首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Kinetic evidence is reported for the role of the peroxymonocarbonate, HOOCO(2)(-), as an oxidant for reduced Cu,Zn-superoxide dismutase-Cu(I) (SOD1) during the peroxidase activity of the enzyme. The formation of this reactive oxygen species results from the equilibrium between hydrogen peroxide and bicarbonate. Recently, peroxymonocarbonate has been proposed to be a key substrate for reduced SOD1 and has been shown to oxidize SOD1-Cu(I) to SOD1-Cu(II) much faster than H(2)O(2). We have reinvestigated the kinetics of the reaction between SOD1-Cu(I) and HOOCO(2)(-) by using conventional stopped-flow spectrophotometry and obtained a second-order rate constant of k=1600±100M(-1)s(-1) for SOD1-Cu(I) oxidation by HOOCO(2)(-). Our results demonstrate that peroxymonocarbonate oxidizes SOD1-Cu(I) to SOD1-Cu(II) and is in turn reduced to the carbonate anion radical. It is proposed that the dissociation of His61 from the active site Cu(I) in SOD-Cu(I) contributes to this chemistry by facilitating the binding of larger anions, such as peroxymonocarbonate.  相似文献   

2.
Copper-zinc superoxide dismutase (SOD) is of fundamental importance to our understanding of oxidative damage. Its primary function is catalysing the dismutation of superoxide to O2 and H2O2. SOD also reacts with H2O2, leading to the formation of a strong copper-bound oxidant species that can either inactivate the enzyme or oxidise other substrates. In the presence of bicarbonate (or CO2) and H2O2, this peroxidase activity is enhanced and produces the carbonate radical. This freely diffusible reactive oxygen species is proposed as the agent for oxidation of large substrates that are too bulky to enter the active site. Here, we provide direct structural evidence, from a 2.15 Å resolution crystal structure, of (bi)carbonate captured at the active site of reduced SOD, consistent with the view that a bound carbonate intermediate could be formed, producing a diffusible carbonate radical upon reoxidation of copper. The bound carbonate blocks direct access of substrates to Cu(I), suggesting that an adjunct to the accepted mechanism of SOD catalysed dismutation of superoxide operates, with Cu(I) oxidation by superoxide being driven via a proton-coupled electron transfer mechanism involving the bound carbonate rather than the solvent. Carbonate is captured in a different site when SOD is oxidised, being located in the active site channel adjacent to the catalytically important Arg143. This is the probable route of diffusion from the active site following reoxidation of the copper. In this position, the carbonate is poised for re-entry into the active site and binding to the reduced copper.  相似文献   

3.
In this review, we describe the free radical mechanism of covalent aggregation of human copper, zinc superoxide dismutase (hSOD1). Bicarbonate anion (HCO3-) enhances the covalent aggregation of hSOD1 mediated by the SOD1 peroxidase-dependent formation of carbonate radical anion (CO3*-), a potent and selective oxidant. This species presumably diffuses out the active site of hSOD1 and reacts with tryptophan residue located on the surface of hSOD1. The oxidative degradation of tryptophan to kynurenine and N-formyl kynurenine results in the covalent crosslinking and aggregation of hSOD1. Implications of oxidant-mediated aggregation of hSOD1 in the increased cytotoxicity of motor neurons in amyotrophic lateral sclerosis are discussed.  相似文献   

4.
In this work, we investigated the oxidative modification of histidine residues induced by peroxidase and thiol oxidase activities of bovine copper-zinc superoxide dismutase (Cu-ZnSOD) using NMR and pulse EPR spectroscopy. 1D NMR and 2D-NOESY were used to determine the oxidative damage at the Zn(II) and Cu(II) active sites as well as at distant histidines. Results indicate that during treatment of SOD with hydrogen peroxide (H(2)O(2)) or cysteine in the absence of bicarbonate anion (HCO(3)(-)), both exchangeable and nonexchangeable protons were affected. Both His-44 and His-46 in the Cu(II) active site were oxidized based on the disappearance of NOESY cross-peaks between CH and NH resonances of the imidazole rings. In the Zn(II) site, only His-69, which is closer to His-44, was oxidatively modified. However, addition of HCO(3)(-) protected the active site His residues. Instead, resonances assigned to the His-41 residue, 11 ? away from the Cu(II) site, were completely abolished during both HCO(3)(-)-stimulated peroxidase activity and thiol oxidase activity in the presence of HCO(3)(-) . Additionally, ESEEM/HYSCORE and ENDOR studies of SOD treated with peroxide/Cys in the absence of HCO(3)(-) revealed that hyperfine couplings to the distal and directly coordinated nitrogens of the His-44 and His-46 ligands at the Cu(II) active site were modified. In the presence of HCO(3)(-), these modifications were absent. HCO(3)(-)-mediated, selective oxidative modification of histidines in SOD may be relevant to understanding the molecular mechanism of SOD peroxidase and thiol oxidase activities.  相似文献   

