首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to systematically examine the inhibitory mechanisms of ketamine in platelet aggregation. In this study, ketamine concentration-dependently (100–350 µM) inhibited platelet aggregation both in washed human platelet suspensions and platelet-rich plasma stimulated by agonists. Ketamine inhibited phosphoinositide breakdown and intracellular Ca2+ mobilization in human platelets stimulated by collagen. Ketamine (200 and 350 µM) significantly inhibited thromboxane (Tx) A2 formation stimulated by collagen. Moreover, ketamine (200 and 350 µM) increased the fluorescence of platelet membranes tagged with diphenylhexatriene. Rapid phosphorylation of a platelet protein ofMr 47,000 (P47), a marker of protein kinase C activation, was triggered by phorbol-12,13-dibutyrate (100 nM). This phosphorylation was markedly inhibited by ketamine (350 µM). These results indicate that the antiplatelet activity of ketamine may be involved in the following pathways. Ketamine may change platelet membrane fluidity, with a resultant influence on activation of phospholipase C, and subsequent inhibition of phosphoinositide breakdown and phosphorylation of P47, thereby leading to inhibition of intracellular Ca2+ mobilization and TxA2 formation, ultimately resulting in inhibition of platelet aggregation.  相似文献   

2.
Regulation of the increases in inositol 1,4,5-trisphosphate (IP3) production and intracellular Ca2+ concentration ([Ca2+]i) by activation of protein kinase C (PKC) was investigated in cultured canine tracheal smooth muscle cells (TSMCs). Stimulation of TSMCs by carbachol led to IP3 formation and caused an initial transient peak of [Ca2+]i followed by a sustained elevation in a concentration-dependent manner. Pretreatment of TSMCs with phorbol 12-myristate 13-acetate (PMA, 1 µM) for 30 min blocked the carbachol-induced IP3 formation and Ca2+ mobilization. Following preincubation, carbachol-induced Ca2+ mobilization recovered within 24 h. The concentrations of PMA that gave half-maximal inhibition of carbachol-induced IP3 formation and increase in [Ca2+]i were 7 and 4 nM, respectively. Prior treatment of TSMCs with staurosporine (1 µM), a PKC inhibitor, inhibited the ability of PMA to attenuate carbachol-induced responses. Inactive phorbol ester, 4-phorbol 12,13-didecanoate at 1 µM, did not inhibit these responses to carbachol. The Kd and Bmax of the muscarinic receptor for [3H]N-methylscopolamine binding were not significantly changed by PMA treatment. PMA also decreased PKC activity in the cytosol of TSMCs, while increasing it transiently in the membranes within 30 min. Thereafter, the membrane-associated PKC activity decreased and persisted for at least 24 h of PMA treatment. Taken together, these results suggest that activation of PKC may inhibit phosphoinositide hydrolysis and consequently attenuate the [Ca2+]i increase or inhibit both responses independently. The inhibition by PMA of carbachol-induced responses was inversely correlated with membranous PKC activity.  相似文献   

3.
Treatment of bovine pulmonary smooth muscle cells with the TxA2 mimetic, U46619 stimulated [Ca2+]i, which was inhibited upon pretreatment with apocynin (NADPH oxidase inhibitor). Pretreatment with cromakalim (KV channel opener) or nifedepine (L-VOCC inhibitor) inhibited U46619 induced increase in [Ca2+]i, indicating a role of KV-LVOCC axis in this scenario. Neither cromakalim nor nifedepine inhibited U46619 induced increase in NADPH oxidase activity, suggesting that the NADPH oxidase activation is proximal to the KV-LVOCC axis in the cells. Pretreatment with calphostin C (PKC inhibitor) markedly reduced U46619 induced increase in NADPH oxidase activity and [Ca2+]i in the cells. Calphostin C pretreatment also markedly reduced p47phox phosphorylation and translocation to the membrane and association with p22phox, a component of Cyt.b558 of NADPH oxidase in the membrane. Overall, PKC plays an important role in NADPH oxidase derived O2-mediated regulation of KV-LVOCC axis leading to an increase in [Ca2+]i by U46619 in the cells.  相似文献   

