首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Primary cultures derived from mechanically dissociated definitive streak chick blastoderms were grown in a warm air stream on the stage of inverted phase microscope, through which in vitro erythroid development could be observed. Proerythroid cells divide three or four times in 48 hr to give rise to erythroid colonies ranging from 10 to 1000 cells, depending on the size of the blastoderm fragments from which they were derived.Erythroid cell development follows a similar course in cultures grown in a carbon dioxide incubator. Colonies consisting of about 50 cells, derived from blastoderm fragments containing 5 to 10 cells, were isolated and labeled with [3H]leucine, and their labeled hemoglobins were analyzed by isoelectric focusing. Both early hemoglobins (E,M,P,P′, and P″) and late hemoglobins (A and D) are made in colonies derived from single blastoderm fragments. The ratio of late to early hemoglobins is about 1.7 in all colonies analyzed. The implications of this finding for the clonal model of erythroid development are discussed.  相似文献   

2.
During avian development the earliest phase in which the avian embryo expresses axial features of a left-right axis is at the primitive streak stage. Until the stage of definitive primitive streak (streak 4 H&H), the axis seems to possess morphological bilateral symmetry. Morphological asymmetry begins only during the next few hours of incubation, with development of overt morphological and molecular asymmetry within Hensen's node (stage 5 H&H). In this report, we present an experimental study aimed at following the pattern of cell movements during primitive streak formation and gastrulation of specific left-right regions from earlier stages of the avian embryo. To determine the origin of cells contributing to each side of the primitive streak, we applied the dye Lysinated-Rodamine-Dextran (LRD) to one half, either left or right, of the pre-streak blastoderm (stages X–XIII, EG&K). We tried to estimate the relative cell contribution to primitive streak formation, and to the three germ layers evolving during gastrulation in the context of the left-right axis. Moreover, we asked whether the midline serves as a border, that is, as a physiological barrier preventing cell passing during gastrulation. Our results demonstrate that on each side of the axis, either the right or the left, most of the cells originate from the same half of a pre-streak blastoderm, populate the same half of the PS and contribute to tissues largely confined to that particular side. However, along the primitive streak, a few cells were detected on the opposite side of the midline. Moreover, variation in the number of cells crossing the midline at specific regions along the primitive streak was found. Most crossing cells were located near the mid rostrocaudal extent of the primitive streak, from 25–85% of its length. At the posterior end of the primitive streak, fewer crossing cells were detected. At the anterior region of the PS, that is, within Hensen's node, cells do not cross the midline. These results suggest that differences occur in the process of ingression along the rostrocaudal extent of the PS. Dev. Genet. 23:175–184, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Cell population growth in chick blastoderms cultured in vitro   总被引:2,自引:0,他引:2  
Primitive streak stage chick blastoderms were cultured in vitro up to 30 hr by New's technique. Chick blastoderms reaching stages 4 to 12 in vitro cultures and in ovo were harvested and homogenized to release cell nuclei. Fluorescent ethidium bromide-stained nuclei in homogenates were counted in Neubauer's chamber and the size of total blastoderm cell population was determined. Linear regression analysis revealed that both in ovo and in vitro chick blastoderm cell population grows in a biphasic manner with comparable cell population doubling times and the morphogenesis is not affected in vitro during the culture period.  相似文献   

4.
We report that a monoclonal antibody, HNK-1, identifies specific regions and cell types during primitive streak formation in the chick blastoderm. Immunohistochemical studies show that the cells of the forming hypoblast are HNK-1 positive from the earliest time at which they can be identified. Some cells of the margin of the blastoderm are also positive. The mesoderm cells of the primitive streak stain strongly with the antibody from the time of their initial appearance. In the epiblast, some cells are positive and some negative at pre-primitive-streak stages, but as the primitive streak develops a gradient of staining intensity is seen within the upper layer, increasing towards the primitive streak. At later stages of development, the notochord and the mesenchyme of the headfold are positive, while the rest of the mesoderm (lateral plate) no longer expresses HNK-1 immunoreactivity. This antibody therefore reveals changes associated with mesodermal induction: before induction, it recognizes the 'inducing' tissue (the hypoblast) and reveals a mosaic pattern in the responding tissue (the epiblast); after primitive streak formation, the mesoderm of the primitive streak that results from the inductive interactions expresses the epitope strongly. Affinity purification of HNK-1-related proteins in various tissues was carried out, followed by SDS-PAGE to identify them. The hypoblast, mesoderm and epiblast of gastrulating chick embryos have some HNK-1-related proteins in common, while others are unique to specific tissues. Attempts have been made to identify these proteins using Western blots and antibodies known to recognize HNK-1-related molecules, but none of the antibodies used identify the bands unique to any of the tissues studied. We conclude that these proteins may be novel members of the HNK-1/L2 family, and that they may have a role in cell interactions during early development.  相似文献   

