首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The following interproton distances are reported for the decapeptide tyrocidine A in solution: (a) r(phi) distances between NH(i) and H alpha (i), (b) r(psi) distances between NH (i + 1) and H alpha (i), (c) r(phi psi) distances between NH(i + 1) and NH(i), (d) NH in equilibrium NH transannular distances, (e) H alpha in equilibrium H alpha transannular distances, (f) r x 1 distances between H alpha and H beta protons, (g) NH(i) in equilibrium H beta (i) distances, (h) NH (i + 1) in equilibrium H beta (i) distances, (i) carboxamide-backbone protons and carboxamide-side chain proton distances, (j) side chain proton-side chain proton distances. The procedures for distance calculations were: NOE ratios and calibration distances, sigma ratios and calibration distances, and correlation times and sigma parameters. The cross-relaxation parameters were obtained from the product, say, of NOE 1 leads to 2 and the monoselective relaxation rate of proton 2; the NOEs were measured by NOE difference spectroscopy. The data are consistent with a type I beta-turn/ type II' beta-turn/ approximately antiparallel beta-pleated sheet conformation of tyrocidine A in solution and the NOEs, cross-relaxation parameters, and interproton distances serve as distinguishing criteria for beta-turn and beta-pleated sheet conformations. It should be borne in mind that measurement of only r phi and r psi distances for a decapeptide only defines the ( phi, psi)-space in terms of 4(10) possible conformations; the distances b-j served to reduce the degeneracy in possible (phi, psi)-space to one tyrocidine A conformation. The latter conformation is consistent with that derived from scalar coupling constants, hydrogen bonding studies, and proton-chromophore distance measurement, and closely resembles the conformation of gramicidin S.  相似文献   

2.
The structural perturbation induced by C(alpha)-->N(alpha) exchange in azaamino acid-containing peptides was predicted by ab initio calculation of the 6-31G* and 3-21G* levels. The global energy-minimum conformations for model compounds, For-azaXaa-NH2 (Xaa=Gly, Ala, Leu) appeared to be the beta-turn motif with a dihedral angle of phi= +/- 90 degrees, psi=0 degrees. This suggests that incorporation of the azaXaa residue into the i+2 position of designed peptides could stabilize the beta-turn structure. The model azaLeu-containing peptide, Boc-Phe-azaLeu-Ala-OMe, which is predicted to adopt a beta-turn conformation was designed and synthesized in order to experimentally elucidate the role of the azaamino acid residue. Its structural preference in organic solvents was investigated using 1H NMR, molecular modelling and IR spectroscopy. The temperature coefficients of amide protons, the characteristic NOE patterns, the restrained molecular dynamics simulation and IR spectroscopy defined the dihedral angles [ (phi i+1, psi i+1) (phi i+2, psi i+2)] of the Phe-azaLeu fragment in the model peptide, Boc-Phe-azaLeu-Ala-OMe, as [(-59 degrees, 127 degrees) (107 degrees, -4 degrees)]. This solution conformation supports a betaII-turn structural preference in azaLeu-containing peptides as predicted by the quantum chemical calculation. Therefore, intercalation of the azaamino acid residue into the i+2 position in synthetic peptides is expected to provide a stable beta-turn formation, and this could be utilized in the design of new peptidomimetics adopting a beta-turn scaffold.  相似文献   

3.
Beta-turns and their distortions: a proposed new nomenclature   总被引:19,自引:0,他引:19  
  相似文献   

4.
The crystal structures of two diastereomeric alpha,beta-dehydrobutyrine peptides Ac-Pro-(Z)-DeltaAbu-NHMe (I) and Ac-Pro-(E)-DeltaAbu-NHMe (II) have been determined. Both dehydropeptides adopt betaI-turn conformation characterized by the pairs of (phi(i+1), psi(i+1)) and (phi(i+2), psi(i+2)) angles as -66, -19, -97, 11 degrees for I and -59, -27, -119, 29 degrees for II. In each peptide, the betaI turn is stabilized by (i + 3) --> i intramolecular hydrogen bonds with N...O distance of 3.12 A for I and 2.93 A for II. These structures have been compared to the crystal structures of homologous peptides Ac-Pro-DeltaVal-NHMe and Ac-Pro-DeltaAla-NHMe. Theoretical analyses by DFT/B3LYP/6-31 + G** method of conformers formed by these four peptides and by the saturated peptide Ac-Pro-Ala-NHMe revealed that peptides with a (Z) substituent at the C(beta) (i+2) atom of dehydroamino acid, i.e. Ac-Pro-DeltaVal-NHMe and Ac-Pro-(Z)-DeltaAbu-NHMe, predominantly form beta turns, both in vacuo and in polar environment. The tendency to adopt beta-turn conformation is much weaker for the peptides lacking the (Z) substituent, Ac-Pro-(E)-DeltaAbu-NHMe and Ac-Pro-DeltaAla-NHMe. The latter adopts a semi-extended or an extended conformation in every polar environment, including a weakly polar solvent. The saturated peptide Ac-Pro-Ala-NHMe in vacuo prefers a beta-turn conformation, but in polar environment the differences between various conformers are small. The role of pi-electron correlation and intramolecular hydrogen bonds interaction in stabilizing the hairpin structures are discussed.  相似文献   

