首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ovulation constitutes the central event in ovarian physiology, and ovulatory disfunction is a relevant cause of female infertility. Non-steroidal anti-inflammatory drugs (NSAIDs), widely used due to their analgesic and anti-inflammatory properties, consistently inhibit ovulation in all mammalian species investigated so far, likely due to the inhibition of cyclooxygenase 2 (COX-2), the inducible isoform of COX, that is the rate-limiting enzyme in prostaglandin (PG) synthesis. COX-2 inhibition has major effects on ovulation, fertilization and implantation, and NSAID therapy is likely implicated in human infertility and could be an important, frequently overlooked, cause of ovulatory disfunction in women. Although there is compelling evidence for a role of PGs in ovulation, the molecular targets and the precise role of these compounds in the ovulatory process are not fully understood. Morphological studies from rats treated with indomethacin (INDO), a potent inhibitor of PG synthesis, provide evidence on the actions of NSAIDs in ovulation, as well as on the possible roles of PGs in the ovulatory process. Cycling rats treated with INDO during the preovulatory period show abnormal ovulation, due to disruption of the spatial targeting of follicle rupture at the apex. Noticeably, gonadotropin-primed immature rats (widely used as a model for the study of ovulation) show age-dependent ovulatory defects similar to those of cycling rats treated with INDO. These data suggest that NSAID treatment disrupts physiological mechanisms underlying spatial targeting of follicle rupture at the apex, which are not fully established in very young rats. We summarize herein the ovulatory defects after pharmacologic COX-2 inhibition, and discuss the possible mechanisms underlying the anti-ovulatory actions of NSAIDs.  相似文献   

2.
The objective of this study was to determine the effect of pre-treatment of prepubertal gilts with FSH on the estrus and ovulatory responses to eCG injection at two ages. A total of 149 prepubertal Hypor gilts were selected at 150 days (n=76) or 180 days (n=73) of age and assigned to injection of 400 IU eCG plus 200 IU hCG (PG600), 600IU eCG alone (Folligon), pre-treatment with 72 mg FSH (Folltropin) administered as 6 x 12 mg injections at 12 h intervals with 600 IU Folligon 12h after last FSH injection, or non-injected controls. To facilitate detection of estrus, gilts were exposed to a mature boar for 15 min daily for 7 days. To determine ovulatory responses, blood samples were obtained on the day of injection and 10 days later and assayed for progesterone content. Following treatment at 150 days, one control gilt (5.3%) was deemed estrus but ovulation did not occur. Compared to treatment with Folligon alone, PG600 injection tended (P=0.1) to increase the estrus response (52.6% compared with. 26.3%) and increased (P<0.01) the ovulatory response (89.5% compared with. 47.4%). The estrous response in gilts pretreated with Folltropin was intermediate (42.1%) but the ovulatory response (47.4%) was the same as for Folligon alone. Following treatment at 180 days, two control gilts (10.5%) were deemed estrus and ovulation did occur in these gilts. There was no difference between hormone-treated groups for estrus or ovulatory responses, although the ovulatory response of PG600-treated gilts tended (P=0.1) to be greater than for the Folligon-treated group (89.5% compared with 66.7%), with Folltropin-pretreated gilts being intermediate (76.5%). These data demonstrate that the estrus and ovulatory responses of gilts were greater for PG600 than for Folligon and that while responses to PG600 were not affected by gilt age, for the combined Folligon groups, estrous response (P<0.02) and ovulatory response (P<0.05) improved with increased gilt age.  相似文献   

