首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Apparent competition between prey is hypothesized to occur more frequently in environments with low densities of preferred prey, where predators are forced to forage for multiple prey items. In the arctic tundra, numerical and functional responses of predators to preferred prey (lemmings) affect the predation pressure on alternative prey (goose eggs) and predators aggregate in areas of high alternative prey density. Therefore, we hypothesized that predation risk on incidental prey (shorebird eggs) would increase in patches of high goose nest density when lemmings were scarce. To test this hypothesis, we measured predation risk on artificial shorebird nests in quadrats varying in goose nest density on Bylot Island (Nunavut, Canada) across three summers with variable lemming abundance. Predation risk on artificial shorebird nests was positively related to goose nest density, and this relationship was strongest at low lemming abundance when predation risk increased by 600% as goose nest density increased from 0 to 12 nests ha?1. Camera monitoring showed that activity of arctic foxes, the most important predator, increased with goose nest density. Our data support our incidental prey hypothesis; when preferred prey decrease in abundance, predator mediated apparent competition via aggregative response occurs between the alternative and incidental prey items.  相似文献   

2.
Predation causes most nest failure in birds. Predator communities are likely to vary across a gradient of increasing urbanization, so nest predation also is likely to vary across this gradient. Although predation is thought to decline with increasing urbanization, relatively little is known about variation in predation pressure within strata along an urban gradient and how factors known to affect nest success, such as nest location, interact with urban variables, such as human housing density. Native habitats are frequently fragmented and isolated by suburban residential development, thus we quantified predation rates on artificial nests located in natural oak scrub patches within a suburban matrix in south-central Florida. We examined patterns of predation based on nest location relative to habitat edges, artificial nest weathering treatment, nest shrub height, and human housing density. Over two 18-d trials, we placed a total of 240 nests, each containing a single quail egg and a clay sham, along three roadside transects. Nest predation was not influenced by proximity to edge, nest weathering, or trial date, but was highest at high housing density and lowest at low housing density. The proportion of quail eggs removed from nests increased with human housing density. Birds were the most frequent predators of artificial nests, but the relative frequency of predation by birds or mammals did not differ relative to any of our treatments. Higher rates of nest predation with increasing human housing density within suburban habitats may reflect changes in habitat structure and composition that increase the vulnerability of nests to predation or changes in the composition of the predator community. Our results modify the conclusions of previous studies by suggesting that at scales smaller than the entire urban gradient, nest predation may increase with human housing density, one common measure of urbanization.  相似文献   

3.
1. Predation plays an integral role in many community interactions, with the number of predators and the rate at which they consume prey (i.e. their functional response) determining interaction strengths. Owing to the difficulty of directly observing predation events, attempts to determine the functional response of predators in natural systems are limited. Determining the forms that predator functional responses take in complex systems is important in advancing understanding of community interactions. 2. Prey survival has a direct relationship to the functional response of their predators. We employed this relationship to estimate the functional response for bald eagle Haliaeetus leucocepalus predation of Canada goose Branta canadensis nests. We compared models that incorporated eagle abundance, nest abundance and alternative prey presence to determine the form of the functional response that best predicted intra-annual variation in survival of goose nests. 3. Eagle abundance, nest abundance and the availability of alternative prey were all related to predation rates of goose nests by eagles. There was a sigmoidal relationship between predation rate and prey abundance and prey switching occurred when alternative prey was present. In addition, predation by individual eagles increased as eagle abundance increased. 4. A complex set of interactions among the three species examined in this study determined survival rates of goose nests. Results show that eagle predation had both prey- and predator-dependent components with no support for ratio dependence. In addition, indirect interactions resulting from the availability of alternative prey had an important role in mediating the rate at which eagles depredated nests. As a result, much of the within-season variation in nest survival was due to changing availability of alternative prey consumed by eagles. 5. Empirical relationships drawn from ecological theory can be directly integrated into the estimation process to determine the mechanisms responsible for variation in observed survival rates. The relationship between predator functional response and prey survival offers a flexible and robust method to advance our understanding of predator-prey interactions in many complex natural systems where prey populations are marked and regularly visited.  相似文献   

4.
Do artificial nests reveal relative nest predation risk for real nests?   总被引:2,自引:0,他引:2  
Present knowledge of the effects of nest predation on spatial distribution, habitat selection and community structure of birds is to a large extent based on results from experiments with artificial nests. Although nest predation risk is likely to differ between artificial and real nests, most previous studies of nest predation using artificial nests have been lacking a proper control. We investigated whether predation rates on artificial nests predicted those on real nests by simultaneously comparing the fate of real and artificial nests (containing quail Coturnix coturnix and plasticine eggs) in 92 territories of the northern wheatear Oenanthe oenanthe in 1996. We also investigated whether risk for artificial nests was related to relative average risk for real nests in these territories (based on data collected two years before and two years after the experiment). Nest predation on artificial nests did predict relative predation risk for real nests only when quail egg depredation was used as the criterion for artificial nest predation. Despite plasticine egg depredation being the most common type of predation it was not associated with predation risk for real nests. Small mice and vole species dominated among cases with only plasticine egg depredation, while predatory mammals and snakes destroyed most quail eggs in artificial nests and most eggs in real wheatear nests. The results suggest that artificial nests may only predict the risk for real nests when the nest predator species are similar among the two types of nest. Furthermore, our data suggest that small mice and vole species rarely depredate nests of mid-sized passerine birds . Our results cast doubt on many previous conclusions based on experiments with artificial nests, since predation risk for such nests is likely to be uncorrelated with risk for real nests due to nest-type-specific differences in nest preying species.  相似文献   