5.
A useful synthon to approach artificial phenylalanyl peptides in a [2 + 2 + 2] cycloaddition reaction, C(alpha,alpha)-dipropargylglycine (Dprg) is examined for its conformational preferences as a constrained residue. Crystal structure analysis and preliminary NMR results establish possible preference of the residue for folded (alpha) rather than extended (beta) region of the straight phi,psi conformational space. Boc-Dprg-L-Leu-OMe (1) displays two molecular conformations within the same crystallographic asymmetric unit, with Dprg in the alpha(R) or alpha(L) conformation, participating in a type I beta-turn or an alpha(L)-alpha(R)-type fold, in which Leu(2) assumes the alpha(R) conformation stereochemically favored for an L-chiral residue. Boc-Dprg-D-Val-L-Leu-OMe (2) displays a type I' beta-turn conformation in crystal, with both Dprg(1) and D-Val(2) assuming the alpha(L) conformation stereochemically favored for a D-chiral residue, with 4 --> 1 type hydrogen bond linking L-Leu(3) NH with Boc CO. NMR analysis using temperature variation, solvent titration, and a spin probe study suggests a fully solvent-exposed nature of Dprg NH, ruling out a fully extended C(5)-type conformation for this residue, and solvent sequestered nature of L-Leu(3) NH, suggesting possibility of a beta-turn due to Dprg assuming a folded conformation.  相似文献   

6.
The peptide N-Boc-L-Phe-dehydro-Leu-L-Val-OCH3 was synthesized by the usual workup procedure and finally by coupling the N-Boc-L-Phe-dehydro-Leu-OH to valine methyl ester. It was crystallized from its solution in methanol-water mixture at 4 degrees C. The crystals belong to the triclinic space group P1 with a = 5.972(5) A, b = 9.455(6) A, c = 13.101(6) A, alpha = 103.00(4) degrees, beta = 97.14(5) degrees, gamma = 102.86(5) degrees, V = 690.8(8) A, Z = 1, dm = 1.179(5) Mg m-3 and dc = 1.177(5) Mg m-3. The structure was determined by direct methods using SHELXS86. It was refined by block-diagonal least-squares procedure to an R value of 0.060 for 1674 observed reflections. The C alpha 2-C beta 2 distance of 1.323(9) A in dehydro-Leu is an appropriate double bond length. The bond angle C alpha-C beta-C gamma in the dehydro-Leu residue is 129.4(8) degrees. The peptide backbone torsion angles are theta 1 = -168.6(6) degrees, omega 0 = 170.0(6) degrees, phi 1 = -44.5(9) degrees, psi 1 = 134.5(6) degrees, omega 1 = 177.3(6) degrees, phi 2 = 54.5(9) degrees, psi 2 = 31.1(10) degrees, omega 2 = 171.7(6) degrees, phi 3 = 51.9(8) degrees, psi T3 = 139.0(6) degrees, theta T = -175.7(6) degrees. These values show that the backbone adopts a beta-turn II conformation. As a result of beta-turn, an intramolecular hydrogen bond is formed between the oxygen of the ith residue and NH of the (i + 3)th residue at a distance of 3.134(6) A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
alpha-sheet has been proposed as the main constituent of the prefibrillar intermediate during amyloid formation. Here the helical parameters of the alpha-sheet strand are calculated from average main-chain dihedral angles reported from molecular dynamics simulations. It is an almost linear polypeptide that forms a right-handed helix of about 100 A diameter, with 100 residues and a rise of 30 A per turn. The strands are curved but untwisted, which implies that neighboring strands need not coil to make interstrand hydrogen bonds. This suggests that compared to beta-sheets in native folded proteins, alpha-sheets can be larger and stack more easily to create extensive 3D blocks. It is shown that alpha-sheet is related to a category of structures termed "mirror" structures. Mirror structures have repetitive pairs of main-chain dihedral angles at residues i and i+1 that satisfy the condition phi(i) (+1) = -psi(i), psi(i) (+1) = -phi(i). They are uniquely identified by the two orientations of their peptide planes, specified by phi(i) and psi(i). Their side chains point alternately in opposite directions. Interestingly, their conformations are insensitive to phi(i) and psi(i) in that the pseudo dihedral angle formed by four consecutive C(alpha) atoms is always close to 180 degrees . There are two types: "beta-mirror" and "alpha-mirror" structure; beta-mirror structures relate to beta-sheet by small peptide plane rotations, of less than 90 degrees , while alpha-mirror structures are close to alpha-sheet and relate to beta-sheet by approximately 180 degrees peptide plane flips. Most mirror structures, and in particular the alpha-mirror, form wide helices with diameters 50-70 A. Their gentle curvature, and therefore that of the alpha-sheet, arises from the orientation of successive peptide units causing the difference in the bond angles at the C and N atoms of the peptide unit to gradually change the direction of the chain.  相似文献   