3.
4.
The role of progesterone in the regulation of the preovulatory surge in gonadotropins and ovulation was examined in this study by use of a potent antagonist of progesterone, RU 486 (17 beta-hydroxy-11 beta-[4-dimethyl-aminophenyl]-17 alpha- [prop-1-ynyl]estra-4,9-diene-3-one). The immature rat primed with pregnant mare's serum gonadotropin (PMSG) and the cycling adult animal were the models used to verify the role of progesterone. When RU 486 (200 micrograms/rat) was given as a single dose on the morning of proestrus, there was a significant reduction in the preovulatory surge levels of gonadotropins and ovulation in both animal models. Serum progesterone levels in both models at the time of death on the evening of proestrus were unaltered upon treatment with RU 486. RU 486 did not have any effect on gonadotropin levels in immature rats 7 days after castration. These results show that the actin of RU 486 on the preovulatory gonadotropin surge is due to an antagonism of the action of progesterone on the hypothalamic-pituitary axis. Thus, a role for progesterone in modulating the preovulatory surge of gonadotropins and, consequently, ovulation is strongly suggested.  相似文献   

5.
To clarify the mechanisms by which progesterone acts as a mediator in the ovulatory process, ovulation rate and proteolytic enzyme activities were investigated in immature 22-day-old rats treated with PMSG/hCG, RU486 (10 mg/kg), synthetic antiprogesterone, and RU486 (10 mg/kg) + progesterone (10 mg/kg). The number of ova was significantly decreased when RU486 (10 mg/kg) was given from 2 h before to 4 h after the hCG injection. In addition, its inhibitory action on ovulation was reversed by exogenous progesterone (10 mg/kg) at 2 or 4 h after the hCG injection. Serum progesterone and estradiol concentrations in the rats treated with RU486 did not show any significant differences compared to controls. The proteolytic enzyme activities were measured by using the synthetic substrates alpha-N-benzoyl-DL-Arg-beta naphthylamide (BANA) and dinitrophenyl peptide (DNP). Activities were significantly increased after hCG injection in the control group during 8-9 h for BANA hydrolase and 7-10 h for DNP peptidase. The preovulatory increase of these activities was totally suppressed by RU486 with hCG. After administration of progesterone (10 mg/kg) following hCG and RU486 injection, the elevation of proteolytic, enzyme activities in the preovulatory phase was effectively reversed, and levels became similar to those in the control group. These results suggest that progesterone plays an indispensable role in the first 4 h of the ovulatory process by regulating proteolytic enzyme activities.  相似文献   

6.
The purpose of these experiments was to investigate the mechanism of the anovulatory action of antiprogesterone RU486 (RU486) in rats by studying its effects on follicular growth, secretion of gonadotropins and ovarian steroids, and ovulation. Rats with 4-day estrous cycles received injections (s.c.) of either 0.2 ml oil or 0.1, 1, or 5 mg of RU486 at 0800 and 1600 h on metestrus, diestrus, and proestrus. At the same times, they were bled by jugular venipuncture to determine serum concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), 17 beta-estradiol (E), and progesterone (P). On the morning of the day after proestrus, ovulation and histological features of the ovary were recorded. Rats from each group were killed on each day of ovarian cycle to assess follicular development. Rats treated similarly were decapitated at the time of the ovulatory LH surge and blood was collected to measure LH. The serum levels of LH increased and those of FSH decreased during diestrus in rats treated with RU486. Neither E nor P levels differed among the groups. Treatment with RU486 caused both a blockade of the ovulation and an increase in ovarian weight in a dose-dependent manner. At the time of the autopsy (the expected day of ovulation), rats treated with 1 mg RU486 had ovaries presenting both normal and post-ovulatory follicles and unruptured luteinized follicles. Rats treated with 5 mg RU486 presented post-ovulatory follicles without signs of luteinization. The number of follicles undergoing atresia increased in rats treated with RU486. Rats treated with 5 mg RU486 exhibited a significant decrease in ovulatory LH release. The mechanism by which RU486 produces the ovulatory impairment in rats seems to be dual: first, by inducing inadequate follicular development at the time of the LH surge and second, by reducing the amount of ovulatory LH released. The physiological events-decreased basal FSH secretion and follicular atresia-that result from use of RU486 cannot be elucidated from these experiments and should be investigated further.  相似文献   

