首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

The formation of native disulfide bonds is a complex and essential post-translational modification for many proteins. The large scale production of these proteins can be difficult and depends on targeting the protein to a compartment in which disulfide bond formation naturally occurs, usually the endoplasmic reticulum of eukaryotes or the periplasm of prokaryotes. It is currently thought to be impossible to produce large amounts of disulfide bond containing protein in the cytoplasm of wild-type bacteria such as E. coli due to the presence of multiple pathways for their reduction.  相似文献   

2.

Background  

Expression systems based on self-cleavable intein domains allow the generation of recombinant proteins with a C-terminal thioester. This uniquely reactive C-terminus can be used in native chemical ligation reactions to introduce synthetic groups or to immobilize proteins on surfaces and nanoparticles. Unfortunately, common refolding procedures for recombinant proteins that contain disulfide bonds do not preserve the thioester functionality and therefore novel refolding procedures need to be developed.  相似文献   

3.

Background  

Disulfide bonds are one of the most common post-translational modifications found in proteins. The production of proteins that contain native disulfide bonds is challenging, especially on a large scale. Either the protein needs to be targeted to the endoplasmic reticulum in eukaryotes or to the prokaryotic periplasm. These compartments that are specialised for disulfide bond formation have an active catalyst for their formation, along with catalysts for isomerization to the native state. We have recently shown that it is possible to produce large amounts of prokaryotic disulfide bond containing proteins in the cytoplasm of wild-type bacteria such as E. coli by the introduction of catalysts for both of these processes.  相似文献   

4.
5.
目的:牛胰核糖核酸酶是一种用于蛋白折叠研究的经典模式蛋白,在折叠研究过程中主要使用高效液相色谱用于分离检测不同阶段的蛋白折叠中间体。高效液相色谱具有自动化、分离效果好、样品可回收等优点,同时也存在检测通量较低、仪器设备较为昂贵等不足。AUT凝胶电泳简便、快捷、检测通量较高,本文尝试将其应用于牛胰核糖核酸酶的折叠研究。方法:使用AUT凝胶电泳、酶活性检测、质谱对牛胰核糖核酸酶还原变性过程及产生的折叠中间体进行检测;通过高效液相色谱和质谱对折叠中间单体进行分离检测,并分别进行AUT凝胶电泳检测以解析各折叠中间单体在电泳中的条带位置;通过AUT凝胶电泳和酶切后质谱鉴定各折叠中间单体的二硫键配对方式。结果:AUT凝胶电泳可以有效区分不同条件下的牛胰核糖核酸酶还原变性过程,检测结果与酶活性、质谱结果相符,并可以很好地区分牛胰核糖核酸酶还原变性过程折叠中间体。高效液相色谱将牛胰核糖核酸酶还原变性过程折叠中间体分离为13个色谱峰,并与AUT凝胶电泳中的11个条带位置进行匹配。确认牛胰核糖核酸酶还原变性过程折叠中间单体的二硫键配对方式,并与AUT凝胶电泳条带进行匹配,Cys58-Cys110和Cys26-Cys84构象熵减作用强于Cys40-Cys95和Cys65-Cys72。结论:AUT凝胶电泳适用于检测牛胰核糖核酸酶折叠中间体,可以与高效液相色谱、质谱等检测技术相互补充,共同应用于牛胰核糖核酸酶的折叠研究。  相似文献   

6.

Background  

The Protein Disulfide Isomerase (PDI) gene family encodes several PDI and PDI-like proteins containing thioredoxin domains and controlling diversified metabolic functions, including disulfide bond formation and isomerisation during protein folding. Genomic, cDNA and promoter sequences of the three homoeologous wheat genes encoding the "typical" PDI had been cloned and characterized in a previous work. The purpose of present research was the cloning and characterization of the complete set of genes encoding PDI and PDI like proteins in bread wheat (Triticum aestivum cv Chinese Spring) and the comparison of their sequence, structure and expression with homologous genes from other plant species.  相似文献   

7.

Background  

It has long been known that small regions of proteins tend to fold independently and are then stabilized by interactions between these distinct subunits or modules. Such units, also known as autonomous folding units (AFUs) or"foldons" play a key role in protein folding. A knowledge of such early folding units has diverse applications in protein engineering as well as in developing an understanding of the protein folding process. Such AFUs can also be used as model systems in order to study the structural organization of proteins.  相似文献   

8.