8.
Highly specific structures can be designed by inserting dehydro-residues into peptide sequences. The conformational preferences of branched beta-carbon residues are known to be different from other residues. As an implication it was expected that the branched beta-carbon dehydro-residues would also induce different conformations when substituted in peptides. So far, the design of peptides with branched beta-carbon dehydro-residues at (i + 1) position has not been reported. It may be recalled that the nonbranched beta-carbon residues induced beta-turn II conformation when placed at (i + 2) position while branched beta-carbon residues induced beta-turn III conformation. However, the conformation of a peptide with a nonbranched beta-carbon residue when placed at (i + 1) position was not found to be unique as it depended on the stereochemical nature of its neighbouring residues. Therefore, in order to induce predictably unique structures with dehydro-residues at (i + 1) position, we have introduced branched beta-carbon dehydro-residues instead of nonbranched beta-carbon residues and synthesized two peptides: (I) N-Carbobenzoxy-DeltaVal-Ala-Leu-OCH3 and (II) N-Carbobenzoxy-DeltaIle-Ala-Leu-OCH3 with DeltaVal and DeltaIle, respectively. The crystal structures of peptides (I) and (II) have been determined and refined to R-factors of 0.065 and 0.063, respectively. The structures of both peptides were essentially similar. Both peptides adopted type II beta-turn conformations with torsion angles; (I): phi1 = -38.7 (4) degrees, psi1 = 126.0 (3) degrees; phi2 = 91.6 (3) degrees, psi2 = -9.5 (4) degrees and (II): phi1 = -37.0 (6) degrees, psi1 = 123.6 (4) degrees, phi2 = 93.4 (4), psi2 = -11.0(4) degrees respectively. Both peptide structures were stabilized by intramolecular 4-->1 hydrogen bonds. The molecular packing in both crystal structures were stabilized in each by two identical hydrogen bonds N1...O1' (-x, y + 1/2, -z) and N2...O2' (-x + 1, y + 1/2, -z) and van der Waals interactions.  相似文献   