5.
1. Predators impose costs on their prey but may also provide benefits such as protection against other (e.g. nest) predators. The optimal breeding location in relation to the distance from a nesting raptor varies so as to minimize the sum of costs of adult and nest predation. We provide a conceptual model to account for variation in the relative predation risks and derive qualitative predictions for how different prey species should respond to the distance from goshawk Accipiter gentilis nests. 2. We test the model predictions using a comprehensive collection of data from northern Finland and central Norway. First, we carried out a series of experiments with artificial bird nests to test if goshawks may provide protection against nest predation. Second, we conducted standard bird censuses and nest-box experiments to detect how the density or territory occupancy of several prey species varies with distance from the nearest goshawk nest. 3. Nest predation rate increased with distance from goshawk nest indicating that goshawks may provide protection for birds' nests against nest predation. Abundance (or probability of presence) of the main prey species of goshawks peaked at intermediate distances from goshawk nests, reflecting the trade-off. The abundance of small songbird species decreased with distance from goshawk nests. The goshawk poses little risk to small songbirds and they may benefit from goshawk proximity in protection against nest predation. Finally, no pattern with distance in pied flycatcher territory (nest box) occupation rate or the onset of egg-laying was detected. This is expected, as flycatchers neither suffer from marked nest predation risk nor are favoured goshawk prey. 4. Our results suggest that territory location in relation to the nest of a predator is a trade-off situation where adult birds weigh the risk of themselves being predated against the benefits accrued from increased nest survival. Prey species appear able to detect and measure alternative predation risks, and respond adaptively. From the prey perspective, the landscape is a mosaic of habitat patches the quality of which varies according to structural and floristic features, but also to the spatial distribution of predators.  相似文献   

6.
Summary To examine if differences in egg predation rates could explain differences in bird community composition, egg predation was studied in two years on small islands in a South Swedish lake and on the nearby mainland using both natural and artificial nests.In plots with similar vegetation, the combined density of ground- and tree-nesting bird species did not differ between the islands and the mainland. Egg predation rates were similar on islands and the mainland for natural Turdus nests in two years, and for artificial Turdus and Phylloscopus nests. Unmarked and unvisited experimental nests suffered similar rate of egg predation as marked and visited nests. Egg predation rates were higher on natural nests when artificial nests were also put out, increasing the total nest density. Initial egg predation rates in artificial nests were also higher than later when nest density had decreased by 75%.The egg predators involved differed for artificial Phylloscopus nests between the islands and the mainland. Small mammals were apparently responsible for 29% of the predation on the mainland, but none on the islands. Artificial Turdus nests near crow nests suffered from a higher egg predation rate than nests further away from crow nests. Daily survival rates of Turdus nests increased from the laying to the incubation and further to the fledging state.Egg predation can not explain differences in bird community composition between islands and mainland in the present case.  相似文献   

7.
We tested whether predation on duck nests ( Anas spp.) was density dependent at three spatial scales using artificial and natural nests in the Suisun Marsh, California, USA. At the largest spatial scale, we used 5 years (1998–2002) of data to examine the natural variation in duck nest success and nest densities among 8–16 fields per year, each 5–33 ha in size (n=62 fields). At an intermediate spatial scale, we deployed artificial nests (2000, n=280) within 1-ha plots at three experimental densities (5, 10, and 20 nests ha−1) in a complete randomized block design and examined differences in nest predation. At the smallest spatial scale, we examined nest success in relation to nearest-neighbor fates and distances for artificial (2000, n=280) and natural nests (2000, n=507). We detected no relationship between nest success and the density of natural nests among fields in any year, nor when we pooled data for all years after controlling for year effects. The proportion of artificial nests that survived also did not depend on experimental nest densities within 1-ha plots. Overall, 15.0±12.4%, 15.0±11.0%, and 6.2±4.3% of artificial nests survived the 32-day exposure period in the low, intermediate, and high nest densities, respectively. Additionally, we detected no consistent effect of nearest-neighbor fate or distance on the success of artificial or natural nests. Thus, our results provide no evidence of density-dependent predation on duck nests at any scale of analysis, in contrast to a number of previous studies. Variation among geographical locations in the degree to which predation is density-dependent may reflect the composition of the predator community and the availability of alternate prey.  相似文献   

