首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
End-stage renal disease (ESRD) is associated with enhanced oxidative stress. This disease state provides a unique system for investigating the deleterious effect of exogenous sources of free radicals and reactive oxygen species (ROS) on mitochondrial DNA (mtDNA). To test the hypothesis that uremic milieu might cause more severe damage to mtDNA, we investigated the prevalence and abundance of mtDNA deletions in the skeletal muscles of ESRD patients. The results showed that the frequencies of occurrence of the 4977 bp and 7436 bp deletions of mtDNA in the muscle tissues of the older ESRD patients were higher than those of the younger patients. The frequency of occurrence of the 4977 bp-deleted mtDNA in the muscle was 33.3% for the patients in the age group of < 40 years, 66.6% in the 41-60-year-old group, 100% in the 61-80-year-old group, and 100% in patients >80 years of age, respectively. Only 22% of the normal aged controls carried the 4977 bp mtDNA deletion, whereas 77% (17/22) of the ESRD patients exhibited the mtDNA deletion. Using a semiquantitative PCR method, we determined the proportion of the 4977 bp-deleted mtDNA from the muscles that had been confirmed to harbor the deletion. We found that the proportions of the 4977 bp-deleted mtDNA in the muscle were significantly higher than those of the aged matched controls. Using long-range PCR techniques, a distinctive array of mtDNA deletions was demonstrated in the muscle of uremic patients. In summary, we found diverse and multiple mtDNA deletions in the skeletal muscles of ESRD patients. These deletions are more prevalent and abundant in ESRD patients than those found in normal populations. Accumulation of uremic toxins and impaired free radical scavenging systems may be responsible for the increased oxidative stress in ESRD patients. Such stress may result in oxidative damage and aging-associated mutation of the mitochondrial genome.  相似文献   

2.
Deleted mitochondrial DNA in the skeletal muscle of aged individuals.   总被引:4,自引:0,他引:4  
Human mitochondrial DNA deletions occur mainly in the major region between the origins of replication of the heavy and light strands both in mitochondrial myopathy and in the ageing process. To determine whether deletions in the minor region also contribute to the ageing process, we analyzed a 3,610-basepair deletion (nucleotide position 1,837-5,447, from the 16S rRNA gene to the ND2 gene) in the skeletal muscle from individuals of various ages. The direct repeated sequence at each boundary of the deletion was identified as 5'-CCCC-3'. This minor-region deletion was detected in one of five individuals of the sixth decade, two of five in the seventh decade, and all of five in the eighth decade, but not in individuals below age 60. These results indicate that age-related accumulation of mtDNA deletions occurs not only in the major region but also in the minor region.  相似文献   

3.
4.
5.
The abundance of mitochondrial DNA (mtDNA) deletions has been shown to increase with age in a number of species and may contribute to the aging process. Estimating the total mtDNA deletion load of an individual is essential in evaluating the potential physiological impact. In this study, we compared three 5-kb regions of the mitochondrial genome: one in the major arc, one in the minor arc, and a third containing the light strand origin of replication. Through PCR analysis of mouse skeletal muscle, we have determined that not all regions produce equal numbers of age-associated deletions. There are, on average, twofold more detectable deletions in the major arc region than in the minor arc region. Deletions that result in the loss of the light strand origin of replication are rarely detected. Furthermore, the mechanism of deletion formation seems to be similar in both the major and minor arcs, with direct repeats playing an important, although not essential, role. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Pathology of skeletal muscle in mitochondrial disorders   总被引:3,自引:0,他引:3  
Muscle histology is an essential component of the diagnostic work-up for mitochondrial cytopathies and is very important in both ruling in disease as well as ruling out the disease (i.e., alternate diagnoses). A muscle biopsy method must provide tissue for histology, electron microscopy, enzymes and DNA and this can be obtained with a suction-modified 5 mm needle. Proper embedding and processing is important for optimal diagnostic yield. The essential stains for mitochondrial histology remain the modified Gomori trichrome, cytochrome oxidase, succinate dehydrogenase, and NADH. Electron microscopy can be helpful in selected cases, however, the decision to perform this on all samples remains a contentious issue. Some cases of mitochondrial cytopathy may show no abnormalities on histology or electron microscopy (i.e., LHON), whereas, other conditions can mimic mitochondrial disease through secondary mitochondrial changes (i.e., inclusion body myositis). Athletes show evidence of increased mitochondrial numbers but do not normally develop ragged red fibers or paracrystalline inclusions. Aging is associated with an accumulation of mitochondrial abnormalities and is an important factor to consider in the interpretation of the sample. For example, biopsies in young children with mitochondrial disease may be normal at the histological level and otherwise healthy older adults can show mitochondrial changes such as ragged red and COX-negative fibers.  相似文献   