Background

Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and conformational restrictions of the reactive site loop by virtue of their compact size, and by the presence of disulfide bonds, hydrogen bonds, and other weak interactions.

Scope of review

The significance of various intramolecular interactions contributing to protein folding mechanism and their role in overall stability and activity of SPIs is discussed here. Furthermore, we have reviewed the effect of variation or manipulation of these interactions on the activity/stability of SPIs.

Major conclusions

The selective gain or loss of disulfide bond(s) in SPIs can be associated with their functional differentiation, which is likely to be compensated by non-covalent interactions (hydrogen bonding or electrostatic interactions). Thus, these intramolecular interactions are collectively responsible for the functional activity of SPIs, through the maintenance of scaffold framework, conformational rigidity and shape complementarities of reactive site loop.

General significance

Structural insight of these interactions will provide an in-depth understanding of kinetic and thermodynamic parameters involved in the folding and stability mechanisms of SPIs. These features can be explored for engineering canonical SPIs for optimizing their overall stability and functionality for various applications.  相似文献   

9.
The physicochemical mechanism of protein folding has been elucidated by the island model, describing a growth type of folding. The folding pathway is closely related with nucleation on the polypeptide chain and thus the formation of small local structures or secondary structures at the earliest stage of folding is essential to all following steps. The island model is applicable to any protein, but a high precision of secondary structure prediction is indispensable to folding simulation. The secondary structures formed at the earliest stage of folding are supposed to be of standard form, but they are usually deformed during the folding process, especially at the last stage, although the degree of deformation is different for each protein. Ferredoxin is an example of a protein having this property. According to X-ray investigation (1FDX), ferredoxin is not supposed to have secondary structures. However, if we assumed that in ferredoxin all the residues are in a coil state, we could not attain the correct structure similar to the native one. Further, we found that some parts of the chain are not flexible, suggesting the presence of secondary structures, in agreement with the recent PDB data (1DUR). Assuming standard secondary structures (-helices and -strands) at the nonflexible parts at the early stage of folding, and deforming these at the final stage, a structure similar to the native one was obtained. Another peculiarity of ferredoxin is the absence of disulfide bonds, in spite of its having eight cysteines. The reason cysteines do not form disulfide bonds became clear by applying the lampshade criterion, but more importantly, the two groups of cysteines are ready to make iron complexes, respectively, at a rather later stage of folding. The reason for poor prediction accuracy of secondary structure with conventional methods is discussed.  相似文献   

10.
The optimal conditions were determined for oxidative folding of the reduced human α-defensins, HNP1, HNP2, HNP3 and HD5, preferentially into their native disulfide structures. Since the human α-defensin-molecule in both reduced and oxidized forms raised a solubility problem arising from its basic and hydrophobic compositions, buffer concentration had to be lowered and cosolvent, such as CH3CN, had to be added to the folding medium in the presence of reduced and oxidized gluthathione (GSH/GSSG) to prevent aggregation and also to realize predominant formation of the native conformer. The four synthetic human α-defensins of high homogeneity were confirmed to exhibit the same antimicrobial potencies against E. coli as those reported for the natural products. All these peptides were shown to possess the native disulfide structure by sequence analyses and mass measurements with cystine segments obtained by enzymatic digestion. Edman degradation allowed for disulfide assignment of cystine segments involving adjacent Cys residues composed of three peptide chains, for which two possible disulfide modes could be considered, with the guidance of the cycles detecting diPTH cystine. As for HNP1, HNP2 and HNP3, however, diPTH cystine was expected at the same cycles in both structures, which would have resulted in not being able to distinguish between the two alternative modes. To avoid this, it was necessary to provide an acetyl tag for the specific peptide chain originating from the N-terminus. Edman degradation of cystine segments tagged with the acetyl group would be a practical procedure for analyzing disulfide structures involving adjacent Cys residues.  相似文献   

11.