5.
We examined the effect of bicarbonate on the peroxidase activity of copper-zinc superoxide dismutase (SOD1), using the nitrite anion as a peroxidase probe. Oxidation of nitrite by the enzyme-bound oxidant results in the formation of the nitrogen dioxide radical, which was measured by monitoring 5-nitro-gamma-tocopherol formation. Results indicate that the presence of bicarbonate is not required for the peroxidase activity of SOD1, as monitored by the SOD1/H(2)O(2)-mediated nitration of gamma-tocopherol in the presence of nitrite. However, bicarbonate enhanced SOD1/H(2)O(2)-dependent oxidation of tocopherols in the presence and absence of nitrite and dramatically enhanced SOD1/H(2)O(2)-mediated oxidation of unsaturated lipid in the presence of nitrite. These results, coupled with the finding that bicarbonate protects against inactivation of SOD1 by H(2)O(2), suggest that SOD1/H(2)O(2) oxidizes the bicarbonate anion to the carbonate radical anion. Thus, the amplification of peroxidase activity of SOD1/H(2)O(2) by bicarbonate is attributed to the intermediary role of the diffusible oxidant, the carbonate radical anion. We conclude that, contrary to a previous report (Sankarapandi, S., and Zweier, J. L. (1999) J. Biol. Chem. 274, 1226-1232), bicarbonate is not required for peroxidase activity mediated by SOD1 and H(2)O(2). However, bicarbonate enhanced the peroxidase activity of SOD1 via formation of a putative carbonate radical anion. Biological implications of the carbonate radical anion in free radical biology are discussed.  相似文献   

6.
Growth of Saccharomyces cerevisiae ure2Δ mutant strain was investigated in the presence of diverse oxidant compounds. The inability of the strain to grow on a medium supplemented with H2O2 was confirmed and a relationship between diminishing levels of glutathione (GSH) and peroxide sensitivity was established. Data for the lack of significant effect of URE2 disruption on the cellular growth in the presence of paraquat and menadione were obtained. The possible role of Ure2p in acquiring sensitivity to oxidative stress by means of its regulatory role in the GATA signal transduction pathway was discussed. It was suggested that the susceptibility of ure2Δ mutant to the exogenous hydrogen peroxide can result from increased GSH degradation due to the deregulated localization of the γ-glutamyl transpeptidase activating factors Gln3/Gat1. The important role of Ure2p in in vivo glutathione-mediated reactive oxygen species (ROS) scavenging was shown by measuring the activity of antioxidant enzymes glutathione peroxidase, superoxide dismutase (SOD) and catalase in an URE2 disrupted strain. A time-dependent increase in SOD and catalase activity was observed. More importantly, it was shown that the ure2 mutation could cause significant disturbance in cellular oxidant balance and increased ROS level.  相似文献   

7.
The Cu,Zn SOD catalyzes the bicarbonate-dependent oxidation of a wide range of substrates by H2O2. A mechanism in accord with this activity has been described. It involves the generation of a strong oxidant (Cu(I)O, Cu(II)OH, or Cu(III)) by reaction of the active site Cu with H2O2, followed by oxidation of bicarbonate to CO3-* that in turn diffuses from the active site to oxidize the various substrates in free solution. Recently, an alternative mechanism, entailing firmly bound HCO3- and CO3-*, has been proposed [J. Biol. Chem. 278 (2003) 21032-21039]. We present data supporting the diffusible CO3-* and discuss the properties of this system that can be accommodated in this way and that preclude bound intermediates.  相似文献   

8.
Peroxidation reactions of copper-zinc superoxide dismutase (CuZn-SOD1) or its zinc-depleted form (CuE-SOD1) that likely also involve a component of bicarbonate buffer have been implicated in the pathophysiology of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS), Alzheimer's Disease and Parkinson's Disease. Neither removal of the zinc ion nor adding bicarbonate had large effects on the self-peroxidation reaction of bovine SOD1, but the combination of zinc-deficiency and added bicarbonate caused major changes to the spin trapped SOD1-centred free radical. Removal of the active site zinc ion greatly decreased the formation of an unassigned SOD1-centred free radical in the reaction with the inorganic peroxide peroxynitrite. The results suggest that under cellular conditions ( approximately 5 mM bicarbonate) zinc-deficient SOD1 peroxidation could play a pathogenic role in neurodegenerative diseases.  相似文献   