4.
We investigated the effects of prolactin (PRL) on the protein kinase C (PKC) activity in Chinese hamster ovary (CHO-E32) cells stably transfected with rabbit mammary gland PRL receptor cDNA. These cells express a functional long form of PRL-R. A 10-min to 2-hour treatment with 5 nM PRL resulted in the translocation of PKC activity from the cytosol to the membrane. Longer treatment (10–24 h) with the same concentration of PRL decreased the PKC activity in both particulate and cytoplasmic fractions. The PRL effect was dose dependent: maximal action was obtained with 1–10 nM. The PRL-induced activation of PKC was blocked by 20 nM staurosporine, a PKC inhibitor. Two inhibitors of tyrosine kinase, herbimycin A (1.75 µM) and genistein (100 µM), had no effect on PRL-induced activation of PKC.  相似文献   

5.
During remodelling of pulmonary artery, marked proliferation of pulmonary artery smooth muscle cells (PASMCs) occur s , which contributes to pulmonary hypertension. Thromboxane A2 (TxA2) has been shown to produce pulmonary hypertension. The present study investigates the inhibitory effect of epigallocatechin‐3‐gallate (EGCG) on the TxA2 mimetic, U46619‐induced proliferation of PASMCs. U46619 at a concentration of 10 nM induces maximum proliferation of bovine PASMCs. Both pharmacological and genetic inhibitors of p38MAPK, NF‐κB and MMP‐2 significantly inhibit U46619‐induced cell proliferation. EGCG markedly abrogate U46619‐induced p38MAPK phosphorylation, NF‐κB activation, proMMP‐2 expression and activation, and also the cell proliferation. U46619 causes an increase in the activation of sphingomyelinase (SMase) and sphingosine kinase (SPHK) and also increase sphingosine 1 phosphate (S1P) level. U46619 also induces phosphorylation of ERK1/2, which phosphorylates SPHK leading to an increase in S1P level. Both pharmacological and genetic inhibitors of SMase and SPHK markedly inhibit U46619‐induced cell proliferation. Additionally, pharmacological and genetic inhibitors of MMP‐2 markedly abrogate U46619‐induced SMase activity and S1P level. EGCG markedly inhibit U46619‐induced SMase activity, ERK1/2 and SPHK phosphorylation and S1P level in the cells. Overall, Sphingomyeline–Ceramide–Sphingosine‐1‐phosphate (Spm–Cer–S1P) signalling axis plays an important role in MMP‐2 mediated U46619‐induced proliferation of PASMCs. Importantly, EGCG inhibits U46619 induced increase in MMP‐2 activation by modulating p38MAPK–NFκB pathway and subsequently prevents the cell proliferation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

Inhibitors of thromboxane A, (TxA2) synthase are regarded as potentially useful agents in the treatment of cardiovascular diseases and in the prevention of tumour cell metastases. We report here a novel in vitro assay for the evaluation of TxA2 synthase inhibitors. For the determination of inhibitory activity, malondialdehyde (MDA) formation by TxA2 synthase in whole blood was utilized. After reaction with thiobarbituric acid MDA was quantified spectrofluorimetrically. The blank value was obtained by incubation with a selective TxA2 synthase inhibitor. For the screening of compounds the simple MDA assay represents an alternative to the rather expensive and time consuming radioimmunoassay, HPLC and TLC methods. Only for compounds which have been shown to be good inhibitors in the MDA assay should a radioimmunoassay for selective inhibition of TxA2 synthase be performed.  相似文献   

7.
The mechanism responsible for long-term depression (LTD) of pharmacologically isolated N-methyl-D-aspartate (NMDA) receptor-mediated excitatory postsynaptic potential (EPSPNMDA) was studied. Intracellular recordings were made from CA1 cells of rat hippocampal slices in the presence of 6-cyano-7-nitroquinoxaline-2,3-dione (10 µM) and picrotoxin (50 µM), which block non-NMDA and GABAA receptors, respectively. Intracellular injections of depolarizing pulses (500 ms, 0.3–0.7 nA) at 1 Hz for 5 min in the absence of synaptic stimulation caused a persistent increase in the amplitude of EPSPNMDA. However, coupling postsynaptic depolarization with synaptic activity induced LTD. The EPSPNMDA LTD could be blocked byL-2-amino-3-phosphonopropionic acid (50 µM) or (RS)--methyl-4-carboxyphenylglycine (200 µM), specific antagonists for metabotropic glutamate receptors (mGluR). Furthermore, application oftrans-1-aminocyclopentane-1,3-dicarboxylic acid (t-ACPD, 50 µM), a specific mGluR agonist, in conjunction with postsynaptic depolarizing elicited LTD. In contrast, the mGluR agonists quisqualate or t-ACPD when given alone produced a sustained enhancement of EPSPNMDA. Finally, coupled depolarization did not evoke LTD in slices pretreated with the protein kinase C (PKC) inhibitor calphostin c (60 nM). The present results demonstrate that activation of mGluR is necessary for the induction of LTD of EPSPNMDA and suggest that NMDA receptors are subject to bidirectional regulation by mGluR. Furthermore, the induction of LTD is likely to involve the stimulation of PKC.  相似文献   

