首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal stability of peroxidase from leaves of the African oil palm tree Elaeis guineensis (AOPTP) at pH 3.0 was studied by differential scanning calorimetry (DSC), intrinsic fluorescence, CD and enzymatic assays. The spectral parameters as monitored by ellipticity changes in the far-UV CD spectrum of the enzyme as well as the increase in tryptophan intensity emission upon heating, together with changes in enzymatic activity with temperature were seen to be good complements to the highly sensitive but integral method of DSC. The data obtained in this investigation show that thermal denaturation of palm peroxidase is an irreversible process, under kinetic control, that can be satisfactorily described by the two-state kinetic scheme, N -->(k) D, where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state. On the basis of this model, the parameters of the Arrhenius equation were calculated.  相似文献   

2.
The thermal denaturation of bovine fibrinogen has been investigated using differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy. Differential scanning calorimetry measurements were carried out while changing the scan-rate. The transition at 57 degrees C was found to be irreversible and highly scan-rate dependent, suggesting that the denaturation is, at least in part, under kinetic control. The secondary structural changes at various temperatures were monitored by far-ultraviolet CD spectroscopy. These results show that the DSC transition for the thermal denaturation of bovine fibrinogen can be interpreted in terms of a kinetic process, N --> F, where k is a first-order kinetic constant that changes with temperature according to the Arrhenius equation. An important transition peak was observed at 78.8 degrees C which is attributed to the C-terminal parts of the Aalpha chains of fibrinogen.  相似文献   

3.
Horseradish peroxidase A1 thermal stability was studied by steady-state fluorescence, circular dichroism and differential scanning calorimetry at pH values of 4, 7 and 10. Changes in the intrinsic protein probes, tryptophan fluorescence, secondary structure, and heme group environment are not coincident. The T(m) values measured from the visible CD data are higher than those measured from Trp fluorescence and far-UV CD data at all pH values showing that the heme cavity is the last structural region to suffer significant conformational changes during thermal denaturation. However ejection of the heme group leads to an irreversible unfolding behavior at pH 4, while at pH 7 and 10 refolding is still observed. This is putatively correlated with the titration state of the heme pocket. Thermal transitions of HRPA1 showed scan rate dependence at the three pH values, showing that the denaturation process was kinetically controlled. The denaturation process was interpreted in terms of the classic scheme, N<-->U-->D and fitted to far-UV CD ellipticity. A good agreement was obtained between the experimental and theoretical T(m) values and percentages of irreversibility. However the equilibrium between N and U is probably more complex than just a two-state process as revealed by the multiple T(m) values.  相似文献   

4.
Muzammil S  Kumar Y  Tayyab S 《Proteins》2000,40(1):29-38
The unfolding of human serum albumin (HSA), a multidomain protein, by urea was followed by far-UV circular dichroism (CD), intrinsic fluorescence, and ANS fluorescence measurements. The urea-induced transition, which otherwise was a two-step process with a stable intermediate at around 4.8 M urea concentration as monitored by far-UV CD and intrinsic fluorescence, underwent a single-step cooperative transition in the presence of 1.0 M KCl. The free energy of stabilization (DeltaDelta G(H2O)D) in the presence of 1 M KCl was found to be 1,090 and 1,200 cal/mol as determined by CD and fluorescence, respectively.The salt stabilization occurred in the first transition (0-5.0 M urea), which corresponded to the formation of intermediate (I) state from the native (N) state, whereas the second transition, corresponding to the unfolding of I state to denatured (D) state, remained unaffected. Urea denaturation of HSA as monitored by tryptophan fluorescence of the lone tryptophan residue (Trp(214)) residing in domain II of the protein, followed a single-step transition suggesting that domain(s) I and/or III is (are) involved in the intermediate formation. This was also confirmed by the acrylamide quenching of tryptophan fluorescence at 5 M urea, which exhibited little change in the value of Stern-Volmer constant. ANS fluorescence data also showed single-step transition reflecting the absence of accumulation of hydrophobic patches. The stabilizing potential of various salts studied by far-UV CD and intrinsic fluorescence was found to follow the order: NaClO(4) > NaSCN >Na(2)SO(4) >KBr >KCl >KF. A comparison of the effects of various potassium salts revealed that anions were chiefly responsible in stabilizing HSA. The above series was found similar to the electroselectivity series of anions towards the anion-exchange resins and reverse of the Hofmeister series, suggesting that preferential binding of anions to HSA rather than hydration, was primarily responsible for stabilization. Further, single-step transition observed with GdnHCl can be ascribed to its ionic character as the free energy change associated with urea denaturation in the presence of 1.0 M KCl (5,980 cal/mol) was similar to that obtained with GdnHCl (5,870 cal/mol).  相似文献   