7.
To determine if the antiprogestagen RU486 has a direct effect on luteal progesterone secretion, whole corpora lutea or dispersed luteal cells were incubated in the presence of RU486. Whole corpora lutea, isolated from rats at day 5 of pseudopregnancy, were incubated individually in hormone-free medium. The concentrations of progesterone and 20 alpha-dihydroprogesterone in the medium plus corpus luteum was measured before and after 24 h of incubation. In the absence of RU486 the concentration of 20 alpha-dihydro-progesterone increased, while that of progesterone remained unchanged. In the presence of RU486 (230 microM) the concentration of both progesterone and 20 alpha-dihydro-progesterone was increased. Dispersed luteal cells were incubated for 24 h in the presence of various amounts of RU486. In the absence and in the presence of 0.2 and 2.3 microM RU486 a high ratio between 20 alpha-dihydro-progesterone and progesterone was found, while in the presence of 23 microM RU486 the concentrations of progesterone and 20 alpha-dihydro-progesterone were equal. 20 alpha-Hydroxysteroid dehydrogenase (20 alpha-HSD) activity measured in luteal homogenates started to increase between 6 and 12 h of incubation. This increase could be prevented after incubation of the corpora lutea in the presence of 23 or 230 microM RU486 for 24 hrs. It is concluded that the progesterone antagonist RU486 can have a direct effect on luteal progesterone production. RU486 prevents the increase in 20 alpha-HSD activity that normally occurs during in vitro incubation. However, since these effects in vitro can only be obtained with high concentrations of RU486, it is unlikely that this antiluteolytic effect plays a role after injection of RU486 in vivo.  相似文献   

8.
Administration of antiprogesterone RU486 (4 mg/day) from estrus through proestrus to cyclic rats blocked ovulation. Moreover, RU486 increased basal serum concentrations of LH, PRL, testosterone and estradiol, while it decreased basal serum concentration of FSH. Both unilateral ovariectomy and antiandrogen flutamide treatment, as well as an ovulatory injection of HCG in the proestrus afternoon partially reversed, the ovulatory blockade of RU486. These results indicate that both the decreased FSH concentration and the increased testosterone concentration, as well as the reduced ovulatory LH release are responsible for the anovulatory effects of RU486.  相似文献   

9.
FAM110C belongs to a family of proteins that regulates cell proliferation. In the present study, the spatiotemporal expression pattern of FAM110C and its potential role were examined during the periovulatory period. Immature female rats were injected with equine chorionic gonadotropin (eCG) followed by human chorionic gonadotropin (hCG) and ovaries or granulosa cells were collected at various times after hCG administration (n = 3/time point). Expression levels of Fam110c mRNA and protein were highly induced both in intact ovaries and granulosa cells at 8 to 12 h after hCG treatment. In situ hybridization analysis demonstrated Fam110c mRNA expression was induced in theca and granulosa cells at 4 h after hCG, primarily localized to granulosa cells at 8 h and 12 h, and decreased at 24 h after hCG. There was negligible Fam110c mRNA detected in newly forming corpora lutea. In rat granulosa cell cultures, hCG induced expression of Fam110c mRNA was inhibited by RU486, whereas NS398 and AG1478 had no effect, suggesting that Fam110c expression is regulated in part by the progesterone receptor pathway. Promoter activity analysis revealed that an Sp1 site was important for the induction of Fam110c expression by hCG. Overexpression of FAM110C promoted granulosa cells to arrest at the G(1) phase of the cell cycle but did not change progesterone levels. In summary, hCG induces Fam110c mRNA expression in granulosa cells by activation of an Sp1-binding site and the actions of progesterone. Our findings suggest that FAM110C may control granulosa cell differentiation into luteal cells by arresting cell cycle progression.  相似文献   