9.
The conformational preferences of azaphenylalanine-containing peptide were investigated using a model compound, Ac-azaPhe-NHMe with ab initio method at the HF/3-21G and HF/6-31G(*) levels, and the seven minimum energy conformations with trans orientation of acetyl group and the 4 minimum energy conformations with cis orientation of acetyl group were found at the HF/6-31G(*) level if their mirror images were not considered. An average backbone dihedral angle of the 11 minimum energy conformations is phi=+/-91 degrees +/-24 degrees , psi =+/-18 degrees +/-10 degrees (or +/-169 degrees +/-8 degrees ), corresponding to the i+2 position of beta-turn (delta(R)) or polyproline II (beta(P)) structure, respectively. The chi(1) angle in the aromatic side chain of azaPhe residue adopts preferentially between +/-60 degrees and +/-130 degrees, which reflect a steric hindrance between the N-terminal carbonyl group or the C-terminal amide group and the aromatic side chain with respect to the configuration of the acetyl group. These conformational preferences of Ac-azaPhe-NHMe predicted theoretically were compared with those of For-Phe-NHMe to characterize the structural role of azaPhe residue. Four tripeptides containing azaPhe residue, Boc-Xaa-azaPhe-Ala-OMe [Xaa=Gly(1), Ala(2), Phe(3), Asn(4)] were designed and synthesized to verify whether the backbone torsion angles of azaPhe reside are still the same as compared with theoretical conformations and how the preceding amino acids of azaPhe residue perturb the beta-turn skeleton in solution. The solution conformations of these tripeptide models containing azaPhe residue were determined in CDCl(3) and DMSO solvents using NMR and molecular modeling techniques. The characteristic NOE patterns, the temperature coefficients of amide protons and small solvent accessibility for the azapeptides 1-4 reveal to adopt the beta-turn structure. The structures of azapeptides containing azaPhe residue from a restrained molecular dynamics simulation indicated that average dihedral angles [(phi(1), psi(1)), (phi(2), psi(2))] of Xaa-azaPhe fragment in azapeptide, Boc-Xaa-azaPhe-Ala-OMe were [(-68 degrees, 135 degrees ), (116 degrees, -1 degrees )], and this implies that the intercalation of an azaPhe residue in tripeptide induces the betaII-turn conformation, and the volume change of a preceding amino acid of azaPhe residue in tripeptides would not perturb seriously the backbone dihedral angle of beta-turn conformation. We believe such information could be critical in designing useful molecules containing azaPhe residue for drug discovery and peptide engineering.  相似文献   

10.
The crystal structure of Ac-DeltaVal-NMe(2) (DeltaVal = alpha,beta-dehydrovaline) was determined by X-ray crystallography. The found angles phi = -60 degrees and psi = 125 degrees correspond exactly to the respective values of the (i + 1)th residue in idealised beta-turn II/VIa. Ab initio/DFT studies revealed that the molecule adopts the angle psi restricted only to about |130 degrees | and very readily attains the angle phi = about -50 degrees. This is in line with its solid-state conformation. Taken together, these data suggest that the DeltaVal residue combined with a C-terminal tertiary amide is a good candidate at the (i + 1)th position in a type II/VIa beta-turn.  相似文献   

11.
Analysis and prediction of the different types of beta-turn in proteins   总被引:30,自引:0,他引:30  
beta-Turns have been extracted from 59 non-identical proteins (resolution 2 A) using the standard criterion that the distance between C alpha (i) and C alpha (i + 3) is less than 7 A (1 A = 0.1 nm). The beta-turns have been classified, using phi, psi angles, into seven conventional turn types (I, I', II, II', IV, VIa, VIb) and a new class of beta-turn, designated type VIII, in which the central residues (i + 1, i + 2) adopt an alpha R beta conformation. Most beta-turn types are found in various topological environments, with the exception of I' and II' beta-turns, where 83% and 50%, respectively, are found in beta-hairpins. Sufficient data have been gathered to enable, for the first time, the separate statistical analysis of type I and II beta-turns. The two turn types have been shown to be strikingly different in their sequence preferences. Type I turns favour Asp, Asn, Ser and Cys at i; Asp, Ser, Thr and Pro at i + 1; Asp, Ser, Asn and Arg at i + 2; Gly, Trp and Met at i + 3, whilst type II turns prefer Pro at i + 1; Gly and Asn at i + 2; Gln and Arg at i + 3. These preferences have been explained by the specific side-chain interactions observed within the X-ray structures. The positional trends for type I and II beta-turns have been incorporated into the simple empirical predictive algorithm originally developed by P.N. Lewis et al. The program has improved the positional prediction of beta-turns, and has enhanced and extended the method by predicting the type of beta-turn. Since the observed preferences reflect local interactions these predictions are applicable not only to proteins, but also to peptides, many of which are thought to contain beta-turns.  相似文献   

12.
The toxic component of amyloid is not the mature fiber but a soluble prefibrillar intermediate. It has been proposed, from molecular dynamics simulations, that the precursor is composed of alpha sheet, which converts into the beta sheet of mature amyloid via peptide plane flipping. alpha sheet, not seen in proteins, occurs as isolated stretches of polypeptide. We show that the alpha- to beta sheet transition can occur by the flipping of alternate peptide planes. The flip can be described as alphaRalphaL<-->betabeta. A search conducted within sets of closely related protein crystal structures revealed that these flips are common, occurring in 8.5% of protein families. The average "alphaL" conformation found is in an adjacent and less populated region of the Ramachandran plot, as expected if the flanking peptide planes, being hydrogen bonded, are restricted in their movements. This work provides evidence for flips allowing direct alpha- to beta sheet interconversion.  相似文献   