5.
The fate of the embryonic endoderm (generally called visceral embryonic endoderm) of midstreak to neural plate stages of the mouse embryo was studied by microinjecting horseradish peroxidase (HRP) into single axial endoderm cells in situ, and tracing the labeled descendants to early somite stages in vitro. Axial endoderm cells along the anterior fifth of the late streak/neural plate stage embryo contributed descendants either to the yolk sac endoderm or to the anterior intestinal portal. Cells of the exposed head process contributed to the trunk endoderm and notochord; neighboring endoderm cells contributed to the dorsal foregut. Contributions to the ventral foregut came from endoderm at, and anterior to, the distal tip of the younger, midstreak embryo (in which the head process was not yet exposed). Endoderm over the primitive streak contributed to the postsomite endoderm. We argue from these results and those in the literature that during gastrulation the axial embryonic endoderm is of mixed lineage: (1) an anterior population of cells is derived from primitive endoderm and contributes to the yolk sac endoderm; (2) a population at, and anterior to, the distal tip of the midstreak embryo, extending more anteriorly at late streak/neural plate stages, is presumed to emerge from primitive ectoderm at the beginning of gastrulation and contributes to the foregut and anterior intestinal portal; (3) the axial portion of the head process that begins to incorporate into the ventral surface at the late streak stage contributes to notochord and trunk endoderm. Cells or their descendants that were destined to die within 24 hr were evident at the midstreak stage. There was a linear trend in the incidence of cell death among labeled cells at the late streak/neural plate stages, ranging from 27% caudal to the node to 57% in the anterior fifth of the embryo. The surviving axial endoderm cells divided sufficiently fast to double the population in 24 hr.  相似文献   

6.
The fate of cells in the epiblast at prestreak and early primitive streak stages has been studied by injecting horseradish peroxidase (HRP) into single cells in situ of 6.7-day mouse embryos and identifying the labelled descendants at midstreak to neural plate stages after one day of culture. Ectoderm was composed of descendants of epiblast progenitors that had been located in the embryonic axis anterior to the primitive streak. Embryonic mesoderm was derived from all areas of the epiblast except the distal tip and the adjacent region anterior to it: the most anterior mesoderm cells originated posteriorly, traversing the primitive streak early; labelled cells in the posterior part of the streak at the neural plate stage were derived from extreme anterior axial and paraxial epiblast progenitors; head process cells were derived from epiblast at or near the anterior end of the primitive streak. Endoderm descendants were most frequently derived from a region that included, but extended beyond, the region producing the head process: descendants of epiblast were present in endoderm by the midstreak stage, as well as at later stages. Yolk sac and amnion mesoderm developed from posterolateral and posterior epiblast. The resulting fate map is essentially the same as those of the chick and urodele and indicates that, despite geometrical differences, topological fate relationships are conserved among these vertebrates. Clonal descendants were not necessarily confined to a single germ layer or to extraembryonic mesoderm, indicating that these lineages are not separated at the beginning of gastrulation. The embryonic axis lengthened up to the neural plate stage by (1) elongation of the primitive streak through progressive incorporation of the expanding lateral and initially more anterior regions of epiblast and, (2) expansion of the region of epiblast immediately cranial to the anterior end of the primitive streak. The population doubling time of labelled cells was 7.5 h; a calculated 43% were in, or had completed, a 4th cell cycle, and no statistically significant regional differences in the number of descendants were found. This clonal analysis also showed that (1) growth in the epiblast was noncoherent and in most regions anisotropic and directed towards the primitive streak and (2) the midline did not act as a barrier to clonal spread, either in the epiblast in the anterior half of the axis or in the primitive streak. These results taken together with the fate map indicate that, while individual cells in the epiblast sheet behave independently with respect to their neighbours, morphogenetic movement during germ layer formation is coordinated in the population as a whole.  相似文献   