10.
Kanter M  Yildiz C  Meral I  Koc A  Tasal I 《Theriogenology》2004,61(2-3):393-398
The objective was to investigate the effects of a gonadotropin-releasing hormone agonist (GnRH) on ovulation rate and the number and maturation of oocytes in mice superovulated with equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG). Thirty 3-month-old BALB/C female mice (weight: 25-30 g) were assigned to three experimental groups: control, superovulated, and superovulated with GnRH pretreatment (n=10 per group). Control mice received an i.p. injection of 0.1 ml physiological saline solution. Superovulation was induced with 5 IU eCG (i.p.) and 5 IU hCG 48 h later. Mice in the superovulated with GnRH pretreatment group were given GnRH (20 mg/kg Fertirelin, i.m.), 24 h before superovulation. Thirteen hours after hCG administration, mice were sacrificed by cervical dislocation and blood samples were collected to determine serum progesterone concentration (by radioimmunoassay). Ovaries and oviducts were also harvested to enumerate corpora lutea and cumulus-enclosed oocytes. Progesterone concentrations were not significantly different among groups. The oocyte number and the maturation, ovulation rate, and the number of corpora lutea were higher in GnRH-treated mice than both controls and superovulated mice. In conclusion, GnRH given 24 h before superovulation with eCG-hCG increased the number and maturation of oocytes and the rate of ovulation in mice.  相似文献   

11.
Almost all ovarian follicles undergo atresia during follicular development. However, the number of corpora lutea roughly equals the number of preovulatory follicles in the ovary. Because apoptosis is the cellular mechanism behind follicle and luteal cell demise, this suggests a change in apoptosis susceptibility during the periovulatory period. Sex steroids are important regulators of follicular cell survival and apoptosis. The aim of the present work was to study the role of progesterone receptor-mediated effects in the regulation of granulosa cell apoptosis. The levels of internucleosomal DNA fragmentation were evaluated in rat granulosa cells before and after induction of the nuclear progesterone receptor, using hCG treatment to eCG-primed rats to mimic the naturally occurring LH surge. Granulosa cells isolated from hCG-treated rats showed a several-fold increase in the expression of progesterone receptor mRNA and a 47% decrease (P < 0.01) in DNA fragmentation after 24 h incubation in serum-free medium compared to granulosa cells isolated from rats treated with eCG only. The effect of hCG treatment in vivo was dose-dependently reversed in vitro by addition of antiprogestins (Org 31710 or RU 486) to the culture medium, demonstrated by increased DNA fragmentation as well as increased caspase-3 activity. Addition of antiprogestins to granulosa cells isolated from immature or eCG-treated rats did not result in increased DNA fragmentation. The results suggest that progesterone receptor-mediated effects are involved in regulating the susceptibility to apoptosis in LH receptor-stimulated preovulatory rat granulosa cells.  相似文献   

12.
Effect of RU 486 on luteal function in the early pregnant rat   总被引:1,自引:0,他引:1  
A dose of 30 mg RU 486/kg, an antiprogesterone, was administered to pregnant rats on Day 2 (Group 1) or Day 4 (Group 2) of pregnancy. RU 486 significantly changed serum progesterone and oestradiol concentrations and luteal 3 beta-HSD and 20 alpha-HSD activities in Group 1, and implantation was significantly inhibited. The luteal 3 beta-HSD activity in Group 2 rats on Day 6 was significantly (P less than 0.01) lower than the control value (7.5 +/- 0.6 and 10.1 +/- 0.6 mU/mg protein respectively). This decline in the 3 beta-HSD activity was followed by a marked decrease in the serum progesterone concentration, resulting in a significant decrease of the progesterone/oestradiol ratio and implantation was completely inhibited. The 20 alpha-HSD activity, which could not be detected on Day 6 in the control rats, was twice as great in Group 2 than in Group 1 rats (17.5 +/- 1.2 and 7.4 +/- 3.1 mU/mg protein respectively). Ultrastructural examination of corpora lutea of Group 2 rats confirmed luteolysis. These results suggest that RU 486 has a luteolytic effect and its anti-implantation effect is concomitant with luteolysis of the corpora lutea of pregnancy.  相似文献   

