptides with predominant beta-sheet content in the native state develop into amyloid fibrils. We hypothesize that stable amyloid like fibril formation may require mixture of different conformational states in the peptide. We have tested this hypothesis on amyloid forming peptide namely HCl(Ile)(5)NH(CH(2)CH(2)O)(3)CH(3) (I). We show peptide I, has propensity to form self-assembled structures of beta-sheets in aqueous solutions. When incubated over a period of time in aqueous buffer, I self assembled into beta sheet like structures with diameters ranging from 30 to 60 A that bind with amyloidophilic dyes like Congo red and Thioflavin T. Interestingly peptide I developed into unstable fibrils after prolonged aging at higher concentration in contrast with the general mature fibril-forming propensity of various amyloid petides known to date.  相似文献   

9.
Structural characterisation of islet amyloid polypeptide fibrils   总被引:3,自引:0,他引:3  
Islet amyloid is found in many patients suffering from type 2 diabetes. Amyloid fibrils found deposited in the pancreatic islets are composed of a 37-residue peptide, known as islet amyloid polypeptide (IAPP) (also known as amylin) and are similar to those found in other amyloid diseases. Synthetic IAPP peptide readily forms amyloid fibrils in vitro and this has allowed fibril formation kinetics and the overall morphology of IAPP amyloid to be studied. Here, we use X-ray fibre diffraction, electron microscopy and cryo-electron microscopy to examine the molecular structure of IAPP amyloid fibrils. X-ray diffraction from aligned synthetic amyloid fibrils gave a highly oriented diffraction pattern with layer-lines spaced 4.7 A apart. Electron diffraction also revealed the characteristic 4.7 A meridional signal and the position of the reflection could be compared directly to the image of the diffracting unit. Cryo-electron microscopy revealed the strong signal at 4.7 A that has been previously visualised from a single Abeta fibre. Together, these data build up a picture of how the IAPP fibril is held together by hydrogen bonded beta-sheet structure and contribute to the understanding of the generic structure of amyloid fibrils.  相似文献   

10.
Meng F  Abedini A  Song B  Raleigh DP 《Biochemistry》2007,46(43):12091-12099
Amyloid formation has been implicated in a wide range of human diseases including Alzheimer's disease, Parkinson's disease, and type 2 diabetes. In type 2 diabetes, islet amyloid polypeptide (IAPP, also known as amylin) forms cytotoxic amyloid deposits in the pancreas, and these are believed to contribute to the pathology of the disease. The mechanism of islet amyloid formation is not understood; however, recent proposals have invoked a role for incompletely processed proIAPP. In this model, incompletely processed proIAPP containing the N-terminal pro region is excreted and binds to heparan sulfate proteoglycans (HSPGs) of the basement membrane thereby establishing a high local concentration which can act as a seed for amyloid formation. Here we report biophysical proof-of-principle experiments designed to test the viability of this model. The model predicts that interactions with HSPGs should accelerate amyloid formation by the proIAPP processing intermediate, and this is indeed what is observed. Interaction with heparan sulfate leads to the rapid formation of an intermediate state with partial helical content which then converts, on a slower time scale, to amyloid fibrils. TEM shows that fibrils formed by the proIAPP processing intermediate in the presence and in the absence of heparan sulfate have the classic features of amyloid. Fibrils formed by the proIAPP processing intermediate are competent to seed amyloid formation by mature IAPP. The seeding experiments support a second major premise of the model, namely, that fibrils formed by the processing intermediate are capable of seeding amyloid formation by the mature peptide.  相似文献   