7.
Cardiolipin is a specific mitochondrial phospholipid that is present in mammalian tissues in low concentration. To measure cardiolipin in small biopsies from patients with mitochondrial disease, we developed a new technique that can detect subnanomolar levels of well-resolved molecular species, the most abundant of which are tetralinoleoyl-cardiolipin (L(4)) and trilinoleoyl-oleoyl-cardiolipin (L(3)O). To this end, a fluorescence-labeled derivative of cardiolipin (2-[naphthyl-1'-acetyl]-cardiolipin dimethyl ester) was formed and analyzed by high performance liquid chromatography. Cardiolipin was measured in skeletal muscle biopsies from 8 patients with mitochondrial disease and in 17 control subjects. In 5 patients with mitochondrial disease, cardiolipin content was higher than normal (2. 4;-7.0 vs. 0.4;-2.2 nmol/mg protein). In 3 patients with mitochondrial disease, the L(4)/L(3)O ratio was lower than normal (2;-4 vs. 4;-6). Cardiolipin was also measured in various rat and dog muscle tissues. The L(4)/L(3)O ratio was higher in condensed "muscle" type mitochondria (heart ventricle, skeletal muscle, ratios 4;-7) than in orthodox "liver" type mitochondria (liver, smooth muscle, heart auricular appendage, H9c2 myoblasts, ratios 0.4;-3), suggesting that the L(4)/L(3)O proportion is important for cristae membrane structure. We concluded that the L(4)/L(3)O ratio is a tissue-specific variable that may change in the presence of mitochondrial disease. The new method is suitable to measure cardiolipin in muscle biopsies in order to estimate concentration of mitochondria.  相似文献   

8.
Atrial fibrillation (AF) is the most common cause of arrhythmia and is an aging-related disease encountered in clinical practice. The electrophysiological remolding with Ca(2+) overloading and cellular structure changes were found in cardiomyocytes of AF patients. In previous studies, increased oxidative stress and oxidative damage was found in cardiomyocytes during the ischemia/reperfusion injury. Besides, mitochondrial DNA (mtDNA) deletion and mtDNA proliferation occur frequently in affected tissues of patients with certain degenerative diseases and during aging of the human. However, it remains unclear whether high oxidative stress and alteration of mtDNA play a role in the pathophysiology of AF. In this study, we first screened for large-scale deletions of mtDNA in the atrial muscle of AF patients by long-range polymerase chain reaction (PCR). The results showed that large-scale deletions between nucleotide positions 7900 and 16500 of mtDNA occurred at a high frequency. Among them, the 4977 bp deletion was the most frequent and abundant one, and the mean proportion of mtDNA with the 4977 bp deletion in the atrial muscle of the patients with AF was 3.75-fold higher than that of the patients without AF (p <.005). Furthermore, quantitative PCR was performed to evaluate lesions in mtDNA caused by oxidative damage. We found that the degree of mtDNA damage in the patients with AF was greater than that of the patients without AF (3.29 vs.1.60 per 10 kb, p <.0005). The 8-OHdG, which is one of the most common products of oxidative damage to DNA, was also found at a higher frequency in mtDNA of patients with AF as compared with those without AF. In addition, the mtDNA content was found to increase significantly in the patients with AF (p =.0051). The level of mtDNA lesion and the mtDNA content was positively correlated (r = 0.44). These results suggest that oxidative injury and deletion of mtDNA in cardiac muscle are increased in the patients with AF, which may contribute to the impairment of bioenergetic function of mitochondria and induction of the oxidative vicious cycle involved in the pathogenesis of atrial myopathy in AF.  相似文献   