5.
Recombinant human thymidine kinase 2 (hTK2) expressed in Escherichia coli has been found to bind tightly a substoichiometric amount of deoxyribonucleoside triphosphates (dTTP > dCTP > dATP), known to be strong feedback inhibitors of the enzyme. Incubation of hTK2 with the substrate dThd was able to release the dNTPs from the active site during purification from E. coli and thus allowed the kinetic characterization of the noninhibited enzyme, with the tetrameric hTK2 showing slightly higher activity than the most abundant dimeric form. The unliganded hTK2 revealed a lower structural stability than the inhibitor-bound enzyme forms, being more prone to aggregation, thermal denaturation, and limited proteolysis. Moreover, intrinsic tryptophan fluorescence (ITF), far-UV circular dichroism (CD), and limited proteolysis have revealed that hTK2 undergoes distinct conformational changes upon binding different substrates and inhibitors, which are known to occur in the nucleoside monophosphate kinase family. The CD-monitored thermal denaturation of hTK2 dimer/tetramer revealed an irreversible process that can be satisfactorily described by the two-state irreversible denaturation model. On the basis of this model, the parameters of the Arrhenius equation were calculated, providing evidence for a significant structural stabilization of the enzyme upon ligand binding (dCyd < MgdCTP < dThd < dCTP < dTTP < MgdTTP), whereas MgATP further destabilizes the enzyme. Finally, surface plasmon resonance (SPR) was used to study in real time the reversible binding of substrates and inhibitors to the immobilized enzyme. The binding affinities for the inhibitors were found to be 1-2 orders of magnitude higher than for the corresponding substrates, both by SPR and ITF analysis.  相似文献   

6.
The structural stability of a peroxidase, a dimeric protein from royal palm tree (Roystonea regia) leaves, has been characterized by high-sensitivity differential scanning calorimetry, circular dichroism, steady-state tryptophan fluorescence and analytical ultracentifugation under different solvent conditions. It is shown that the thermal and chemical (using guanidine hydrochloride (Gdn-HCl)) folding/unfolding of royal palm tree peroxidase (RPTP) at pH 7 is a reversible process involving a highly cooperative transition between the folded dimer and unfolded monomers, with a free stabilization energy of about 23 kcal per mol of monomer at 25 degrees C. The structural stability of RPTP is pH-dependent. At pH 3, where ion pairs have disappeared due to protonation, the thermally induced denaturation of RPTP is irreversible and strongly dependent upon the scan rate, suggesting that this process is under kinetic control. Moreover, thermally induced transitions at this pH value are dependent on the protein concentration, allowing it to be concluded that in solution RPTP behaves as dimer, which undergoes thermal denaturation coupled with dissociation. Analysis of the kinetic parameters of RPTP denaturation at pH 3 was accomplished on the basis of the simple kinetic scheme N-->kD, where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state, and thermodynamic information was obtained by extrapolation of the kinetic transition parameters to an infinite heating rate. Obtained in this way, the value of RPTP stability at 25 degrees C is ca. 8 kcal per mole of monomer lower than at pH 7. In all probability, this quantity reflects the contribution of ion pair interactions to the structural stability of RPTP. From a comparison of the stability of RPTP with other plant peroxidases it is proposed that one of the main factors responsible for the unusually high stability of RPTP which enhances its potential use for biotechnological purposes, is its dimerization.  相似文献   