8.
Abstract

Although most smooth muscles express a greater density of M2 than M3 muscarinic receptors, based on the potency of subtype selective muscarinic receptor antagonists, the M3 subtype predominantly mediates contraction. The effect of inhibitors of putative contractile signal transduction pathway enzymes on carbachol-induced contractions was determined in wild-type (WT) mice and mice lacking either the M2 (M2KO) or the M3 (M3KO) receptor subtype. Contractile responses to KCl, then increasing carbachol concentrations in the presence and absence of enzyme inhibitors was determined. The KCl-induced contraction was not different between strains. The carbachol response was unaffected in the M2KO strain but decreased 42% in M3KO mice (p?<?0.01). Darifenacin potency was high in both WT and M2KO strains, indicating M3-mediated contractions, and low in the M3KO strain, suggesting M2-mediated contractions. The phosphatidyl inositol-specific phospholipase C (Pi-PLC) inhibitor ET-18-OCH3 had no effect. Inhibition of phosphatidyl choline-specific phospholipase C (PC-PLC) and sphingomyelin synthase with D609 decreased maximal contraction in all strains. M3-mediated contractions in the M2KO strain were decreased 54% by the protein kinase C (PKC) inhibitor chelerythrine. M2-mediated contractions in the M3KO and WT strains were decreased by the Rho kinase (ROCK) inhibitor Y27632 as well as the ROCK, PKA and PKG inhibitor H89. The M3 subtype activates PKC and either PC-PLC or sphingomyelin synthase, while the M2 subtype activates ROCK and either PC-PLC or sphingomyelin synthase. These studies suggest that multiple parallel pathways mediate cholinergic contractions in stomach body smooth muscle.  相似文献   

9.

Background

Thromboxane A2 (TxA2)-induced smooth muscle contraction has been implicated in cardiovascular, renal and respiratory diseases. This contraction can be partly attributed to TxA2-induced Ca2+ influx, which resulted in vascular contraction via Ca2+-calmodulin-MLCK pathway. This study aims to identify the channels that mediate TxA2-induced Ca2+ influx in vascular smooth muscle cells.

Methodology/Principal Findings

Application of U-46619, a thromboxane A2 mimic, resulted in a constriction in endothelium-denuded small mesenteric artery segments. The constriction relies on the presence of extracellular Ca2+, because removal of extracellular Ca2+ abolished the constriction. This constriction was partially inhibited by an L-type Ca2+ channel inhibitor nifedipine (0.5–1 µM). The remaining component was inhibited by L-cis-diltiazem, a selective inhibitor for CNG channels, in a dose-dependent manner. Another CNG channel blocker LY83583 [6-(phenylamino)-5,8-quinolinedione] had similar effect. In the primary cultured smooth muscle cells derived from rat aorta, application of U46619 (100 nM) induced a rise in cytosolic Ca2+ ([Ca2+]i), which was inhibited by L-cis-diltiazem. Immunoblot experiments confirmed the presence of CNGA2 protein in vascular smooth muscle cells.