11.
Amyloid fibrils are filamentous aggregates of peptides and proteins implicated in a range of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. It has been known almost since their discovery that these β-sheet-rich proteinacious assemblies bind a range of specific dyes that, combined with other biophysical techniques, are convenient probes of the process of amyloid fibril formation. Two prominent examples of such dyes are Congo red (CR) and Thioflavin T (ThT). It has been reported that in addition to having a diagnostic role, CR is an inhibitor of the formation of amyloid structures, and these two properties have both been explained in terms of the same specific noncovalent interactions between the fibrils and the dye molecules. In this article, we show by means of quartz-crystal microbalance measurements that the binding of both ThT and CR to amyloid fibrils formed by the peptide whose aggregation is associated with Alzheimer's disease, Aβ(1-42), can be directly observed, and that the presence of CR interferes with the binding of ThT. Light scattering and fluorescence measurements confirm that an interaction exists between these dyes that can interfere with their ability to reflect accurately the quantity of amyloid material present in a given sample. Furthermore, we show that CR does not inhibit the process of amyloid fibril elongation, and therefore demonstrate the ability of the quartz-crystal microbalance method not only to detect and study the binding of small molecules to amyloid fibrils, but also to elucidate the mode of action of potential inhibitors.  相似文献   

12.
Misfolding and aggregation of normally soluble proteins into amyloid fibrils and their deposition and accumulation underlies a variety of clinically significant diseases. Fibrillar aggregates with amyloid-like properties can also be generated in vitro from pure proteins and peptides, including those not known to be associated with amyloidosis. Whereas biophysical studies of amyloid-like fibrils formed in vitro have provided important insights into the molecular mechanisms of amyloid generation and the structural properties of the fibrils formed, amyloidogenic proteins are typically exposed to mild or more extreme denaturing conditions to induce rapid fibril formation in vitro. Whether the structure of the resulting assemblies is representative of their natural in vivo counterparts, thus, remains a fundamental unresolved issue. Here we show using Fourier transform infrared spectroscopy that amyloid-like fibrils formed in vitro from natively folded or unfolded beta(2)-microglobulin (the protein associated with dialysis-related amyloidosis) adopt an identical beta-sheet architecture. The same beta-strand signature is observed whether fibril formation in vitro occurs spontaneously or from seeded reactions. Comparison of these spectra with those of amyloid fibrils extracted from patients with dialysis-related amyloidosis revealed an identical amide I' absorbance maximum, suggestive of a characteristic and conserved amyloid fold. Our results endorse the relevance of biophysical studies for the investigation of the molecular mechanisms of beta(2)-microglobulin fibrillogenesis, knowledge about which may inform understanding of the pathobiology of this protein.  相似文献   

13.
Some of the lysozyme mutants in humans cause systemic amyloidosis. Hen egg white lysozyme (HEWL) has been well studied as a model protein of amyloid fibrils formation. We previously identified an amyloid core region consisting of nine amino acids (designated as the K peptide), which is present at 54-62 in HEWL. The K peptide, with tryptophan at its C- terminus, has the ability of self-aggregation. In the present work we focused on its structural properties in relation to the formation of fibrils. The K peptide alone formed definite fibrils having β-sheet structures by incubation of 7 days under acidic conditions at 37°C. A substantial number of fibrils were generated under this pH condition and incubation period. Deletion and substitution of tryptophan in the K peptide resulted in no formation of fibrils. Tryptophan 62 in lysozyme was suggested to be especially crucial to forming amyloid fibrils. We also show that amyloid fibrils formation of the K peptide requires not only tryptophan 62 but also a certain length containing hydrophobic amino acids. A core region is involved in the significant formation of amyloid fibrils of lysozyme.  相似文献   