9.
The interaction of Cu,ZnSOD with H2O2 generates an oxidant at the active site that can then cause either the inactivation of this enzyme or the oxidation of a variety of exogenous substrates. We show that the rate of inactivation, imposed by 10-mM H2O2 at 25 degrees C and pH 7.2, is not influenced by 10-mM HCO3-; whereas the oxidation of 2,2'-azino-bis-[3-ethylbenzothiazoline sulfonate] (ABTS=) is virtually completely dependent upon HCO3-. The reduction of the active site Cu(II) by H2O2, which precedes inactivation of the enzyme, occurred at the same rate in phosphate buffer with or without bicarbonate added. These results indicate that HCO3- does not play a role in facilitating the interaction of H2O2 with the active site copper, but they can be accommodated by the proposal that HCO3- is oxidized to HCO3*, which then diffuses from that site and causes the oxidation of substrates, such as ABTS=, that are too large to traverse the solvent access channel to the Cu(II).  相似文献   

10.
Kim YS  Han S 《FEBS letters》2000,479(1-2):25-28
Reaction of Cu,Zn-superoxide dismutase (SOD1) and hydrogen peroxide generates a putative oxidant SOD-Cu2+-.OH that can inactivate the enzyme and oxidize 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) to DMPO-.OH. In the presence of nitric oxide (.NO), the SOD1/H2O2 system is known to produce peroxynitrite (ONOO-). In contrast to the proposed cytotoxicity of .NO conferred by ONOO-, we report here a protective role of .NO in the H2O2-induced inactivation of SODI. In a dose-dependent manner, .NO suppressed formation of DMPO-.OH and inactivation of the enzyme. Fragmentation of the enzyme was not affected by .NO. Bicarbonate retarded formation of ONOO-, suggesting that .NO competes with bicarbonate for the oxidant SOD-Cu2+-.OH. We propose that .NO protects SOD1 from H2O2-induced inactivation by reducing SOD-Cu2+.OH to the active SOD-Cu2+ with concomitant production of NO+ which reacts with H2O2 to give ONOO-.  相似文献   

11.
Recent studies suggest that superoxide dismutase (SOD1) may represent a major target of oxidative damage in neurodegenerative diseases. To test the possibility that oxidized species of wild-type (WT) SOD1 might be involved in pathogenic processes, we analyzed the properties of the WT human SOD1 protein after its oxidation in vivo or in vitro by hydrogen peroxide (H2O2) treatment. Using transfected Neuro2a cells expressing WT or amyotrophic lateral sclerosis-linked SOD1 species, we show that exposure to H2O2 modifies the properties of WT SOD1. Western blot analysis of immunoprecipitates from cell lysates revealed that, like mutant SOD1, oxidized WT SOD1 can be conjugated with poly-ubiquitin and can interact with Hsp70. Chromogranin B, a neurosecretory protein that interacts with mutant SOD1 but not with WT SOD1, was co-immunoprecipitated with oxidized WT SOD1 from lysates of Neuro2a cells treated with H2O2. Treatment of microglial cells (line BV2) with either oxidized WT SOD1 or mutant SOD1 recombinant proteins induced tumor necrosis factor-alpha and inducible nitric oxide synthase. Furthermore, exposure of cultured motor neurons to oxidized WT SOD1 caused dose-dependent cell death like mutant SOD1 proteins. These results suggest that WT SOD1 may acquire binding and toxic properties of mutant forms of SOD1 through oxidative damage.  相似文献   

12.
锰超氧化物歧化酶(MnSOD)催化两分子超氧自由基歧化为分子氧和过氧化氢。超氧自由基被Mn3+SOD氧化成分子氧的反应以扩散的方式进行。超氧自由基被Mn2+SOD还原为过氧化氢的反应以快循环和慢循环两条途径平行进行。在慢循环途径中,Mn2+SOD与超氧自由基形成产物抑制复合物,然后该复合物被质子化而缓慢释放出过氧化氢。在快循环途径中,超氧自由基直接被Mn2+SOD转化为产物过氧化氢,快速循环有利于酶的复活与周转。本文提出温度是调节锰超氧化物歧化酶进入慢速或者快速循环催化途径的关键因素。随着在生理温度范围内的温度升高,慢速循环成为整个催化反应的主流,因而生理范围内的温度升高反而抑制该酶的活性。锰超氧化物歧化酶的双相酶促动力学特性可以用该酶保守活性中心的温度依赖性配位模型进行合理化解释。当温度降低时,1个水分子(或者OH-)接近Mn、甚至与Mn形成配位键,从而干扰超氧自由基与Mn形成配位键而避免形成产物抑制。因此在低温下该酶促反应主要在快循环通路中进行。最后阐述了几种化学修饰模式对...  相似文献   