Conclusions/Significance

These data suggest a functional role of CNG channels in U-46619-induced Ca2+ influx and contraction of smooth muscle cells.  相似文献   

10.
Proline-rich tyrosine kinase 2 (Pyk2) is activated by various agonists in platelets. We evaluated the signaling mechanism and the functional role of Pyk2 in platelets by using pharmacological inhibitors and Pyk2-deficient platelets. We found that platelet aggregation and secretion in response to 2-methylthio-ADP (2-MeSADP) and AYPGKF were diminished in the presence of Pyk2 inhibitors or in Pyk2-deficient platelets, suggesting that Pyk2 plays a positive regulatory role in platelet functional responses. It has been shown that ADP-, but not thrombin-induced thromboxane (TxA2) generation depends on integrin signaling. Unlike ADP, thrombin activates G12/13 pathways, and G12/13 pathways can substitute for integrin signaling for TxA2 generation. We found that Pyk2 was activated downstream of both G12/13 and integrin-mediated pathways, and both 2-MeSADP- and AYPGKF-induced TxA2 generation was significantly diminished in Pyk2-deficient platelets. In addition, TxA2 generation induced by co-stimulation of Gi and Gz pathways, which is dependent on integrin signaling, was inhibited by blocking Pyk2. Furthermore, inhibition of 2-MeSADP-induced TxA2 generation by fibrinogen receptor antagonist was not rescued by co-stimulation of G12/13 pathways in the presence of Pyk2 inhibitor. We conclude that Pyk2 is a common signaling effector downstream of both G12/13 and integrin αIIbβ3 signaling, which contributes to thromboxane generation.  相似文献   

11.
The present study was undertaken to test the hypothesis that activation of cell membrane associated protein kinase C (PKC) plays a role in stimulating cell membrane associated phospholipase A2 (PLA2) activity, and subsequent liberation of arachidonic acid (AA) under exposure of rabbit pulmonary arterial smooth muscle cells to the oxidant hydrogen peroxide (H2O2). Exposure of the smooth muscle cells to H2O2 dose-dependently stimulates [14C] AA release, and enhances the cell membrane associated PLA2 activity. Pretreatment of the cells with protein kinase C (PKC) inhibitors H7 and sphingosine prevent the cell membrane associated PLA2 activity, and AA release caused by H2O2. Treatment of the smooth muscle cells with H2O2 stimulates the cell membrane associated PKC activity. Pretreatment of the cells with an antioxidant vitamin E prevents H2O2 caused stimulation of the cell membrane associated PKC activity. The cell membrane associated PLA2 and PKC activities correlate linearly. These results suggest that H2O2 caused stimulation of the smooth muscle cell membrane associated PLA2 activity, and subsequent liberation of AA can occur through an increase in the activity of the cell membrane associated PKC. (Mol Cell Biochem122: 9–15, 1993)Abbreviations AA Arachidonic Acid - PLA2 Phospholipase A2 - PKC Protein Kinase C - PBS Phosphate Buffered Saline - HBPS Hank's Buffered Physiological Saline - HEPES 4-(2-Hydroxyethyl)-1-Piperazine N-2-Ethanesulfonate - FCS Fetal Calf Serum - ATP Adenosine Triphosphate - H7 1-(5-isoquinolinesulfonyl)-2-methyl-piperazine - DMEM Dulbecco's Modified Eagles Medium - TCA Trichloroacetic Acid  相似文献   

12.
The vasorelaxing effect of N-benzylsecoboldine on the rat thoracic aorta was investigated, and we also compare it with nifedipine and cromakalim. In high K+ (60 mM) medium, Ca2+ (0.03–3 mM)-induced vasoconstriction was inhibited concentration-dependently by N-benzylsecoboldine, whereas this contraction was not altered by cromakalim. Cromakalim relaxed aortic rings precontracted with 15 but not 60 mM of K+. N-benzylsecoboldine and nifedipine were more potent and effective in producing relaxation in 60 mM than in 15 mM K+-induced contraction. N-benzylsecoboldine was found to be an 1-adrenoceptor-blocking agent in rat thoracic aorta as revealed by its competitive antagonism of phenylephrine (PE)-induced contraction (pA2=6.31 ± 0.04, pA10=5.41 ± 0.03). This relaxing effect of N-benzylsecoboldine was not antagonized by indomethacin or methylene blue, and still persisted in endothelium-denuded aorta or in the presence of nifedipine (1 µM). The increase of inositol monophosphate caused by PE in rat aorta was significantly suppressed by N-benzylsecoboldine, but not by nifedipine or cromakalim. High concentration of N-benzylsecoboldine (100 µM) did not affect the contraction induced by B-HT 920, serotonin or PGF2. Glibenclamide and charybdotoxin did not affect the relaxation of N-benzylsecoboldine in aortic rings precontracted with PE. Neither cGMP nor cAMP levels were changed by N-benzylsecoboldine. We suggest that N-benzyl-secoboldine relaxes rat thoracic aorta by suppressing the Ca2+ influx and also has antagonistic effect on 1-adrenoceptors.  相似文献   