9.
Abundant evidence has been gathered to suggest that mitochondrial DNA (mtDNA) sustains many more mutations and greater oxidative damage than does nuclear DNA in human tissues. Uremic patients are subject to a state of enhanced oxidative stress due to excess production of oxidants and a defective antioxidant defense system. This study was conducted to investigate mtDNA mutations and oxidative damage in skeletal muscle of patients with chronic uremia. Results showed that large-scale deletions between nucleotide position (np) 7,900 and 16,300 of mtDNA occurred at a high frequency in muscle of uremic patients. Among them, the 4,977-bp deletion (mtDNA4977) was the most frequent and most abundant large-scale mtDNA deletion in uremic skeletal muscle. The proportion of mtDNA4977 was found to correlate positively with the level of 8-hydroxy 2-deoxyguanosine (8-OHdG) in the total DNA of skeletal muscle (r=0.62, p<0.05). Using long-range PCR and DNA sequencing, we identified and characterized multiple deletions of mtDNA in skeletal muscle of 16 of 19 uremic patients examined. The 8,041-bp deletion, which occurred between np 8035 and 16,075, was flanked by a 5-bp direct repeat of 5-CCCAT-3. Some of the deletions were found in more than 1 patient. On the other hand, we found that the mean 8-OHdG/105 dG ratio in the total cellular DNA of muscle of uremic patients was significantly higher than that of the controls (182.7 ± 63.6 vs. 50.9 ± 21.5, p=0.05). In addition, the mean 8-OHdG/105 dG ratio in muscle mtDNA of uremic patients was significantly higher than that in nuclear DNA (344.0 ± 56.9 vs. 146.3 ± 95.8, p=0.001). Moreover, we found that the average content of lipid peroxides in mitochondrial membranes of skeletal muscle of uremic patients was significantly higher than that of age-matched healthy subjects (23.76 ± 6.06 vs. 7.67 ± 0.95 nmol/mg protein; p<0.05). The average content of protein carbonyls in the mitochondrial membranes prepared from uremic skeletal muscles was significantly higher than that in normal controls (24.90 ± 4.00 vs. 14.48 ± 1.13 nmol/mg protein; p<0.05). Taken together, these findings suggest that chronic uremia leads to mtDNA mutations together with enhanced oxidative damage to DNA, lipids, and proteins of mitochondria in skeletal muscle, which may contribute to the impairment of mitochondrial bioenergetic function and to skeletal myopathy commonly seen in uremic patients.  相似文献   

10.
Several reports have shown that individual mitochondrial DNA (mtDNA) deletions accumulate with age. However, the overall extent of somatic mtDNA damage with age remains unclear. We have utilized full-length PCR to concurrently screen for multiple mtDNA rearrangements in total DNA extracted from skeletal muscle derived from physiologically normal individuals (n = 35). This revealed that both the number and variety of mtDNA rearrangements increases dramatically between young and old individuals (P < 0.0001). We further examined the mtDNA from both the younger and older subjects by Southern blot analysis and observed an age-related increase in mtDNA(s) comparable in size to mtDNA products unique to patients with known mtDNA deletions. These data imply that a wide spectrum of mtDNA rearrangements accumulate in old individuals, which correlates with the marked age related decrease in OXPHOS capacity observed in post-mitotic tissues.  相似文献   

11.
Maternally inherited mitochondrial DNA (mtDNA) has been suggested to be a genetic factor for diabetes. Reports have shown a decrease of mtDNA content in tissues of diabetic patients. We investigated the effects of mtDNA depletion on glucose metabolism by use of rho(0) SK-Hep1 human hepatoma cells, whose mtDNA was depleted by long-term exposure to ethidium bromide. The rho(0) cells failed to hyperpolarize mitochondrial membrane potential in response to glucose stimulation. Intracellular ATP content, glucose-stimulated ATP production, glucose uptake, steady-state mRNA and protein levels of glucose transporters, and cellular activities of glucose-metabolizing enzymes were decreased in rho(0) cells compared with parental rho(+) cells. Our results suggest that the quantitative reduction of mtDNA may suppress the expression of nuclear DNA-encoded glucose transporters and enzymes of glucose metabolism. Thus this may lead to diabetic status, such as decreased ATP production and glucose utilization.  相似文献   

12.
K.S. Cheah  J.C. Waring 《BBA》1983,723(1):45-51
The effect of trifluoperazine on the respiration of porcine liver and skeletal muscle mitochondria was investigated by polarographic and spectroscopic techniques. Low concentrations of trifluoperazine (88 nmol/mg protein) inhibited both the ADP- and Ca2+-stimulated oxidation of succinate, and reduced the values of the respiratory control index and the ADPO and Ca2+O ratio. High concentrations inhibited both succinate and ascorbate plus tetramethyl-p-phenylenediame (TMPD) oxidations, and uncoupler (carbonyl cyanide p-trifluromethoxyphenylhydrazone) and Ca2+-stimulated respiration. Porcine liver mitochondria were more sensitive to trifluoperazine than skeletal muscle mitochondria. Trifluoperazine inhibited the electron transport of succinate oxidation of skeletal muscle mitochondria within the cytochrome b-c1 and cytochrome c1-aa3 segments of the respiratory chain system. 233 nmol trifluoperazine/mg protein inhibited the aerobic steady-state reduction of cytochrome c1 by 92% with succinate as substrate, and of cytochrome c and cytochrome aa3 by 50–60% with ascorbate plus TMPD as electron donors. Trifluoperazine can thus inhibit calmodulin-independent reactions particularly when used at high concentrations.  相似文献   