7.
A differential scanning calorimetry study of the thermal denaturation of Bacillus thermoproteolyticus rokko thermolysin was carried out. The calorimetric traces were found to be irreversible and highly scan-rate dependent. The shape of the thermograms, as well as their scan-rate dependence, can be explained by assuming that the thermal denaturation takes place according to the kinetic scheme N k----D, where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation, N the native state, and D the unfolded state or, more probably, a final state, irreversibly arrived at from the unfolded one. On the basis of this model, the value of the rate constant as a function of temperature and the activation energy have been calculated. It is shown that the proposed model may be considered as being one particular case of that proposed by Lumry and Eyring [Lumry, R., & Eyring, H. (1954) J. Phys. Chem. 58, 110] N in equilibrium D----I, where N is the native state, D the unfolded one, and I a final state, irreversibly arrived at from D. Lastly, some comments are made on the use of the scan-rate effect on the calorimetric traces as an equilibrium criterion in differential scanning calorimetry.  相似文献   

8.
The thermodynamic stability and temperature induced structural changes of oxidized thioredoxin h from Chlamydomonas reinhardtii have been studied using differential scanning calorimetry (DSC), near- and far-UV circular dichroism (CD), and fluorescence spectroscopies. At neutral pH, the heat induced unfolding of thioredoxin h is irreversible. The irreversibly unfolded protein is unable to refold due to the formation of soluble high-order oligomers. In contrast, at acidic pH the heat induced unfolding of thioredoxin h is fully reversible and thus allows the thermodynamic stability of this protein to be characterized. Analysis of the heat induced unfolding at acidic pH using calorimetric and spectroscopic methods shows that the heat induced denaturation of thioredoxin h can be well approximated by a two-state transition. The unfolding of thioredoxin h is accompanied by a large heat capacity change [6.0 +/- 1.0 kJ/(mol.K)], suggesting that at low pH a cold denaturation should be observed at the above-freezing temperatures for this protein. All used methods (DSC, near-UV CD, far-UV CD, Trp fluorescence) do indeed show that thioredoxin h undergoes cold denaturation at pH <2.5. The cold denaturation of thioredoxin h cannot, however, be fitted to a two-state model of unfolding. Furthermore, according to the far-UV CD, thioredoxin h is fully unfolded at pH 2.0 and 0 degrees C, whereas the other three methods (near-UV CD, fluorescence, and DSC) indicate that under these conditions 20-30% of the protein molecules are still in the native state. Several alternative mechanisms explaining these results such as structural differences in the heat and cold denatured state ensembles and the two-domain structure of thioredoxin h are discussed.  相似文献   

9.
Lentil lectin obtained from Lens culinaris collected in the La Armu?a area (Salamanca, Spain) was examined by high-sensitivity differential scanning calorimetry, fluorimetry and measurements of circular dichroism at pH 2.0 and 7.4. At pH 2.0 the lentil lectin is not in the native state; however, at this pH it does show signs of a residual structure that breaks down upon heating. The lentil lectin at pH 2 shares some similarities with what has become known as the molten globule state. The thermal denaturation of intact (pH 7.4) and partially unfolded (pH 2.0) lentil lectin was irreversible and strongly dependent upon the scan rate, suggesting that its denaturation is under kinetic control. The process of lentil lectin denaturation is interpreted in terms of the simple kinetic model, Nk --> D, where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state.  相似文献   

10.
Tetracycline repressor (TetR), which constitutes the most common mechanism of bacterial resistance to an antibiotic, is a homodimeric protein composed of two identical subunits, each of which contains a domain possessing a helix-turn-helix motif and a domain responsible for binding tetracycline. Binding of tetracycline in the protein pocket is accompanied by conformational changes in TetR, which abolish the specific interaction between the protein and DNA. Differential scanning calorimetry (DSC) and CD measurements, performed at pH 8.0, were used to observe the thermal denaturation of TetR in the absence and presence of tetracycline. The DSC results show that, in the absence of tetracycline, the thermally induced transitions of TetR can be described as an irreversible process, strongly dependent on scan rate and indicating that the protein denaturation is under kinetic control described by the simple kinetic scheme: N(2)--->D(2), where k is a first-order kinetic constant, N is the native state, and D is the denatured state. On the other hand, analysis of the scan rate effect on the transitions of TetR in the presence of tetracycline shows that thermal unfolding of the protein can be described by the two-state model: N(2)<--->U(2)--->D. In the proposed model, TetR in the presence of tetracycline undergoes co-operative unfolding, characterized by an enthalpy change (DeltaH(cal) = 1067 kJ x mol(-1)) and an entropy change (DeltaS = 3.1 kJ x mol(-1)).  相似文献   