13.
Abstract: The effects of prostaglandin E2 (PGE2) on 86Rb efflux from rat brain synaptosomes were studied to explore its role in nerve ending potassium (K+) channel modulation. A selective dose-dependent inhibition of the calcium-activated charybdotoxin-sensitive component of efflux was found upon application of PGE2. No significant effect was seen on basal and voltage-dependent components over the concentration range of 10–8 to 10–5M. The protein kinase C (PKC) inhibitors H-7 (10 μM) and staurosporine (100 nM), as well as prolonged preincubation (90 min) with 40-phorbol 12, 13-dibutyrate, which has been reported to down-regulate PKC, abolished the PGE2-in- duced inhibition, whereas HA1004 (10 μM) and Rp-3′,5’cyclic phosphorothioate (100 nM), which are relatively more selective for protein kinase A than PKC, did not. 4β-Phorbol 12, 13-dibutyrate (100 nM), an activator of PKC, produced a similar inhibition of the Ca2+-dependent component of 86Rb efflux but also had no effect on the basal and voltage-dependent components. These data suggest that PGE2 can inhibit rat brain nerve ending calcium-activated 86Rb efflux, and this inhibition may involve PKC activation.  相似文献   

14.
Increased intracellular calcium concentration ([Ca2+]i) is required for smooth muscle contraction. In tracheal and other tonic smooth muscles, contraction and elevated [Ca2+]i are maintained as long as an agonist is present. To evaluate the physiological role of steady-state increases in Ca2+ on tension maintenance, [Ca2+]i was elevated using ionomycin, a Ca2+ ionophore or charybdotoxin, a large-conductance calcium-activated potassium channel (KCa) blocker prior to or during exposure of tracheal smooth muscle strips to Ach (10–9 to 10–4 M). Ionomycin (5 µM) in resting muscles induced increases in [Ca2+]i to 500±230 nM and small increases in force of 2.6±2.3 N/cm2. This tension is only 10% of the maximal tension induced by ACh. Charybdotoxin had no effect on [Ca2+]i or tension in resting muscle. After pretreatment of muscle with ionomycin, the concentration-response relationship for ACh-induced changes in tension shifted to the left (EC50=0.07±0.05 µM ionomycin; 0.17±0.07 µM, control, p<0.05). When applied to the muscles during steady-state responses to submaximal concentrations of ACh, both ionomycin and charybdotoxin induced further increases in tension. The same magnitude increase in tension occurs after ionomycin and charybdotoxin treatment, even though the increase in [Ca2+]i induced by charybdotoxin is much smaller than that induced by ionomycin. We conclude that the resting muscle is much less sensitive to elevation of [Ca2+]i when compared to muscles stimulated with ACh. Steady-state [Ca2+]i limits tension development induced by submaximal concentrations of ACh. The activity of KCa moderates the response of the muscle to ACh at concentrations less than 1 µM.  相似文献   

15.
The arachidonate cascade is important for the generation of reactive species (RS), and cyclooxygenase (COX) is a key enzyme of this cascade. Tissues of 24-month-old rat lung showed a 2-fold increase in RS, malondialdehyde and thromboxane B2 than those of 6-month-old rat. We found that the effects of 50 µM H2O2 and 200 µM t-butylhydroperoxide (t-BHP) specify on COX activity, and that their effects increased cytosolic COX activity in a concentration-dependent manner (1–50 µM) in 24-month-old rat. Our results suggested that COX activators such as t-BHP and H2O2, which are located in cytosol, are essential for the activation of COX in aged lung.  相似文献   