7.
Early chick embryonic cells, prior to the formation of the primitive streak, form colonies when cultured in soft agarose [Mitrani, E.: Exp. Cell Res. 152, 148-153 (1984)]. The present work is an attempt to determine at which stages of development this ability is expressed and which areas of the chick embryo harbour the colony-forming cells. We found that the capacity to form colonies decreases as development progresses and cells enter alternative differentiation pathways. At pre-primitive streak stages, the capacity is concentrated to the peripheral areas of the embryo and decreases towards the centre. With the onset of hypoblast formation only cells from Area Opaca and, to a lesser degree, the Marginal Zone, can form colonies in agarose. At post-primitive streak stages only extra-embryonic cells can form colonies in agarose. By 48 h of incubation all cells of the chick blastoderm seem to have lost the capacity to form colonies in agarose.  相似文献   

8.
9.
The exponential growth and cell population during the early embryogenesis of chick, cultured in vitro correlates with a linear increase in the blastoderm area. To understand the relationship between these parameters and normal morphogenesis, we have used a known teratogen, trypan blue, as a probe. A method is developed in which each new embryonic structure is assigned a rank value of 1 and the total number of ranks allows quantification of development and establishment of a numerical relationship between the size of the cell population, blastoderm area and the morphological development. The teratogen inhibits cell population growth, morphogenetic movements and shaping of organ primordia, but not the epiboly and differentiation of cells which have already invaginated and positioned during primitive streak formation. In contrast, the cell population growth, but not the blastoderm area-expansion, is correlated with the extent of abnormal development. A graphic analysis of the rank order, log cell number and blastoderm area reveals that these three parameters coordinately regulate morphogenesis. It is suggested that head fold formation is the key event regulating the progress of early morphogenesis.  相似文献   

10.
The distribution of acid phosphatase in the chick blastoderm (stages 2--4 by HH) has been studied using cytochemistry. A marked increase of enzymatic activity all over the blastoderm was shown to coincide with the beginning of primitive streak formation. A part of the cells after their immigration are characterized by the fall of acid phosphatase activity. The percentage of such cells increases in the cranio-caudal direction of the definitive primitive streak. The patterns of yolk utilization upon the separation of individual embryonic rudiments are discussed.  相似文献   

11.
Summary Induction of the primitive streak is correlated with specific qualitative and quantitative changes in protein synthesis in the component areas of chick blastoderm. Blastoderm embryos at the initial to intermediate primitive streak stage were labeled with L-[35S] methionine. Radioactively labeled proteins separated by two-dimensional sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis revealed differences in the number and density of spots among the component areas of the epiblast and hypoblast. Protein patterns of the area opaca, marginal zone and central area of the epiblast are very similar qualitatively but show distinct quantitative differences. A comparison between any of the component areas of the epiblast and the hypoblast in chick blastoderm embryos, however, reveals both qualitative and quantitative differences. A protein with a molecular weight of 30,000 unique to the component areas of the epiblast, and proteins with a molecular weight of 22,000 and 37,000 unique to the hypoblast are prominent and seem to be related to the initial appearance of the primitive streak.  相似文献   

12.
The cells that are normally fated to form notochord occupy a region at the rostral tip of the primitive streak at late gastrula/early neurula stages of avian and mammalian development. If these cells are surgically removed from avian embryos in culture, a notochord will nonetheless form in the majority of cases. The origin of this reconstituted notochord previously had not been investigated and was the objective of this study. Chick embryos at late gastrulal early neurula stages were cultured, and the rostral tip of the primitive streak including Hensen's node was removed and replaced with non-node cells from quail epiblast to ensure that the cells normally fated to be notochord would be absent and that healing of the blastoderm would occur. Embryos were allowed to develop for 24 hr, and the presence and origin (host or graft) of the notochord were assessed using antibodies against notochord or quail cells. Two notochords typically developed; both were almost exclusively of host origin. The primitive streak, and in some cases adjacent tissues, was removed from another group of embryos in an attempt to estimate the mediolateral position and extent of the cells required to form reconstituted notochord. Additional experimental embryos with and without grafts were transected at various rostrocaudal levels in an attempt to estimate the rostrocaudal extent of the cells required to form reconstituted notochord. Finally, various levels of the primitive streak either were placed in a neutral environment (the germ cell crescent) or were grafted in place of the node. Collective results from all experiments indicate that the areas lateral to the rostral portion of the primitive streak, estimated to have a rostrocaudal span of less than 500 μm and a mediolateral extent of less than 250 μm, are critical for formation of the reconstituted notochord. Fate mapping and histological examination of this region identify 4 possible precursor cell populations. Further studies are underway to determine which of the 4 possible precursor cell types forms or induces the reconstituted notochord, and which tissue interactions underlie this change in cell fate. © 1995 Wiley-Liss, Inc.  相似文献   