13.
Plastocyanin is a predominantly beta-sheet protein containing a type I copper center. The conformational ensemble of a denatured state of apo-plastocyanin formed in solution under conditions of low salt and neutral pH has been investigated by multidimensional heteronuclear NMR spectroscopy. Chemical shift assignments were obtained by using three-dimensional triple-resonance NMR experiments to trace through-bond heteronuclear connectivities along the backbone and side chains. The (3)J(HN,Halpha) coupling constants, (15)N-edited proton-proton nuclear Overhauser effects (NOEs), and (15)N relaxation parameters were also measured for the purpose of structural and dynamic characterization. Most of the residues corresponding to beta-strands in the folded protein exhibit small upfield shifts of the (13)C(alpha) and (13)CO resonances relative to random coil values, suggesting a slight preference for backbone dihedral angles in the beta region of (phi,psi) space. This is further supported by the presence of strong sequential d(alphaN)(i, i + 1) NOEs throughout the sequence. The few d(NN)(i, i + 1) proton NOEs that are observed are mostly in regions that form loops in the native plastocyanin structure. No medium or long-range NOEs were observed. A short sequence, between residues 59 and 63, was found to populate a nonnative helical conformation in the unfolded state, as indicated by the shift of the (13)C(alpha), (13)CO, and (1)H(alpha) resonances relative to random coil values and by the decreased values of the (3)J(HN,Halpha) coupling constants. The (15)N relaxation parameters indicate restriction of motions on a nanosecond timescale in this region. Intriguingly, this helical conformation is present in a sequence that is close to but not in the same location as the single short helix in the native folded protein. The results are consistent with earlier NMR studies of peptide fragments of plastocyanin and confirm that the regions of the sequence that form beta-strands in the native protein spontaneously populate the beta-region of (phi,psi) space under folding conditions, even in the absence of stabilizing tertiary interactions. We conclude that the state of apo-plastocyanin present under nondenaturing conditions is a noncompact unfolded state with some evidence of nativelike and nonnative local structuring that may be initiation sites for folding of the protein.  相似文献   

14.
Thakur AK  Kishore R 《Biopolymers》2000,53(6):447-454
The chemical synthesis and x-ray crystal structure analysis of a model peptide incorporating a conformationally adaptable unsubstituted beta-Ala residue: Boc-beta-Ala-Acc6-OCH3 (C16H28N2O5, molecular weight = 328.41; 1) has been described. The peptide crystallized in the space group P2(1)2(1)2(1) a = 8.537 (3), b = 8.872 (10), c = 25.327 (8), alpha = beta = gamma = 90.0 degrees, Z = 4. An attractive feature of the crystal structure analysis of 1 is an accommodation of a significantly folded beta-Ala residue in a short linear peptide. The overall peptide conformation is typically folded into a beta-turn-like motif. The stabilization of the peptide backbone conformation by nonconventional C-H...O weak intramolecular hydrogen-bonding interactions, involving the ester terminal carbon atom and the ethereal oxygen of the Boc group, has been evoked. The conformational constraint that seems most apparent is the phi, psi value of the highly constrained hydrophobic Acc6 ring that may play a key role in inducing or sustaining the observed pseudo type III or III' beta-turn structure. The resulting 12-membered hydrogen bonding ring motif in 1 is distinctly different from the one found in classical beta-turn structures, stabilized by a conventional strong C=O...H-N intramolecular hydrogen bond, comprised of alpha-amino acids. The potential of the conformationally adaptable beta-Ala residue to occupy i + 1 position (left corner) of the folded beta-turn-like structure and to design and construct novel secondary structural features have been emphasized.  相似文献   