13.
Summary Immunocytochemical localization of aromatase cytochrome P-450 was examined in immature rat ovaries treated with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG), and in pregnant rat ovaries. It is well known that PMSG and hCG treatments induce ovulation about 12 h after hCG injection.At 24 h after hCG injection, many antral follicles were recognized in immature rat ovaries and only the granulosa cells in the antral follicles were stained weakly with the anti-aromatase antibody. At 0 to 9 h after hCG injection, in addition to the antral follicles, some large Graafian follicles could be observed in the rat ovaries, and the granulosa cells of these follicles were positively stained for aromatase. Each follicle was surrounded by the basal lamina which shows lineally distinct positive reaction against anti-laminin antibody. At 12 h after hCG injection, some large Graafian follicles without oocyte were weakly positive to the anti-aromatase antisera, and the outline of their basal lamina stained with anti-laminin antibody became irregular in shape and fragmentous. At 15 to 18 h after hCG injection, the luteinized cysts could be seen, and the granulosa-lutein cells of these cysts were almost negative for aromatase. Fragmentous reaction to the anti-laminin antibody was observed around the luteinized cysts.In the ovaries of day 4 in pregnancy, only the granulosa cells of the large antral follicles were weakly stained, but corpora lutea negatively reacted to the anti-aromatase antibody. At 7 to 19 days in gestation, both the granulosa cells of antral follicles and pregnant luteal cells were positively stained against aromatase antisera. The luteal cells were increased in size during pregnancy. And weakly positive reaction was detected on day 7 of pregnancy, then the immunoreaction became stronger in the corpora lutea on day 15 and 19 of pregnancy.The localization of aromatase was immunocytochemically examined in immature rat ovaries treated with PMSG and hCG injection, and the reaction of the granulosa cells of the antral follicles against anti-aromatase antibody became strongly positive about 12 h before ovulation and the became very weak suddenly after ovulation. In rat-ovaries, the pregnant corpora lutea was positively stained for aromatase after day 7 of pregnancy.This study was supported by Grants from the Ministry of Education, Science and Culture, Japan, and from USPHS Research Grants HD04945, USA  相似文献   

14.
Ovulation (i.e., the release of mature oocytes from the ovary) requires spatially targeted follicle rupture at the apex. Both progesterone and prostaglandins play key roles in the ovulatory process. We have studied follicle rupture and ovulation in adult cycling rats treated with a progesterone receptor antagonist (RU486), an inhibitor of prostaglandin synthesis (indomethacin, IM), or both. All rats were treated with LHRH antagonist on the morning (0900 h) of proestrus to inhibit endogenous gonadotropins and with 10 microg of ovine LH (oLH) at 1700 h in proestrus to induce ovulation. Animals were treated from metestrus to proestrus with 2 mg/day of RU486 or vehicle (olive oil) and on the morning of proestrus (1200 h) with 1 mg of IM or vehicle (olive oil). Some rats treated with vehicle or RU486 were killed on the morning of proestrus to assess preovulatory follicle development. The remaining rats were killed on the morning of estrus to study follicle rupture and ovulation. In vehicle-treated rats, oLH induced ovulation in 98% of follicles. In IM-treated rats, spatial targeting of follicle rupture was disrupted. Most oocytes were released to the ovarian interstitium (50%) or to the periovarian space (39%), and a smaller percentage (11%) of oocytes remained trapped inside the luteinized follicle. RU486-treated rats showed, on the morning of estrus, unruptured luteinized follicles. Only occasionally (2.8%), the oocytes were released to the periovarian space. IM treatment induced follicle rupture in RU486-treated rats, and 25% of oocytes were released to the ovarian interstitium. However, the number of oocytes released to the periovarian space (i.e., ovulated) was not increased by IM treatment in rats lacking progesterone actions. Overall, these data indicate that RU486 and IM have opposite effects on follicle rupture and suggest that both progesterone and prostaglandins are necessary for the spatial targeting of follicle rupture at the apex.  相似文献   