13.
14.
Severe high-altitude hypoxia exposure is considered a triggering stimulus for redox disturbances at distinct levels of cellular organization. The effect of an in vivo acute and severe hypobaric hypoxic insult (48 h at a pressure equivalent to 8,500 m) on oxidative damage and respiratory function was analyzed in skeletal muscle mitochondria isolated from vitamin E-supplemented (60 mg/kg ip, 3 times/wk for 3 wk) and nonsupplemented mice. Forty male mice were randomly divided into four groups: control + placebo, hypoxia + placebo (H + P), control + vitamin E, and hypoxia + vitamin E. Significant increases in mitochondrial heat shock protein 60 expression and protein carbonyls group levels and decreases in aconitase activity and sulfhydryl group content were found in the H + P group when compared with the control + placebo group. Mitochondrial respiration was significantly impaired in animals from the H + P group, as demonstrated by decreased state 3 respiratory control ratio and ADP-to-oxygen ratio and by increased state 4 with both complex I- and II-linked substrates. Using malate + pyruvate as substrates, hypoxia decreased the respiratory rate in the presence of carbonyl cyanide m-chlorophenylhydrazone and also stimulated oligomycin-inhibited respiration. However, vitamin E treatment attenuated the effect of hypoxia on the mitochondrial levels of heat shock protein 60 and markers of oxidative stress. Vitamin E was also able to prevent most mitochondrial alterations induced by hypobaric hypoxia. In conclusion, hypobaric hypoxia increases mitochondrial oxidative stress while decreasing mitochondrial capacity for oxidative phosphorylation. Vitamin E was an effective preventive agent, which further supports the oxidative character of mitochondrial dysfunction induced by hypoxia.  相似文献   

15.
Hypoxia affects mammalian mitochondrial function, as well as mitochondria-based energy metabolism. The detail mechanism has not been fully understood. In this study, we detected protein expression levels in mitochondrial fractions of Wistar rats exposed to hypobaric hypoxia by use of proteomic methods. Adult male Wistar rats were randomized into an hypoxic (4,500?m, 30 days) group and a normoxic control group (sea level). Gastrocnemius muscles mitochondria were extracted and purified. Mitochondrial oxygen consumption was measured with a Clark oxygen electrode; mitochondrial transmembrane potential was detected with Rhodamine 123 as a fluoresce probe. Using 2-DE and MALDI-TOF MS analysis, we identified eight mitochondrial protein spots that were differentially expressed in the hypoxic group compared with the normoxic control. These proteins included Chain A of F1-ATPase, voltage dependent anion channel 1 (VDAC), hydroxyacyl Coenzyme A dehydrogenase α-subunit, mitochondrial F1 complex γ-subunit, androgen-regulated protein and tripartite motif protein 50. Two of the spots, VDAC and ATP synthase α-subunit, were confirmed by Western blotting analysis. Oxygen consumption during State 3 respiration, as well as the respiratory control ratio (RCR) was significantly higher in the control than that in the hypoxic group; mitochondrial transmembrane potential was significantly higher in hypoxic group than that in the control. With successful use of multiple proteomic analysis techniques, we demonstrates that 30 days hypoxia exposure has effects on the expression of mitochondrial proteins involved in ATP production and lipid metabolism, decrease the stability of mitochondrial membrane, and affect the mitochondrial electron transport chain.  相似文献   

16.
Chemerin is a novel adipocyte‐derived factor that induces insulin resistance in skeletal muscle. However, the effect of chemerin on skeletal muscle mitochondrial function has received little attention. In the present study, we investigated whether mitochondrial dysfunction is involved in the pathogenesis of chemerin‐mediated insulin resistance. In this study, we used recombinant adenovirus to express murine chemerin in C57BL/6 mice. The mitochondrial function and structure were evaluated in isolated soleus muscles from mice. The oxidative mechanism of mitochondrial dysfunction in cultured C2C12 myotubes exposed to recombinant chemerin was analysed by western blotting, immunofluorescence and quantitative real‐time polymerase chain reaction. The overexpression of chemerin in mice reduced the muscle mitochondrial content and increased mitochondrial autophagy, as determined by the increased conversion of LC3‐I to LC3‐II and higher expression levels of Beclin1 and autophagy‐related protein‐5 and 7. The chemerin treatment of C2C12 myotubes increased the generation of mitochondrial reactive oxygen species, concomitant with a reduced mitochondrial membrane potential and increased the occurrence of mitochondrial protein carbonyls and mitochondrial DNA deletions. Knockdown of the expression of chemokine‐like receptor 1 or the use of mitochondria‐targeting antioxidant Mito‐TEMPO restored the mitochondrial dysfunction induced by chemerin. Furthermore, chemerin exposure in C2C12 myotubes not only reduced the insulin‐stimulated phosphorylation of protein kinase B (AKT) but also dephosphorylated forkhead box O3α (FoxO3α). Chemerin‐induced mitochondrial autophagy likely through an AKT‐FoxO3α‐dependent signalling pathway. These findings provide direct evidence that chemerin may play an important role in regulating mitochondrial remodelling and function in skeletal muscle.  相似文献   