11.
B R Rami  J B Udgaonkar 《Biochemistry》2001,40(50):15267-15279
Equilibrium and kinetic characterization of the high pH-induced unfolding transition of the small protein barstar have been carried out in the pH range 7-12. A mutant form of barstar, containing a single tryptophan, Trp 53, completely buried in the core of the native protein, has been used. It is shown that the protein undergoes reversible unfolding above pH 10. The pH 12 form (the D form) appears to be as unfolded as the form unfolded by 6 M guanidine hydrochloride (GdnHCl) at pH 7 (the U form): both forms have similar fluorescence and far-UV circular dichroism (CD) signals and have similar sizes, as determined by dynamic light scattering and size-exclusion chromatography. No residual structure is detected in the D form: addition of GdnHCl does not alter its fluorescence and far-UV CD properties. The fluorescence signal of Trp 53 has been used to monitor folding and unfolding kinetics. The kinetics of folding of the D form in the pH range 7-11 are complex and are described by four exponential processes, as are the kinetics of unfolding of the native state (N state) in the pH range 10.5-12. Each kinetic phase of folding decreases in rate with increase in pH from 7 to 10.85, and each kinetic phase of unfolding decreases in rate with decrease in pH from 12 to 10.85. At pH 10.85, the folding and unfolding rates for any particular kinetic phase are identical and minimal. The two slowest phases of folding and unfolding have identical kinetics whether measured by Trp 53 fluorescence or by mean residue ellipticity at 222 nm. Direct determination of the increase in the N state with time of folding at pH 7 and of the D form with time of unfolding at pH 12, by means of double-jump assays, show that between 85 and 95% of protein molecules fold or unfold via fast pathways between the two forms. The remaining 5-15% of protein molecules appear to fold or unfold via slower pathways, on which at least two intermediates accumulate. The mechanism of folding from the high pH-denatured D form is remarkably similar to the mechanism of folding from the urea or GdnHCl-denatured U form.  相似文献   

12.
Acid denaturation of Aspergillus niger glucoamylase was studied using different conformational probes. Both far-UV CD spectral signal (MRE222 nm) and tryptophan fluorescence remained unchanged in the pH range, 7.0–3.0 but decreased significantly below pH 3.0, whereas ANS fluorescence showed a marked increase below pH 1.5. Maximal changes in MRE222 nm and ANS fluorescence were noticed at pH 1.0. Acid-denatured state of glucoamylase at pH 1.0 retained a significant amount of secondary structure as reflected from far-UV CD spectra but showed a deformed tertiary structure with significant exposure of nonpolar groups as well as tryptophan residues as revealed by increased ANS fluorescence, decreased tryptophan fluorescence and three-dimensional fluorescence spectral signals and increase in Ksv value in acrylamide quenching experiments. Acid-denatured state showed no significant variation in the CD spectral signal throughout the temperature range, 0–100 °C. However, a late cooperative transition was observed upon GdnHCl treatment, compared to the native enzyme. All these results suggested that the acid-denatured state of glucoamylase at pH 1.0 represented the molten globule-like state.  相似文献   

13.
Structural properties and folding of interleukin-1 receptor antagonist (IL-1ra), a therapeutically important cytokine with a symmetric beta-trefoil topology, are characterized using optical spectroscopy, high-resolution NMR, and size-exclusion chromatography. Spectral contributions of two tryptophan residues, Trp17 and Trp120, present in the wild-type protein, have been determined from mutational analysis. Trp17 dominates the emission spectrum of IL-1ra, while Trp120 is quenched presumably by the nearby cysteine residues in both folded and unfolded states. The same Trp17 gives rise to two characteristic negative peaks in the aromatic CD. Urea denaturation of the wild-type protein is probed by measuring intrinsic and extrinsic (binding of 1-anilinonaphthalene-8-sulfonic acid) fluorescence, near- and far-UV CD, and 1D and 2D ((1)H-(15)N heteronuclear single quantum coherence (HSQC)) NMR. Overall, the data suggest an essentially two-state equilibrium denaturation mechanism with small, but detectable structural changes within the pretransition region. The majority of the (1)H-(15)N HSQC cross-peaks of the folded state show only a limited chemical shift change as a function of the denaturant concentration. However, the amide cross-peak of Leu31 demonstrates a significant urea dependence that can be fitted to a two-state binding model with a dissociation constant of 0.95+/-0.04 M. This interaction has at least a five times higher affinity than reported values for nonspecific urea binding to denatured proteins and peptides, suggesting that the structural context around Leu31 stabilizes the protein-urea interaction. A possible role of denaturant binding in inducing the pretransition changes in IL-1ra is discussed. Urea unfolding of wild-type IL-1ra is sufficiently slow to enable HPLC separation of folded and unfolded states. Quantitative size-exclusion chromatography has provided a hydrodynamic view of the kinetic denaturation process. Thermodynamic stability and unfolding kinetics of IL-1ra resemble those of structurally and evolutionary close IL-1beta, suggesting similarity of their free energy landscapes.  相似文献   