15.
The effects of N-terminal amino acid stereochemistry on prolyl amide geometry and peptide turn conformation were investigated by coupling both L- and D-amino acids to (2S, 5R)-5-tert-butylproline and L-proline to generate, respectively, N-(acetyl)dipeptide N'-methylamides 1 and 2. Prolyl amide cis- and trans-isomers were, respectively, favored for peptides 1 and 2 as observed by proton NMR spectroscopy in water, DMSO and chloroform. The influence of solvent composition on amide proton chemical shift indicated an intramolecular hydrogen bond between the N'-methylamide proton and the acetamide carbonyl for the major conformer of dipeptides (S)-1, that became less favorable in (R)-1 and 2. The coupling constant (3J(NH,alpha)) values for the cis-isomer of (R)-1 indicated a phi2 dihedral angle value characteristic of a type VIb beta-turn conformation in solution. X-ray crystallographic analysis of N-acetyl-D-leucyl-5-tert-butylproline N'-methylamide (R)-lb showed the prolyl residue in a type VIb beta-turn geometry possessing an amide cis-isomer and psi3-dihedral angle having a value of 157 degrees, which precluded an intramolecular hydrogen bond. Intermolecular hydrogen bonding between the leucyl residues of two turn structures within the unit cell positioned the N-terminal residue in a geometry where their phi2 and psi2 dihedral angle values were not characteristic of an ideal type VIb turn. The circular dichroism spectra of tert-butylprolyl peptides (S)- and (R)-1b were found not to be influenced by changes in solvent composition from water to acetonitrile. The type B spectrum exhibited by (S)-1b has been previously assigned to a type VIa beta-turn conformation [Halab L, Lubell WD. J. Org. Chem. 1999; 64: 3312-3321]. The type C spectrum exhibited by the (R)-lb has previously been associated with type II' beta-turn and alpha-helical conformations in solution and appears now to be also characteristic for a type VIb geometry.  相似文献   

16.
The peptide N-Boc-L-Pro-dehydro-Phe-L-Gly-OH was synthesized by the usual workup procedure and finally coupling the N-Boc-L-Pro-dehydro-Phe to glycine. The peptide crystallizes in monoclinic space group P2(1) with a = 8.951(4) A, b = 5.677(6) A, c = 21.192(11) A, beta = 96.97(4) degrees, V = 1069(1) A3, Z = 2, dm = 1.295(5) Mgm-3, and dc = 1.297(4) Mgm-3. The structure was determined by direct methods using SHELXS86. The structure was refined by the block-diagonal least-squares procedure to an R value of 0.074 for 1002 observed reflections. The C alpha 2-C beta 2 distance of 1.33(2) A is an appropriate double bond length. The angle C alpha 2-C beta 2-C gamma 2 is 133(1) degrees. The peptide backbone torsion angles are theta 1 = -167(1) degrees, omega 0 = 179(1) degrees, phi 1 = -48(1) degrees, psi 1 = 137(1) degrees, omega 1 = 175(1) degrees, phi 2 = 65(2) degrees, psi 2 = 15(2) degrees, omega 2 = -179(1) degrees, and phi 3 = -166(1) degrees. These values show that the Boc group has a trans-trans conformation while the peptide backbone adopts a beta-turn II conformation, which is stabilized by an intramolecular hydrogen bond of length of 3.05(1) A. The structures of dehydro-Phe containing peptides suggest that the dehydro-Phe promotes the beta-turn II conformation. The five-membered pyrrolidine ring of the Pro residue adopts an ideal C gamma-exo conformation with torsion angles chi 1(1) = -24(1) degrees, chi 2(1) = 34(1) degrees, chi 3(1) = -30(1) degrees, chi 4(1) = 15(1) degrees, and theta 0(1) = 6(1) degrees. The side-chain torsion angles in dehydro-Phe are chi 1(2) = -1(2) degrees, chi 2,1(2) = -176(1) degrees, and chi 2,2(2) = 8(2) degrees. The plane of C alpha 2-C beta 2-C gamma 2 is rotated with respect to the plane of the phenyl ring at 7(1) degrees, which indicates that the atoms of the side chain of dehydro-Phe are essentially coplanar. The molecules form a 2(1) screw axis related hydrogen-bonded rows along the b axis.  相似文献   

17.
Methylation at the C(alpha)-position of a Pro residue was expected to lock the preceding tertiary amide (omega) torsion angle of the resulting (alphaMe)Pro to the trans disposition and to restrict the phi,psi surface to the single region where the 3(10)/alpha-helices are found (in this five-membered ring residue phi is severely constrained to about +/-65 degrees by its cyclic nature). The results of the present X-ray diffraction work on a selected set of four N(alpha)-blocked, (alphaMe)Pro-containing, dipeptide N'-alkylamides clearly show that, although the region of the conformational map largely preferred by (alphaMe)Pro would indeed be that typical of 3(10)/alpha-helices, the semi-extended [type-II poly(Pro)(n) helix] region can also be explored by this extremely sterically demanding C(alpha)-tetrasubstituted alpha-amino acid. In addition, the known high propensity for beta-turn formation of the Pro residue is further enhanced in peptides based on its C(alpha)-methylated derivative.  相似文献   