13.
The peroxidase activity of Cu,Zn-superoxide dismutase (Cu,Zn-SOD) has been extensively studied in recent years due to its potential relationship to familial amyotrophic lateral sclerosis. The mechanism by which Cu,Zn-SOD/hydrogen peroxide/bicarbonate is able to oxidize substrates has been proposed to be dependent on an oxidant whose nature, diffusible carbonate radical anion or enzyme-bound peroxycarbonate, remains debatable. One possibility to distinguish these species is to examine whether protein targets are oxidized to protein radicals. Here, we used EPR methodologies to study bovine serum albumin (BSA) oxidation by Cu,Zn-SOD/hydrogen peroxide in the absence and presence of bicarbonate or nitrite. The results showed that BSA oxidation in the presence of bicarbonate or nitrite at pH 7.4 produced mainly solvent-exposed and -unexposed BSA-tyrosyl radicals, respectively. Production of the latter was shown to be preceded by BSA-cysteinyl radical formation. The results also showed that hydrogen peroxide/bicarbonate extensively oxidized BSA-cysteine to the corresponding sulfenic acid even in the absence of Cu,Zn-SOD. Thus, our studies support the idea that peroxycarbonate acts as a two-electron oxidant and may be an important biological mediator. Overall, the results prove the diffusible and radical nature of the oxidants produced during the peroxidase activity of Cu,Zn-SOD in the presence of bicarbonate or nitrite.  相似文献   

14.
The Cdc25 family of dual specific phosphatases are critical components of cell cycle progression and checkpoint control. Certain stresses such as ultraviolet light stimulate the rapid and selective destruction of Cdc25A protein through a Chk1 protein kinase-dependent pathway. We demonstrate that in contrast to cellular stresses previously examined, hydrogen peroxide exposure affects Cdc25C but not Cdc25A levels. Pharmacological inhibition of Chk1 activity or a mutant of Cdc25C that lacks the Chk1 phosphorylation site still undergoes degradation in response to oxidants. We also demonstrate that in vitro hydrogen peroxide stimulates an intramolecular disulfide bond between the active site cysteine at position 377 and another invariant cysteine at position 330. The in vivo stability of Cdc25C is substantially reduced by the mutation of either of these two cysteine residues. In contrast, a double (C2) mutant of both cysteine 330 and cysteine 377 results in a protein that is more stable than wild type Cdc25C and is resistant to oxidative stress-induced degradation. In addition, the C2 mutant, which is unable to form an intramolecular disulfide bond, has reduced binding to 14-3-3 in vitro and in vivo. These results suggest that oxidative stress may induce cell cycle arrest in part through the degradation of Cdc25C.  相似文献   

15.
Eight mutant Cu,Zn-superoxide dismutases (SODs) related to familial amyotrophic lateral sclerosis (FALS) were produced in a baculovirus/insect cell expression system and their molecular properties in terms of hydroxyl radical formation and aggregation were compared with the wild-type enzyme. Treatment of the enzymes with Chelex 100 resin decreased Cu contents as well as SOD activities in all mutant Cu,Zn-SODs, indicating that the affinities of the enzymes for copper ion were decreased. Contrary to previous reports, all the mutant Cu,Zn-SODs exhibited less reactive oxidant producing ability in the presence of hydrogen peroxide than the wild-type enzyme. Both SOD activities and their reactive oxidant forming correlated well with the copper ion content of the molecules. In addition, the proteins spontaneously aggregated and were precipitated by simple centrifugation at 12,000g for 20 min in keeping their enzyme activities. Since hyaline inclusions found in FALS patients with SOD1 mutations contained components which were reactive to anti-Cu,Zn-SOD antibody, a primary reaction caused by mutant SOD1 may be attributed to their propensity to form aggregates. Aggregated but still active mutant SOD1 would be expected to mediate the formation of reactive oxygen species and nitrosylation in a more condensed state.  相似文献   