14.
Human serum albumin (HSA), under conditions of low pH, is known to exist in two isomeric forms, the F form at around pH 4.0 and the E form below 3.0. We studied its conformation in the acid-denatured E form using far-UV and near-UV CD, binding of a hydrophobic probe, 1-anilinonaphthalene-8-sulfonic acid (ANS), thermal transition by far-UV and near-UV CD, tryptophan fluorescence, quenching of tryptophan fluorescence using a neutral quencher, acrylamide and viscosity measurements. The results show that HSA at pH 2.0 is characterized by a significant amount of secondary structure, as evident from far-UV CD spectra. The near-UV CD spectra showed a profound loss of tertiary structure. A marked increase in ANS fluorescence signified extensive solvent exposure of non-polar clusters. The temperature-dependence of both near-UV and far-UV CD signals did not exhibit a co-operative thermal transition. The intrinsic fluorescence and acrylamide quenching of the lone tryptophan residue, Trp214, showed that, in the acid-denatured state, it is buried in the interior in a non-polar environment. Intrinsic viscosity measurements showed that the acid-denatured state is relatively compact compared with that of the denatured state in 7 M guanidine hydrochloride. These results suggest that HSA at pH 2.0 represents the molten globule state, which has been shown previously for a number of proteins under mild denaturing conditions.  相似文献   

15.
The heat-induced denaturation kinetics of two different sources of ovalbumin at pH 7 was studied by chromatography and differential scanning calorimetry. The kinetics was found to be independent of protein concentration and salt concentration, but was strongly dependent on temperature. For highly pure ovalbumin, the decrease in nondenatured native protein showed first-order dependence. The activation energy obtained with different techniques varied between 430 and 490 kJ*mole(-1). First-order behavior was studied in detail using differential scanning calorimetry. The calorimetric traces were irreversible and highly scan rate-dependent. The shape of the thermograms as well as the scan rate dependence can be explained by assuming that the thermal denaturation takes place according to a simplified kinetic process where N is the native state, D is denatured (or another final state) and k a first-order kinetic constant that changes with temperature, according to the Arrhenius equation. A kinetic model for the temperature-induced denaturation and aggregation of ovalbumin is presented. Commercially obtained ovalbumin was found to contain an intermediate-stable fraction (IS) of about 20% that was unable to form aggregates. The denaturation of this fraction did not satisfy first-order kinetics.  相似文献   

16.
Thermal unfolding kinetics of beta-glucosidase B from Paenibacillus polymyxa and its thermoresistant mutant H62R were determined from far-UV circular dichroism (CD) measurements at different temperatures. The unfolding of both enzymes followed simple two-state kinetics. The new ionic pair formed between Arg62 and Glu429 in the H62R variant did not change substantially the enzyme structure as judged by far-UV CD and fluorescence spectra, but produced an increase in the unfolding activation barrier of 0.95 +/- 0.10 kcal mol(-1), in good agreement with the energetic contribution reported for surface salt bridges in proteins. Eyring's analysis of the unfolding kinetic constants showed that the activation enthalpies for thermal denaturation of both enzymes were essentially the same. Thus, the greater kinetic stability rendered by the salt bridge seems to be due to a reduction in the activation entropy.  相似文献   