15.
Laparoscopic intrauterine artificial insemination (AI) of electroejaculated spermatozoa was used to compare embryo development and conception rates in domestic cats inseminated either before or after ovulation. Females were given a single (100 iu) injection of pregnant mares' serum gonadotrophin (PMSG) followed by either 75 or 100 iu human chorionic gonadotrophin (hCG) 80 h later. Cats were anaesthetized (injectable ketamine HCl/acepromazine plus gaseous halothane) 25-50 h after administration of hCG for laparoscopic assessment of ovarian activity and for transabdominal AI into the proximal aspect of the uterine lumen. At the time of AI, 23 cats were pre-ovulatory (25-33 h after hCG injection) and 30 were post-ovulatory (31-50 h after hCG injection). Pre-ovulatory females produced 10.5 +/- 1.1 follicles and no corpora lutea compared with 1.9 +/- 0.5 follicles and 7.5 +/- 0.9 corpora lutea for the post-ovulatory group (P < 0.05). Six days later, the ovaries of nine pre-ovulatory and 12 post-ovulatory females were re-examined and the reproductive tracts flushed. On this day, pre-ovulatory cats produced fewer corpora lutea (2.8 +/- 1.5; P < 0.05) and embryos (0.4 +/- 0.3; P < 0.05) than post-ovulatory females (18.9 +/- 3.3 corpora lutea; 4.6 +/- 1.2 embryos). Two of the 14 cats (14.3%) inseminated before ovulation and not flushed became pregnant compared with 9 of 18 cats (50.0%) inseminated after ovulation and up to 41 h after hCG injection (P < 0.05). These results indicate that ovulation in cats is compromised by pre-ovulatory ketamine HCl/acepromazine/halothane or laparoscopy or by both and that electroejaculated spermatozoa deposited by laparoscopy in utero, after ovulation, result in a relatively high incidence of pregnancy. Because ovulation usually occurs 25-27 h after injection of hCG, the lifespan for fertilization of the ovulated ovum appears to be at least 14 h in vivo in cats.  相似文献   

16.

Background

The success of ovarian follicle growth and ovulation is strictly related to the development of an adequate blood vessel network required to sustain the proliferative and endocrine functions of the follicular cells. Even if the Vascular Endothelial Growth Factor (VEGF) drives angiogenesis before ovulation, the local role exerted by Progesterone (P4) remains to be clarified, in particular when its concentration rapidly increases before ovulation.

Aim

This in vivo study was designed to clarify the effect promoted by a P4 receptor antagonist, RU486, on VEGF expression and follicular angiogenesis before ovulation, in particular, during the transition from pre to periovulatory follicles induced by human Chorionic Gonadotropins (hCG) administration.

Material and Methods

Preovulatory follicle growth and ovulation were pharmacologically induced in prepubertal gilts by combining equine Chorionic Gonadotropins (eCG) and hCG used in the presence or absence of RU486. The effects on VEGF expression were analyzed using biochemical and immunohistochemical studies, either on granulosa or on theca layers of follicles isolated few hours before ovulation. This angiogenic factor was also correlated to follicular morphology and to blood vessels architecture.