16.
Abstract: The endothelins (ETs) and sarafotoxin are two structurally related classes of potently contractile peptides. To understand the mechanism of action of ETs, we have examined the effect of ETs and sarafotoxin on phosphoinositide (PI) hydrolysis in cultured canine tracheal smooth muscle cells (TSMCs). ET-1, ET-2, ET-3, and sarafotoxin caused dose-dependent accumulation of inositol phosphates (IPs) and tracheal smooth muscle contraction. BQ-123, an ETA receptor antagonist, had a high affinity to block the ET-1-induced IP accumulation and tracheal smooth muscle contraction with pKB values of 7.3 and 7.4, respectively. Pretreatment of TSMCs with cholera toxin impaired the ability of ET-1 and ET-2 to stimulate IP formation, whereas there was no effect by treatment with pertussis toxin. Stimulation of PI turnover by these peptides required the presence of extracellular Ca2+ and was blocked by treatment with EGTA. The addition of Ca2+(3–620 nM) to digitonin-permeabilized TSMCs directly stimulated IP accumulation. A further Ca2+-dependent increase in IP formation was obtained by inclusion of either GTPrS or ET-1. The combined presence of GTPrS and ET-1 elicited an additive effect on IP formation. Short-term exposure to phorbol 12-myristate 13-acetate (PMA, 1 μM) abolished the stimulation of PI hydrolysis induced by these peptides. The inhibitory effect of PMA on ET-induced response was reversed by staurosporine, a protein kinase C (PKC) inhibitor, suggesting that the inhibitory effect of PMA is mediated through the activation of PKC. Prolonged incubation of TSMCs with PMA resulted in a recovery of receptor responsiveness that may be due to down regulation of PKC. Inactive phorbol ester, 4α-phorbol 12, 13-didecanoate at 1 μM, did not inhibit this response. The site of this response was further investigated by examining the effect of PMA on AIF4?-induced IP accumulation in canine TSMCs. AIF4?-induced IP accumulation was inhibited by PMA treatment, suggesting that G protein(s) can be directly activated by AIF4?, which was uncoupled to phospholipase C by PMA treatment. These data conclude that ET-stimulated PI hydrolysis and tracheal smooth muscle contraction are mediated by the activation of ETAreceptors coupling to a G protein and dependent on the external Ca2+. The transduction mechanism of ETs is sensitive to feedback regulation by PKC.  相似文献   

17.
Early activation of p160ROCK by pressure overload in rat heart   总被引:1,自引:0,他引:1  
We investigated the mechanisms underlying regulation of contraction with measurements of isometric force and intracellular Ca2+ concentration ([Ca2+]i) in NIH 3T3 fibroblast reconstituted into fibers with the use of a collagen matrix. Treatment with the major phospholipids, neurotransmitters, and growth factors had little effect on baseline isometric force. However, U-46619, a thromboxane A2 (TxA2) analog, increased force and [Ca2+]i; EC50 values were 11.0 and 10.0 nM, respectively. The time courses were similar to those induced by calf serum (CS), and the maximal force was 65% of a CS-mediated contraction. The selective TxA2 receptor antagonist SQ-29548 abolished the U-46619-induced responses. CS-induced contractions are dependent on an intracellular Ca2+ store function; however, the U-46619 response depended not only on intracellular Ca2+ stores, but also on Ca2+ influx from the extracellular medium. Inhibition of Rho kinase suppressed U-46619- and CS-induced responses; in contrast, inhibition of C kinase (PKC) reduced only the U-46619 response. Moreover, addition of U-46619 to a CS contracture enhanced force and [Ca2+]i responses. These results indicate that U-46619-induced responses involve PKC and Rho kinase pathways, in contrast to activation by CS. Thus TxA2 may have a role in not only the initial step of wound repair as an activator of blood coagulation, but also in fibroblast contractility in later stages. collagen matrix; signal transduction; wound repair  相似文献   