17.
The kinetics of protein folding for horse ferricytochrome c was investigated by stopped-flow methods, using far-UV circular dichroism (CD), near-UV CD, and tryptophan fluorescence to probe the formation of secondary structure and tertiary interactions. In the far-UV region of the CD spectrum (222 nm), 44% of the total change associated with refolding occurs within the dead time of the stopped-flow experiment, indicating that a significant amount of helical secondary structure is formed in less than 4 ms. The remaining changes in the ellipticity at 222 nm occur in two kinetic phases with time constants of about 40 ms and 0.7 s, respectively. In contrast, there is no evidence for rapid changes in the ellipticity at 289 nm: an aromatic CD band, which is indicative of the formation of a tightly packed core, only begins to appear in a 400-ms step and is completed in a final 10-s phase. The fluorescence of a single tryptophan at position 59, which becomes quenched upon folding via nonradiative energy transfer to the heme group, provides complementary information on the condensation of the polypeptide chain during refolding. The fluorescence-detected stopped-flow folding kinetics of ferricytochrome c exhibits a 35% decrease in fluorescence during the dead time, suggesting that a substantial decrease in the average tryptophan-heme distance occurs on a submillisecond time scale. The subsequent fluorescence changes exhibit two prominent phases with time constants of about 20 and 300 ms, followed by a minor 5-s phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The structural stability of phaseolin was determined by using absorbance, circular dichroism (CD), fluorescence emission, and fluorescence polarization anisotropy to monitor denaturation induced by urea, guanidinium chloride (GdmCl),pH changes, increasing temperature, or a combination thereof. Initial results indicated that phaseolin remained folded to a similar extent in the presence or absence of 6.0 M urea or GdmCl at room temperature. In 6.0 M GdmCl, phaseolin denatures at approximately 65°C when probed with absorbance, CD, and fluorescence polarization anisotropy. The transition occurs at lower temperatures by decreasingpH. Kinetic measurements of denaturation using CD indicated that the denaturation is slow below 55°C and is associated with an activation energy of 52 kcal/mol in 6.0 M GdmCl. In addition, kinetic measurement using fluorescence emission indicated that the single tryptophan residue was sensitive to at least two steps of the denaturation process. The fluorescence emission appeared to reflect some other structural perturbation than protein denaturation, as fluorescence inflection occurred approximately 5°C prior to the changes observed in absorbance, CD, and fluorescence polarization anisotropy.  相似文献   

19.
The structural stability of phaseolin was determined by using absorbance, circular dichroism (CD), fluorescence emission, and fluorescence polarization anisotropy to monitor denaturation induced by urea, guanidinium chloride (GdmCl),pH changes, increasing temperature, or a combination thereof. Initial results indicated that phaseolin remained folded to a similar extent in the presence or absence of 6.0 M urea or GdmCl at room temperature. In 6.0 M GdmCl, phaseolin denatures at approximately 65°C when probed with absorbance, CD, and fluorescence polarization anisotropy. The transition occurs at lower temperatures by decreasingpH. Kinetic measurements of denaturation using CD indicated that the denaturation is slow below 55°C and is associated with an activation energy of 52 kcal/mol in 6.0 M GdmCl. In addition, kinetic measurement using fluorescence emission indicated that the single tryptophan residue was sensitive to at least two steps of the denaturation process. The fluorescence emission appeared to reflect some other structural perturbation than protein denaturation, as fluorescence inflection occurred approximately 5°C prior to the changes observed in absorbance, CD, and fluorescence polarization anisotropy.  相似文献   

20.
Shikimate kinase was chosen as a convenient representative example of the subclass of alpha/beta proteins with which to examine the mechanism of protein folding. In this paper we report on the refolding of the enzyme after denaturation in urea. As shown by the changes in secondary and tertiary structure monitored by far UV circular dichroism (CD) and fluorescence, respectively, the enzyme was fully unfolded in 4 m urea. From an analysis of the unfolding curve in terms of the two-state model, the stability of the folded state could be estimated as 17 kJ.mol-1. Approximately 95% of the enzyme activity could be recovered on dilution of the urea from 4 to 0.36 m. The results of spectroscopic studies indicated that refolding occurred in at least four kinetic phases, the slowest of which (k = 0.009 s-1) corresponded with the regain of shikimate binding and of enzyme activity. The two most rapid phases were associated with a substantial increase in the binding of 8-anilino-1-naphthalenesulfonic acid with only modest changes in the far UV CD, indicating that a collapsed intermediate with only partial native secondary structure was formed rapidly. The relevance of the results to the folding of other alpha/beta domain proteins is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号