16.
Eight mutant Cu,Zn-superoxide dismutases (SODs) related to familial amyotrophic lateral sclerosis (FALS) were produced in a baculovirus/insect cell expression system and their molecular properties in terms of hydroxyl radical formation and aggregation were compared with the wild-type enzyme. Treatment of the enzymes with Chelex 100 resin decreased Cu contents as well as SOD activities in all mutant Cu,Zn-SODs, indicating that the affinities of the enzymes for copper ion were decreased. Contrary to previous reports, all the mutant Cu,Zn-SODs exhibited less reactive oxidant producing ability in the presence of hydrogen peroxide than the wild-type enzyme. Both SOD activities and their reactive oxidant forming correlated well with the copper ion content of the molecules. In addition, the proteins spontaneously aggregated and were precipitated by simple centrifugation at 12,000g for 20 min in keeping their enzyme activities. Since hyaline inclusions found in FALS patients with SOD1 mutations contained components which were reactive to anti-Cu,Zn-SOD antibody, a primary reaction caused by mutant SOD1 may be attributed to their propensity to form aggregates. Aggregated but still active mutant SOD1 would be expected to mediate the formation of reactive oxygen species and nitrosylation in a more condensed state.  相似文献   

17.
Protein tyrosine phosphatases (PTPases) play critical roles in the intracellular signal transduction pathways that regulate cell transformation, growth, and proliferation. The structures of several different PTPases have revealed a conserved active site architecture in which a phosphate-binding loop, together with an invariant arginine, cradle the phosphate of a phosphotyrosine substrate and poise it for nucleophilic attack by an invariant cysteine nucleophile. We previously reported that binding of tungstate to the Yop51 PTPase from Yersinia induced a loop conformational change that moved aspartic acid 356 into the active site, where it can function as a general acid. This is consistent with the aspartic acid donating a proton to the tyrosyl leaving group during the initial hydrolysis step. In this report, using a similar structure of the inactive Cys 403-->Ser mutant of the Yersinia PTPase complexed with sulfate, we detail the structural and functional details of this conformational change. In response to oxyanion binding, small perturbations occur in active site residues, especially Arg 409, and trigger the loop to close. Interestingly, the peptide bond following Asp 356 has flipped to ligate a buried, active site water molecule that also hydrogen bonds to the bound sulfate anion and two invariant glutamines. Loop closure also significantly decreases the solvent accessibility of the bound oxyanion and could effectively shield catalytic intermediates from phosphate acceptors other than water. We speculate that the intrinsic loop flexibility of different PTPases may be related to their catalytic rate and may play a role in the wide range of activities observed within this enzyme family.  相似文献   

18.
We here present a study of the interaction between the Fusarium solani pisi cutinase mutant S120A and spin-labeled 4,4-dimethyloxazoline-N-oxyl-(DOXYL)-stearoyl-glycerol substrates in a micellar system. The interaction is detected by NMR measuring changes in chemical shift for 1H and 15N as well as relaxation parameters for backbone 1H (T1) and 15N (T1, T2) atoms as well as for side chain methyl groups 1H (T1). The detected interaction shows a weak binding of cutinase to the lipid micelles. Structural and mobility changes are located inside and around the active site, its flanking loops, and the oxyanion hole, respectively. Relaxation changes in the amino acid pairs Ser 92, Ala 93 and Thr 173, Gly 174 positioned at the edge of each of the active site flanking loops make these residues prime candidates for hinges, allowing for structural rearrangement during substrate binding. The cutinase mutant S120A used carries a 15 amino acid pro-peptide; the significance of this pro-peptide was so far undetermined. We show here that the pro-peptide is affected by the presence of the micellar substrate. Relaxation enhancements indicative of spatial proximity between the DOXYL group in the lipid chain and some hydrophobic residues surrounding the active site could be found.  相似文献   

19.
It is well known that the wild type Cu,Zn superoxide dismutase (holo SOD) catalyzes the conversion of superoxide anion to peroxide hydrogen and dioxygen. However, a new function of holo SOD, i.e., nucleolytic activity has been found [W. Jiang, T. Shen, Y. Han, Q. Pan, C. Liu, J. Biol. Inorg. Chem. 11 (2006) 835-848], which is linked to the incorporation of exogenous divalent metals into the enzyme-DNA complex. In this study, the roles of exogenous divalent metals in the nucleolytic activity were explored in detail by a series of biochemical experiments. Based on a non-equivalent multi-site binding model, affinity of a divalent metal for the enzyme-DNA complex was determined by absorption titration, indicating that the complex can provide at least a high and a low affinity site for the metal ion. These mean that the holo SOD may use a "two exogenous metal ion pathway" as a mechanism in which both metal ions are directly involved in the catalytic process of DNA cleavage. In addition, the pH versus DNA cleavage rate profiles can be fitted to two ionizing-group models, indicating the presence of a general acid and a general base in catalysis. A model that requires histidine residues, metal-bound water molecules and two hydrated metal ions to operate in concert could be used to interpret the catalysis of DNA hydrolysis, supported by the dependences of loss of the nucleolytic activity on time and on the concentration of the specific chemical modifier to the histidine residues on the enzyme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号