Results and Conclusions

VEGF production, blood vessel network and follicle remodeling were impaired by RU486 treatment, even if the cause-effect correlation remains to be clarified. The P4 antagonist strongly down-regulated theca VEGF expression, thus, preventing most of the angiogenic follicle response induced by hCG. RU486-treated follicles displayed a reduced vascular area, a lower rate of endothelial cell proliferation and a reduced recruitment of perivascular mural cells. These data provide important insights on the biological role of RU486 and, indirectly, on steroid hormones during periovulatory follicular phase. In addition, an in vivo model is proposed to evaluate how periovulatory follicular angiogenesis may affect the functionality of the corpus luteum (CL) and the success of pregnancy.  相似文献   

17.
The optimal dose of human chorionic gonadotropin (hCG) for induction of ovulation was determined by comparing the ovulatory response of 119 mated ferrets (controls) with that of estrous females induced to ovulate with five different dosages of hCG. Copulation induced formation of 12.7 ± 4.5 corpora lutea (CL) in all 119 females and resulted in a 90.7% conception rate as evidenced by finding approximately eight blastocysts/female in the uteri of 108 ferrets. All doses of hCG tested induced ovulation; however, the lower doses (50 and 75 IU) resulted in a lesser percentage of females ovulating. The highest doses of hCG (150 and 300 IU) resulted in fewer CL/female being formed. The optimal dose of hCG for simulating copulation induced ovulation was 100 IU. Tubal transport of unfertilized oocytes in pseudopregnant females was found to be significantly retarded when compared to the rate of transport of embryos in the control group.  相似文献   

18.
The pattern of ovulation of Merino ewes was studied by repeated laparoscopy each 14 days in the anoestrous (n = 97) and breeding (n = 87) seasons. In the anoestrous season the proportion of ewes ovulating did not decrease below 11%, 42% of ewes never ovulated and the remainder fluctuated between the two states. On 20 occasions a clear anovulatory period was interrupted by an isolated spontaneous ovulation. In the breeding season the overall mean proportion of ewes with corpora lutea or albicantia at laparoscopy was 87%, 54% of ewes ovulated regularly throughout while in another 31% absence of corpora lutea or albicantia coincided with the follicular phase of an oestrous cycle as evidenced by an appropriately aged corpora lutea at the next laparoscopy. Of the remaining 15% of the flock 3% had anovulatory periods greater than 14 days while the remainder experienced irregular ovulatory cycles--the majority due to short periods of anovulation but some ewes retained corpora lutea for longer than 14 days while others ovulated twice between successive laparoscopies.  相似文献   

19.
Immature female rats were primed with 4 i.u. PMSG at 08:00 h of Day 26. This results in ovulation in the morning of Day 29. The number of ovulations was counted in terms of newly formed corpora lutea in the morning of Day 30. Various adrenergic drugs were delivered into the ovarian bursa bilaterally in the afternoon of Day 27 to study their effect on ovulation. A methyl cellulose gel solution was used as vehicle to minimize leakage from the bursa. Noradrenaline, terbutaline and 4-aminopyridine significantly enhanced the number of corpora lutea compared to control ovaries injected with gel vehicle alone. The effect of terbutaline was counteracted by propranolol. Phentolamine partly blocked the noradrenaline-induced enhancement and the antagonist alone significantly reduced the number of ovulations. The results indicate that stimulation of alpha-adrenergic receptors (probably via actions in the follicle wall) as well as beta-receptors (influencing steroid-producing cells) may interfere with the ovulation process.  相似文献   

20.
Attempts were made to induce pregnancy in androgen-treated immature rats. Treatment with PMSG alone, which causes ovulation in normal immature rats, failed to cause ovulation in androgenized rats. However, treatment with PMSG plus LHRH was effective in causing ovulation. After ovulation, some of the normal and androgenized rats mated. Normal mated rats became pregnant but androgenized mated rats did not. However, when a pituitary gland was transplanted from a normal rat into the kidney capsule of an androgenized rat to maintain functional corpora lutea, implantation occurred in some of the mated animals. The positive decidual reaction in the uteri of such androgenized rats was similar to that observed in normal rats. These results suggest that the uterine sensitivity to blastocyst implantation of androgenized immature rats may be normal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号