Background  

Scanning large genomes with a sliding window in search of locally stable RNA structures is a well motivated problem in bioinformatics. Given a predefined window size L and an RNA sequence S of size N (L < N), the consecutive windows folding problem is to compute the minimal free energy (MFE) for the folding of each of the L-sized substrings of S. The consecutive windows folding problem can be naively solved in O(NL3) by applying any of the classical cubic-time RNA folding algorithms to each of the N-L windows of size L. Recently an O(NL2) solution for this problem has been described.  相似文献   

12.
Pathways of oxidative folding of disulfide proteins display a high degree of diversity and vary among two extreme models. The BPTI model is defined by limited species of folding intermediates adopting mainly native disulfide bonds. The hirudin model is characterized by highly heterogeneous folding intermediates containing mostly non-native disulfide bonds. αLA-IIIA is a 3-disulfide variant of α-lactalbumin (αLA) with a 3-D conformation essentially identical to that of intact αLA. αLA-IIIA contains 3 native disulfide bonds of αLA, two of them are located at the calcium binding β-subdomain (Cys61–Cys77 and Cys73–Cys91) and the third bridge is located within the α-helical domain of the molecule (Cys28–Cys111). We investigate here the pathway of oxidative folding of fully reduced αLA-IIIA with and without stabilization of its β-subdomain by calcium binding. In the absence of calcium, the folding pathway of αLA-IIIA was shown to resemble that of hirudin model. Upon stabilization of β-sheet domain by calcium binding, the folding pathway of αLA-IIIA exhibits a striking similarity to that of BPTI model. Three predominant folding intermediates of αLA-IIIA containing exclusively native disulfide bonds were isolated and structurally characterized. Our results further demonstrate that stabilization of subdomains in a protein may dictate its folding pathway and represent a major cause for the existing diversity in the folding pathways of the disulfide-containing proteins.  相似文献   

13.

Background

The architectural organization of protein structures has been the focus of intense research since it can hopefully lead to an understanding of how proteins fold. In earlier works we had attempted to identify the inherent structural organization in proteins through a study of protein topology. We obtained a modular partitioning of protein structures with the modules correlating well with experimental evidence of early folding units or “foldons”. Residues that connect different modules were shown to be those that were protected during the transition phase of folding.

Methodology/Principal Findings

In this work, we follow the topological path of ubiquitin through molecular dynamics unfolding simulations. We observed that the use of recurrence quantification analysis (RQA) could lead to the identification of the transition state during unfolding. Additionally, our earlier contention that the modules uncovered through our graph partitioning approach correlated well with early folding units was vindicated through our simulations. Moreover, residues identified from native structure as connector hubs and which had been shown to be those that were protected during the transition phase of folding were indeed more stable (less flexible) well beyond the transition state. Further analysis of the topological pathway suggests that the all pairs shortest path in a protein is minimized during folding.

Conclusions

We observed that treating a protein native structure as a network by having amino acid residues as nodes and the non-covalent interactions among them as links allows for the rationalization of many aspects of the folding process. The possibility to derive this information directly from 3D structure opens the way to the prediction of important residues in proteins, while the confirmation of the minimization of APSP for folding allows for the establishment of a potentially useful proxy for kinetic optimality in the validation of sequence-structure predictions.  相似文献   

14.

Background  

Ever since the ground-breaking work of Anfinsen et al. in which a denatured protein was found to refold to its native state, it has been frequently stated by the protein fold prediction community that all the information required for protein folding lies in the amino acid sequence. Recent in vitro experiments and in silico computational studies, however, have shown that cotranslation may affect the folding pathway of some proteins, especially those of ancient folds. In this paper aspects of cotranslational folding have been incorporated into a protein structure prediction algorithm by adapting the Rosetta program to fold proteins as the nascent chain elongates. This makes it possible to conduct a pairwise comparison of folding accuracy, by comparing folds created sequentially from each end of the protein.  相似文献   

15.

Background

The HIV-1 envelope glycoprotein gp120, which mediates viral attachment to target cells, consists for ~50% of sugar, but the role of the individual sugar chains in various aspects of gp120 folding and function is poorly understood. Here we studied the role of the carbohydrate at position 386. We identified a virus variant that had lost the 386 glycan in an evolution study of a mutant virus lacking the disulfide bond at the base of the V4 domain.