13.
Ligation of developing embryos of Drosophila melanogaster wasperformed at three different stages of nuclear multiplicationand at the cellular blastoderm stage. Egg fragments of variablesizes are able to continue development up to the hatching stage.Partial embryos differentiate larval structures, anterior fragmentsforming larval head and posterior fragments larval abdominalstructures. These fragments differentiate a variable numberof the twelve larval cuticular bands formed by intact embryos.We found that ligation at cellular blastoderm can lead to anteriorand posterior fragments which differentiate together all thetwelve bands, indicating that at this stage the embryo developsthese patterns in a mosaic fashion. Ligation of younger embryosprevents the differentiation of some intermediate larval cuticularbands, while the terminal ones are consistently differentiated.The number and position of the deleted bands is correlated withthe time and position of ligation. This indicates that the mosaicpattern present in the egg at blastoderm is not fully formedat earlier stages in development.  相似文献   

14.
Gastrulation in the amniote begins with the formation of a primitive streak through which precursors of definitive mesoderm and endoderm ingress and migrate to their embryonic destinations. This organizing center for amniote gastrulation is induced by signal(s) from the posterior margin of the blastodisc. The mode of action of these inductive signal(s) remains unresolved, since various origins and developmental pathways of the primitive streak have been proposed. In the present study, the fate of chicken blastodermal cells was traced for the first time in ovo from prestreak stages XI-XII through HH stage 3, when the primitive streak is initially established and prior to the migration of mesoderm. Using replication-defective retrovirus-mediated gene transfer and vital dye labeling, precursor cells of the stage 3 primitive streak were mapped predominantly to a specific region where the embryonic midline crosses the posterior margin of the epiblast. No significant contribution to the early primitive streak was seen from the anterolateral epiblast. Instead, the precursor cells generated daughter cells that underwent a polarized cell division oriented perpendicular to the anteroposterior embryonic axis. The resulting daughter cell population was arranged in a longitudinal array extending the complete length of the primitive streak. Furthermore, expression of cVg1, a posterior margin-derived signal, at the anterior marginal zone induced adjacent epiblast cells, but not those lateral to or distant from the signal, to form an ectopic primitive streak. The cVg1-induced epiblast cells also exhibited polarized cell divisions during ectopic primitive streak formation. These results suggest that blastoderm cells located immediately anterior to the posterior marginal zone, which secretes an inductive signal, undergo spatially directed cytokineses during early primitive streak formation.  相似文献   

15.
The Initiation of Gastrular Ingression in the Chick Blastoderm   总被引:3,自引:0,他引:3  
Normal gastrular ingression in the chick blastoderm occurs intwo steps. The first consists in de-epithelialization of thecells in the middle of the young primitive streak. The cellsthat will ingress converge as a sheet towards the primitivestreak; this convergence builds up the elongating primitivestreak. These cells come from a large posterior area of thearea pellucida. In this area they show many blebs at their ventralside. These blebs are not visible in the more lateral regionsof the upper layer at this stage. During the second step ofingression, de-epithelialization goes on in the middle of theprimitive streak, but convergence within the upper layer hascome to an end, while migration of the ingressed middle layercells starts, away from the primitive streak. To observe thefirst stages of ingression, we studied secondary primitive streaks,induced by grafting a nodus posterior into the entophyllic crescentof a host blastoderm. We fixed blastoderms in which, thougha secondary primitive streak was not yet visible, spreadingof the graft had taken place so as to make evocation of a streakmost probable. From this study we conclude that the initiationof de-epithelialization in experimental and probably in normalchick gastrulation is not preceded by an overall lysis of thebasal lamina at the future site of ingression. Ingression startsand goes on as a de-epithelialization of individual cells.  相似文献   