14.
Amyloid fibrils are naturally occurring polypeptide scaffolds with considerable importance for human health and disease. These supermolecular assemblies are β-sheet rich and characterized by a high structural order. Clinical diagnosis and emerging therapeutic strategies of amyloid-dependent diseases, such as Alzheimer's, rely on the specific recognition of amyloid structures by other molecules. Recently, we generated the B10 antibody fragment, which selectively binds to Alzheimer's Aβ(1-40) amyloid fibrils but does not explicitly recognize other protein conformers, such as oligomers and disaggregated Aβ peptide. B10 presents poly-amyloid specific binding and interacts with fibrillar structures consisting of different polypeptide chains. To determine the molecular basis behind its specificity, we have analyzed the molecular properties of B10 with a battery of biochemical and biophysical techniques, ranging from X-ray crystallography to chemical modification studies. We find that fibril recognition depends on positively charged residues within the B10 antigen binding site. Mutation of these basic residues into alanine potently impairs fibril binding, and reduced B10-fibril interactions are also observed when the fibril carboxyl groups are covalently masked by a chemical modification approach. These data imply that the B10 conformational specificity for amyloid fibrils depends upon specific electrostatic interactions with an acidic moiety, which is common to different amyloid fibrils.  相似文献   

15.
Amyloid fibrils have historically been characterized by diagnostic dye-binding assays, their fibrillar morphology, and a "cross-beta" x-ray diffraction pattern. Whereas the latter demonstrates that amyloid fibrils have a common beta-sheet core structure, they display a substantial degree of morphological variation. One striking example is the remarkable ability of human apolipoprotein C-II amyloid fibrils to circularize and form closed rings. Here we explore in detail the structure of apoC-II amyloid fibrils using electron microscopy, atomic force microscopy, and x-ray diffraction studies. Our results suggest a model for apoC-II fibrils as ribbons approximately 2.1-nm thick and 13-nm wide with a helical repeat distance of 53 nm +/- 12 nm. We propose that the ribbons are highly flexible with a persistence length of 36 nm. We use these observed biophysical properties to model the apoC-II amyloid fibrils either as wormlike chains or using a random-walk approach, and confirm that the probability of ring formation is critically dependent on the fibril flexibility. More generally, the ability of apoC-II fibrils to form rings also highlights the degree to which the common cross-beta superstructure can, as a function of the protein constituent, give rise to great variation in the physical properties of amyloid fibrils.  相似文献   

16.
Islet amyloid polypeptide (a.k.a. IAPP, amylin) is a 37 amino acid hormone that has long been associated with the progression of type II diabetes mellitus (TIIDM) disease. The endocrine peptide hormone aggregatively misfolds to form amyloid deposits in and around the pancreatic islet β-cells that synthesize both insulin and IAPP, leading to a decrease in β-cell mass in patients with the disease. Extracellular IAPP amyloids induce β-cell death through the formation of reactive oxygen species, mitochondrial dysfunction, chromatin condensation, and apoptotic mechanisms, although the precise roles of IAPP in TIIDM are yet to be established. Here we review aspects of the normal physiological function of IAPP in glucose regulation together with insulin, and its misfolding which contributes to TIIDM, and may also play roles in other pathologies such as Alzheimer's and heart disease. We summarize information on expression of the IAPP gene, the regulation of the hormone by post-translational modifications, the structural properties of the peptide in various states, the kinetics of misfolding to amyloid fibrils, and the interactions of the peptide with insulin, membranes, glycosaminoglycans, and nanoparticles. Finally, we describe how basic research is starting to have a positive impact on the development of approaches to circumvent IAPP amyloidogenesis. These include therapeutic strategies aimed at stabilizing non-amyloidogenic states, inhibition of amyloid growth or disruption of amyloid fibrils, antibodies directed towards amyloid structures, and inhibition of interactions with cofactors that facilitate aggregation or stabilize amyloids.  相似文献   

17.
The accumulation of amyloid fibers due to protein misfolding is associated with numerous human diseases. For example, the formation of amyloid deposits in neurodegenerative pathologies is correlated with abnormal apoptosis. We report here the in vitro formation of various types of aggregates by Bcl-xL, a protein of the Bcl-2 family involved in the regulation of apoptosis. Bcl-xL forms aggregates in three states, micelles, native-like fibrils, and amyloid fibers, and their biophysical characterization has been performed in detail. Bcl-xL remains in its native state within micelles and native-like fibrils, and our results suggest that native-like fibrils are formed by the association of micelles. Formation of amyloid structures, that is, nonnative intermolecular β-sheets, is favored by the proximity of proteins within fibrils at the expense of the Bcl-xL native structure. Finally, we provide evidence of a direct relationship between the amyloid character of the fibers and the tertiary-structure stability of the native Bcl-xL. The potential causality between the accumulation of Bcl-xL into amyloid deposits and abnormal apoptosis during neurodegenerative diseases is discussed.  相似文献   