18.
T-cell hybridomas metastasize widely, and the extent of dissemination correlates with invasiveness in fibroblast cultures. Previously, we provided evidence that both metastasis andin vitroinvasion require activation of LFA-1, induced by G-protein-transduced signals triggered by as yet unidentified factors. We show here that LFA-1-mediated adhesion of TAM2D2 T-cell hybridoma cells to ICAM-1 can in fact be induced by direct activation of G-proteins using AlF4, to the same extent as by using PMA or Mn2+. We assessed effects of protein kinase C (PKC), tyrosine kinase (TK), PI3-kinase (PI3K), and phospholipase C (PLC) inhibitors. Both AlF4-induced adhesion and invasion were completely blocked by the TK inhibitor genistein and partially blocked by the PI3K inhibitor wortmannin, but not influenced by PKC inhibitor GF109203X. Downregulation of PKC did not affect invasion or adhesion induced by AlF4either. In contrast, GF109203X and PKC downregulation blocked PMA-induced adhesion, but genistein and wortmannin had no effect. Invasion and both AlF4- and PMA-induced adhesion were completely blocked by the PLC inhibitor U73122. Mn2+-induced adhesion, which was not or was only partially blocked by the other inhibitors, was delayed by U73122, and spreading of Mn2+-treated cells was completely prevented by U73122. However, PLC activity during adhesion was not detected. We conclude that signals required for invasion and G-protein-induced adhesion are similar and are distinct from PKC-induced adhesion, and that in all cases PLC is likely to be activated, but is probably too local and/or transient to be detected.  相似文献   

19.
Li L  Jia ZH  Chen C  Wei C  Han JK  Wu YL  Ren LM 《Purinergic signalling》2011,7(2):221-229
P2X1 receptors, the major subtype of P2X receptors in the vascular smooth muscle, are essential for α,β-methylene adenosine 5′-triphosphate (α,β-MeATP)-induced vasoconstriction. However, relative physiological significance of P2X1 receptor-regulated vasoconstriction in the different types of arteries in the rat is not clear as compared with α1-adrenoceptor-regulated vasoconstriction. In the present study, we found that vasoconstrictive responses to noncumulative administration of α,β-MeATP in the rat isolated mesenteric arteries were significantly smaller than those to single concentration administration of α,β-MeATP. Therefore, we firstly reported the characteristic of α,β-MeATP-regulated vasoconstrictions in rat tail, internal carotid, pulmonary, mesenteric arteries, and aorta using single concentration administration of α,β-MeATP. The rank order of maximal vasoconstrictions for α,β-MeATP (E max·α,β-MeATP) was the same as that of maximal vasoconstrictions for noradrenaline (E max·NA) in the internal carotid, pulmonary, mesenteric arteries, and aorta. Moreover, the value of (E max·α,β-MeATP/E max·KCl)/(E max·NA/E max·KCl) was 0.4 in each of the four arteries, but it was 0.8 in the tail artery. In conclusion, P2X1 receptor-mediated vasoconstrictions are equally important in rat internal carotid, pulmonary, mesenteric arteries, and aorta, but much greater in the tail artery, suggesting its special role in physiological function.  相似文献   

20.
Previous studies have shown that certain glycosphingolipids may function as modulators of protein kinase C (PKC) activity. To study the structure-activity relationship, we examined the effects of 17 gangliosides, 10 neutral glycolipids, as well as sulfatide, psychosine and ceramide on PKC activity in PC12D cells. Using an in vitro assay system, we found that all but one (GQ1b) ganglioside inhibited PKC activity at concentrations between 25 and 100 µM, and the potency was proportional to the number of sialic acid residues. However, at lower concentrations several gangliosides, including GM1 and LM1 behaved as mild activators of PKC activity. GQ1b had no effect within the range 0.1–10 µM, but acted as a mild activator of PKC activity at 25 µM. On the other hand, fucosyl-GM1 and GM1 containing blood group B determinant, which are abundant in PC12 cells, were potent inhibitors of PKC activity. Among the neutral glycosphingolipids tested, LacCer, Gb3, GalGb3, and GA1, all of which have a terminal galactose residue, were found to be ineffective or acted as mild activators of PKC activity. In contrast, GA2, Gb4 and Gb5 which have a terminal N-acetylgalactosamine residue, were potent inhibitors of the PKC activity. Thus, the terminal sugar residue may play a pivotal role in determining the effect of glycosphingolipids in modulating PKC activity. In addition, we also found that GalCer containing normal fatty acids acted as potent activators of PKC activity. Ceramide and GlcCer appeared to be ineffective in modulating PKC activity, whereas psychosine and sulfatides appeared to be inhibitory. We conclude that the carbohydrate head groups and the hydrophobic groups of gangliosides and neutral glycolipids may modulate the PKC system in unique manners, which may in turn affect various biological processes in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号