18.
A conserved high activity erythrocyte binding peptide (HAEBP) derived from the 175-erythrocyte binding antigen (EBA-175), coded 1758, was synthesized and analyzed for antigenic and protective activities in Aotus monkeys, together with several of its analogues. Conformational analysis by 1H Nuclear Magnetic Resonance in TFE-solution was done for some of them, as well as the 1758 parent peptide. We show that the conserved 1758 HAEBP (being neither immunogenic nor protective) has an alpha helical structure, whilst its analogues contain beta-turn structures. The 13790 peptide (highly immunogenic and protective for some monkeys) shows a type I beta-turn structure distorted in psi(i + 1) psi(i + 2) angles, whilst immunogenic and non-protective (as well as the non-immunogenic and non-protective peptides) have type III' beta-turns. An understanding of native peptide's correlation with altered peptide three-dimensional structure and resulting immunogenicity and protective activity may lead to a more rational design of multi-antigenic, multi-stage P. falciparum subunit based malaria vaccines.  相似文献   

19.
Che Y  Marshall GR 《Biopolymers》2006,81(5):392-406
The beta-turn is a common motif in both proteins and peptides and often a recognition site in protein interactions. A beta-turn of four sequential residues reverses the direction of the peptide chain and is classified by the phi and psi backbone torsional angles of residues i + 1 and i + 2. The type VI turn usually contains a proline with a cis-amide bond at residue i + 2. Cis-proline analogs that constrain the peptide to adopt a type VI turn led to peptidomimetics with enhanced activity or metabolic stability. To compare the impact of different analogs on amide cis-trans isomerism and peptide conformation, the conformational preference for the cis-amide bond and the type VI turn was investigated at the MP2/6-31+G** level of theory in water (polarizable continuum water model). Analogs stabilize the cis-amide conformations through different mechanisms: (1) 5-alkylproline, with bulky hydrocarbon substituent on the C(delta) of proline, increases the cis-amide population through steric hindrance between the alkyl substituent and the N-terminal residues; (2) oxaproline or thioproline, the oxazolidine- or thiazolidine-derived proline analog, favors interactions between the dipole of the heterocyclic ring and the preceding carbonyl oxygen; and (3) azaproline, containing a nitrogen atom in place of the C(alpha) of proline, prefers the cis-amide bond by lone-pair repulsion between the alpha-nitrogen and the preceding carbonyl oxygen. Preference for the cis conformation was augmented by combining different modifications within a single proline. Azaproline and its derivatives are most effective in stabilizing cis-amide bonds without introducing additional steric bulk to compromise receptor interactions.  相似文献   

20.
Recent analysis of alpha helices in protein crystal structures, available in literature, revealed hydrated alpha helical segments in which, water molecule breaks open helix 5-->1 hydrogen bond by inserting itself, hydrogen bonds to both C=O and NH groups of helix hydrogen bond without disrupting the helix hydrogen bond, and hydrogen bonds to either C=O or NH of helix hydrogen bond. These hydrated segments display a variety of turn conformations and are thought to be 'folding intermediates' trapped during folding-unfolding of alpha helices. A role for reverse turns is implicated in the folding of alpha helices. We considered a hexapeptide model Ac-1TGAAKA6-NH2 from glyceraldehyde 3-phosphate dehydrogenase, corresponding to a hydrated helical segment to assess its role in helix folding. The sequence is a site for two 'folding intermediates'. The conformational features of the model peptide have been investigated by 1H 2D NMR techniques and quantum mechanical perturbative configuration interaction over localized orbitals (PCILO) method. Theoretical modeling largely correlates with experimental observations. Based upon the amide proton temperature coefficients, the observed d alpha n(i, i + 1), d alpha n(i, i + 2), dnn(i, i + 1), d beta n(i, i + 1) NOEs and the results from theoretical modeling, we conclude that the residues of the peptide sample alpha helical and neck regions of the Ramachandran phi, psi map with reduced conformational entropy and there is a potential for turn conformations at N and C terminal ends of the peptide. The role of reduced conformational entropy and turn potential in helix formation have been discussed. We conclude that the peptide sequence can serve as a 'folding intermediate' in the helix folding of glyceraldehyde 3-phosphate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号