17.
Mitochondrial respiratory chain defects have been associated with various diseases and normal aging, particularly in tissues with high energy demands including skeletal muscle. Muscle-specific mitochondrial DNA (mtDNA) mutations have also been reported to accumulate with aging. Our understanding of the molecular processes mediating altered mitochondrial gene expression to dysfunction associated with mtDNA mutations in muscle would be greatly enhanced by our ability to transfer muscle mtDNA to established cell lines. Here, we report the successful generation of mouse cybrids carrying skeletal muscle mtDNA. Using this novel approach, we performed bioenergetic analysis of cells bearing mtDNA derived from young and old mouse skeletal muscles. A significant decrease in oxidative phosphorylation coupling and regulation capacity has been observed with cybrids carrying mtDNA from skeletal muscle of old mice. Our results also revealed decrease growth capacity and cell viability associated with the mtDNA derived from muscle of old mice. These findings indicate that a decline in mitochondrial function associated with compromised mtDNA quality during aging leads to a decrease in both the capacity and regulation of oxidative phosphorylation.  相似文献   

18.
19.
Chronic metabolic diseases develop from the complex interaction of environmental and genetic factors, although the extent to which each contributes to these disorders is unknown. Here, we test the hypothesis that artificial selection for low intrinsic aerobic running capacity is associated with reduced skeletal muscle metabolism and impaired metabolic health. Rat models for low- (LCR) and high- (HCR) intrinsic running capacity were derived from genetically heterogeneous N:NIH stock for 20 generations. Artificial selection produced a 530% difference in running capacity between LCR/HCR, which was associated with significant functional differences in glucose and lipid handling by skeletal muscle, as assessed by hindlimb perfusion. LCR had reduced rates of skeletal muscle glucose uptake (~30%; P = 0.04), glucose oxidation (~50%; P = 0.04), and lipid oxidation (~40%; P = 0.02). Artificial selection for low aerobic capacity was also linked with reduced molecular signaling, decreased muscle glycogen, and triglyceride storage, and a lower mitochondrial content in skeletal muscle, with the most profound changes to these parameters evident in white rather than red muscle. We show that a low intrinsic aerobic running capacity confers reduced insulin sensitivity in skeletal muscle and is associated with impaired markers of metabolic health compared with high intrinsic running capacity. Furthermore, selection for high running capacity, in the absence of exercise training, endows increased skeletal muscle insulin sensitivity and oxidative capacity in specifically white muscle rather than red muscle. These data provide evidence that differences in white muscle may have a role in the divergent aerobic capacity observed in this generation of LCR/HCR.  相似文献   

20.
Reactive oxygen species (ROS), especially mitochondrial ROS, are postulated to play a significant role in muscle atrophy. We report a dramatic increase in mitochondrial ROS generation in three conditions associated with muscle atrophy: in aging, in mice lacking CuZn-SOD (Sod1(-/-)), and in the neurodegenerative disease, amyotrophic lateral sclerosis (ALS). ROS generation in muscle mitochondria is nearly threefold higher in 28- to 32-mo-old than in 10-mo-old mice and is associated with a 30% loss in gastrocnemius mass. In Sod1(-/-) mice, muscle mitochondrial ROS production is increased >100% in 20-mo compared with 5-mo-old mice along with a >50% loss in muscle mass. ALS G93A mutant mice show a 75% loss of muscle mass during disease progression and up to 12-fold higher muscle mitochondrial ROS generation. In a second ALS mutant model, H46RH48Q mice, ROS production is approximately fourfold higher than in control mice and is associated with a less dramatic loss (30%) in muscle mass. Thus ROS production is strongly correlated with the extent of muscle atrophy in these models. Because each of the models of muscle atrophy studied are associated to some degree with a loss of innervation, we were interested in determining whether denervation plays a role in ROS generation in muscle mitochondria isolated from hindlimb muscle following surgical sciatic nerve transection. Seven days post-denervation, muscle mitochondrial ROS production increased nearly 30-fold. We conclude that enhanced generation of mitochondrial ROS may be a common factor in the mechanism underlying denervation-induced atrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号