Results

The 386 carbohydrate was not essential for folding of wt gp120. However, its removal improved folding of a gp120 variant lacking the 385–418 disulfide bond, suggesting that it plays an auxiliary role in protein folding in the presence of this disulfide bond. The 386 carbohydrate was not critical for gp120 binding to dendritic cells (DC) and DC-mediated HIV-1 transmission to T cells. In accordance with previous reports, we found that N386 was involved in binding of the mannose-dependent neutralizing antibody 2G12. Interestingly, in the presence of specific substitutions elsewhere in gp120, removal of N386 did not result in abrogation of 2G12 binding, implying that the contribution of N386 is context dependent. Neutralization by soluble CD4 and the neutralizing CD4 binding site (CD4BS) antibody b12 was significantly enhanced in the absence of the 386 sugar, indicating that this glycan protects the CD4BS against antibodies.

Conclusion

The carbohydrate at position 386 is not essential for protein folding and function, but is involved in the protection of the CD4BS from antibodies. Removal of this sugar in the context of trimeric Env immunogens may therefore improve the elicitation of neutralizing CD4BS antibodies.  相似文献   

16.
Amphioxus insulin-like peptide (AILP) belongs to the insulin superfamily and is proposed as the common ancestor of insulin and insulin-like growth factor 1. Herein, the studies on oxidative refolding and reductive unfolding of AILP are reported. During the refolding process, four major intermediates, P1, P2, P3, and P4, were captured, which were almost identical to those intermediates, U1, U2, U3, and U4, captured during the AILP unfolding process. P4 (U4) has the native disulfide A20-B19; P1 (U1), P2 (U2), and P3 (U3) have two disulfide bonds, which include A20-B19. Based on the analysis of the time course distribution and properties of the intermediates, we proposed that fully reduced AILP refolded through 1SS, 2SS, and 3SS intermediate stages to the native form; native AILP unfolded through 2SS and 1SS intermediate stages to the full reduced form. A schematic flow chart of major oxidative refolding and reductive unfolding pathways of AILP was proposed. Implication for the folding behavior of insulin family proteins was discussed. There may be seen three common folding features in the insulin superfamily: 1) A20-B19 disulfide is most important and formed during the initial stage of folding process; 2) the second disulfide is nonspecifically formed, which then rearranged to native disulfide; 3) in vitro refolding and unfolding pathways may share some common folding intermediates but flow in opposite directions. Furthermore, although swap AILP is a thermodynamically stable final product, a refolding study of swap AILP demonstrated that it is also a productive intermediate of native AILP during refolding.  相似文献   

17.
Song MC  Scheraga HA 《FEBS letters》2000,471(2-3):177-181
It has been shown previously that the oxidative folding of bovine pancreatic ribonuclease A proceeds through parallel pathways with two major native-like three-disulfide (3S) intermediates. We show here that, under some conditions, the native disulfide bonds can also be regenerated through disproportionation reactions; in other words, the protein can serve as its own redox reagent. The results also show that disulfide species of the unstructured 3S ensemble have a strong propensity to participate in intermolecular interactions. These interactions are favored at high protein concentration, temperature and pH, and lead to formation of the native structure during disulfide reshuffling in the rate-determining step.  相似文献   

18.

Background  

Secretion of recombinant proteins in yeast can be affected by their improper folding in the endoplasmic reticulum and subsequent elimination of the misfolded molecules via the endoplasmic reticulum associated protein degradation pathway. Recombinant proteins can also be degraded by the vacuolar protease complex. Human urokinase type plasminogen activator (uPA) is poorly secreted by yeast but the mechanisms interfering with its secretion are largely unknown.  相似文献   

19.

Background  

The wealth of information on protein structure has led to a variety of statistical analyses of the role played by individual amino acid types in the protein fold. In particular, the contact propensities between the various amino acids can be converted into folding energies that have proved useful in structure prediction. The present study addresses the relationship of protein folding propensities to the evolutionary relationship between residues.  相似文献   

20.
Summary Trypsin inhibitor EETI II, possessing six cysteines engaged in three disulfide bridges, shares a common structural motif with other proteins of different origins and functions. To understand the principles that govern folding of this largely distributed basic scaffold, mainly composed of a small triple-stranded β-sheet, we have studied different stages in the folding of EETI II. The conformational properties of a synthetic analogue of EETI II possessing only one native (15–27) disulfide bridge were investigated with the combined use of1H NMR and molecular modelling. Although two native-like reverse turns were observed, formation of β-sheet could not be evidenced in the one disulfide analogue, while the motif has been shown to be present in a folding intermediate with two native disulfide bridges (9–21 and 15–27). These results suggest that the structural motif requires stabilisation by two disulfide bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号