16.
Consistent left‐right patterning is a fascinating and biomedically important problem. In the chick embryo, it is not known how cells determine their position (left or right) relative to the primitive streak, which is required for subsequent asymmetric gene expression cascades. We show that the subcellular localization of Vangl2, a core planar cell polarity (PCP) protein, is consistently polarized, giving cells in the blastoderm a vector pointing toward the primitive streak. Moreover, morpholino‐mediated loss‐of‐function of Vangl2 by electroporation into chicks at very early stages randomizes the normally left‐sided expression of Sonic hedgehog. Strikingly, Vangl2 morpholinos also induce a desynchronization of asymmetric gene expression within the left and right domains of Hensen's node. These data reveal the existence of polarized planar cell polarity protein localization in gastrulating chick and demonstrate that the PCP pathway is functionally required for normal asymmetry in the chick upstream of Sonic hedgehog. These data suggest a new and widely applicable class of models for the spread and coordination of left‐right patterning information in the embryonic blastoderm. genesis 47:719–728, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Fresh pullet eggs (White Leghorn Strain) were incubated to the primitive streak stage of development. Blastoderms were fixed in situ with isotonic aldehyde fixatives and prepared for scanning electron miscropy by means of post-osmication, critical point drying and gold-palladium coating. Cells judged to be in various stages of mitosis by their surface contours were numerous on the ventral surface of the chick blastoderm. Cells which were in the late preparatory stages for mitosis had rounded up from their surroundings. Microvilli dominated the surface. The degree of separation and number of microvilli increased until late metaphase or anaphase. Mitotic cells did not completely separate themselves from adjacent cells. Ruffles and blebs were not prominent during mitotis and long filopodia were absent. A definite localization of microappendages (microvilli, blebs, ruffles) to the area of cytokinesis was evident in early telophase and persisted through daughter cell formation.  相似文献   

18.
The formation of the primitive streak in early avian development marks the onset of gastrulation, during which large scale cell movement leads to a trilaminar blastoderm comprising prospective endodermal, mesodermal and ectodermal tissue. During streak formation a specialized group of cells first moves anteriorly as a coherent column, beginning from the posterior end of the prospective anterior-posterior axis (a process called progression), and then reverses course and returns to the most posterior point on the axis (a process called regression). To date little is known concerning the mechanisms controlling either progression or regression. Here we develop a model in which chemotaxis directs the cell movement and which is capable of reproducing the principal features connected with progression and regression of the primitive streak. We show that this model exhibits a number of experimentally-observed features of normal and abnormal streak development, and we propose a number of experimental tests which may serve to illuminate the mechanisms. This paper represents the first attempt to model the global features of primitive streak formation, and provides an initial stage in the development of a more biologically-realistic discrete cell model that will allow for variation of properties between cells and control over movement of individual cells.  相似文献   

19.
Lateral blastoderm isolates (LBIs) at the late gastrula/early neurula stage (i.e., stage 3d/4) that lack Hensen's node (organizer) and primitive streak can reconstitute a functional organizer and primitive streak within 10-12 hours in culture. We used LBIs to study the initiation and regionalization of the body plan. A complete body plan forms in each LBI by 36 hours in culture, and normal craniocaudal, dorsoventral, and mediolateral axes are re-established. Thus, reconstitution of the organizer is sufficient to re-establish a fully patterned body plan. LBIs can be modified so that reconstitution of the organizer does not occur. In such modified LBIs, tissue-type specific differentiation (with the exception of heart differentiation) and reconstitution of the body plan fail to occur. Thus, the reconstitution of the organizer is not only sufficient to re-establish a fully patterned body plan, it is also required. Finally, our results show that formation and patterning of the heart is under the control of the organizer, and that such control is exerted during the early to mid-gastrula stages (i.e., stages 2-3a), prior to formation of the fully elongated primitive streak.  相似文献   

20.
Blastodermal chimeras were constructed by transferring quail cells to chick blastoderm. Contribution of donor cells to host were histologically analyzed utilizing an in situ cell marker. Of the embryos produced by injection of stage XI-XIII quail cells into stage XI-2 chick blastoderm, more than 50 percent were definite chimeras. The restriction on the spatial arrangement of donor cells was induced by varying the stage of host. Ectodermal chimerism was limited to the head region and no mesodermal chimerism was shown when the quail cells were injected into stage XI-XIII blastoderm. Mesodermal and ectodermal chimerisms were limited to the trunk, not to the head region, when the quail cells were injected into the stage XIV-2 blastoderm. In these chimeras, however, some of the injected quail cells formed ectopic epidermal cysts. Consequently, the stage XIV-2 blastoderm may become intolerant of the injected cells. Our results suggest that it is possible to obtain chimeras that have chimerism limited to a particular germ layer and region by varying the stage of donor cell injection. Injected quail cells contributed to endodermal tissues and primordial germ cells regardless of the injection site. The quail-chick blastodermal chimeras could be useful in the production of a transgenic chicken and in the investigation of immunological tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号