18.
The small presynaptic protein α-synuclein (α-syn) is involved in the etiology of Parkinson's disease owing to its abnormal misfolding. To date, little information is known on the role of DNA nanostructures in the formation of α-syn amyloid fibrils. Here, the effects of DNA tetrahedrons on the formation of α-syn amyloid fibrils were investigated using various biochemical and biophysical methods such as thioflavin T fluorescence assay, atomic force microscopy, light scattering, transmission electron microscopy, and cell-based cytotoxicity assay. It has been shown that DNA tetrahedrons decreased the level of oligomers and increased the level of amyloid fibrils, which corresponded to decreased cellular toxicity. The ability of DNA tetrahedron to facilitate the formation of α-syn amyloid fibrils demonstrated that structured nucleic acids such as DNA tetrahedrons could modulate the process of amyloid fibril formation. Our study suggests that DNA tetrahedrons could be used as an important facilitator toward amyloid fibril formation of α-synuclein, which may be of significance in finding therapeutic approaches to Parkinson's disease and related synucleinopathies.  相似文献   

19.
Polymerization of the soluble beta-amyloid peptide into highly ordered fibrils is hypothesized to be a causative event in the development of Alzheimer's disease. Understanding the interactions of Abeta with inhibitors on an atomic level is fundamental for the development of diagnostics and therapeutic approaches, and can provide, in addition, important indirect information of the amyloid fibril structure. We have shown recently that trRDCs can be measured in solution state NMR for peptide ligands binding weakly to amyloid fibrils. We present here the structures for two inhibitor peptides, LPFFD and DPFFL, and their structural models bound to fibrillar Abeta(14-23) and Abeta(1-40) based on transferred nuclear Overhauser effect (trNOE) and transferred residual dipolar coupling (trRDC) data. In a first step, the inhibitor peptide structure is calculated on the basis of trNOE data; the trRDC data are then validated on the basis of the trNOE-derived structure using the program PALES. The orientation of the peptide inhibitors with respect to Abeta fibrils is obtained from trRDC data, assuming that Abeta fibrils orient such that the fibril axis is aligned in parallel with the magnetic field. The trRDC-derived alignment tensor of the peptide ligand is then used as a restraint for molecular dynamics docking studies. We find that the structure with the lowest rmsd value is in agreement with a model in which the inhibitor peptide binds to the long side of an amyloid fibril. Especially, we detect interactions involving the hydrophobic core, residues K16 and E22/D23 of the Abeta sequence. Structural differences are observed for binding of the inhibitor peptide to Abeta14-23 and Abeta1-40 fibrils, respectively, indicating different fibril structure. We expect this approach to be useful in the rational design of amyloid ligands with improved binding characteristics.  相似文献   

20.
Amyloid fibrils are intrinsically noncrystalline, insoluble, high-molecular-weight aggregates of peptides and proteins, with considerable biomedical and biophysical significance. Solid-state NMR techniques are uniquely capable of providing high-resolution, site-specific structural constraints for amyloid fibrils, at the level of specific interatomic distances and torsion angles. So far, a relatively small number of solid-state NMR studies of amyloid fibrils have been reported. These have addressed issues about the supramolecular organization of beta-sheets in the fibrils and the peptide conformation in the fibrils, and have concentrated on the beta-amyloid peptide of Alzheimer's disease. Many additional applications of solid-state NMR to amyloid fibrils from a variety of sources are anticipated in the near future, as these systems are ideally suited for the technique and are of widespread current interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号