8.
Joshua T. Ackerman 《Oikos》2002,99(3):469-480
Coexisting prey species interact indirectly via their shared predators when one prey type influences predation rates of the second prey type. In a temperate system where the predominant shared predator is a generalist, I studied the indirect effects of rodent populations on waterfowl nest success, both within the nesting season among sites and among years. Among six to ten upland fields (14 to 27 ha), mallard ( Anas platyrhynchos ) nest success was positively correlated with rodent abundance in all three years of the study. After removing year effects, mallard nest success remained positively correlated with the relative abundance of rodents. Of the rodent species present, California voles ( Microtus californicus ) were the most important coexisting prey type influencing nest success. Among years, mallard nest success was positively correlated with vole abundance; the asymptotic relationship suggests a threshold response to vole abundance, beyond which predators become satiated and additional voles do little to affect nest success. I tested and rejected three alternative explanations for the observed positive correlation between mallard nest success and rodent abundance that do not involve an indirect effect of coexisting prey populations. The influences of dense nesting cover, nesting density, and predator activity did not explain the observed patterns of nest success. These results suggest that rodent populations buffer predation on waterfowl nests, both within and among years, via the behavioral responses of shared predators to coexisting prey.  相似文献   

9.
Antarctic terns have to co‐exist in a limited space with their major nest predator, the skuas. We conducted artificial nest experiments to evaluate the roles of parental activity, nest location and nest and egg crypsis in this simple predator–prey system. Predation on artificial (inactive) nests was higher in traditional nesting sites than in sites previously not occupied by terns, which suggests that skuas memorized past tern breeding sites. Predation on artificial nests in inactive colonies was higher than in active (defended) colonies. Parental defense reduced predation in colonies to the level observed in artificial nests placed away from colonies. This suggests that communal defense can balance the costs of attracting predators to active colonies. Within colonies, predation was marginally higher on experimental eggs put in real nests than on bare ground. Although it seems that the presence of a nest is costly in terms of increased predation, reductions in nest size might be constrained by the need for protective nest structures and/or balanced by opposing selection on nest size. Predation did not differ markedly between artificial (quail) and real tern eggs. A simultaneous prey choice experiment showed that the observed predation rates reflected egg/nest detectability, rather than discrimination of egg types. In summary, nesting terns probably cannot avoid being detected, and they cannot defend their nest by attending them. Yet, by temporarily leaving the nest, they can defend it through communal predator mobbing, and at the same time, they can benefit from crypsis of unattended nest and eggs.  相似文献   

10.
ABSTRACT Apparent competition (i.e., a mutually negative indient rect interaction between prey species through shared predation) arises when predator abundance or foraging effort increases with spetotal prey availability. We review and formalize several patch-use models from which we derive predictions for how the degree of coupling (from the predators' perspective) between nesting guilds (defined as species nesting within a vegetation stratum) affects the outcome of shared predation. We then determine which model best applies to nest predation on woodland songbirds and artificial nests by a natural population of raccoons. Using artificial nests, we showed that increasing the density of nests placed either in shrubs or on the ground increased overall predation (i.e., proportion of nests) on both types. We also tested for apparent competition between American robin and wood thrush, two coexisting woodland songbirds that commonly nest within the shrub stratum. Nest predation increased for wood thrushes but not robins as the combined density of robin and thrush nests within two individual substrate types, Lonicera and Rhamnus, increased. Thus, we documented apparent competition both within and among nesting guilds. We discuss the possible relevance of this interaction in determining species diversity, particularly in the light of increasing generalist nest predators through anthropogenically driven changes in human-altered landscapes.  相似文献   

11.
Nest predation is assumed to be an important factor driving avian life histories. Altitudinal gradients offer valuable study systems to investigate how avian nest predation risk varies between bird populations. In this study, a hypothesis postulating an increase in avian nest survival rate with elevation as a result of decreasing predation pressure was experimentally tested along an altitudinal gradient (300‐2250 m) in West‐Central Africa. Three types of artificial nests (cup‐shrub, cup‐ground and bare‐ground) were used along the altitudinal gradient. Overall, elevation had no effect on the daily survival rate (DSR) of the artificial nests. However, there was a significant elevation‐nest type interaction. Daily survival rate for cup‐shrub nests decreased significantly with elevation, but for cup‐ground and bare‐ground nests, elevation had no significant effect. We tested the effects of the same vegetation parameters (tree density, herb and shrub layer coverage, and canopy openness) on the DSR of different nest types to understand how different vegetation layers or combinations of them affect DSR. Daily survival rate for bare‐ground nests significantly decreased with increasing canopy openness, and was positively influenced by coverage of herb layer and tree density. For cup‐shrub nests, DSR increased significantly with increasing shrub layer coverage. Finally, for cup‐ground nests, we found a positive effect of shrub coverage and canopy openness on DSR. In summary, we found that different forest vegetation layers affect predation risk of different nest types along elevations on Mt. Cameroon.  相似文献   

12.
Nest predation is the leading cause of nesting failure. Thus it is a crucial area of research needed to inform conservation management and to understand the life history of birds. I surveyed the literature to review the identity of nest predators and the factors affecting nest predation, in Australia using 177 studies. Overall, 94 nest predators were identified when incorporating artificial nests, 69 without. Using only natural nests, the Pied Currawong Strepera graculina was the most frequently reported nest predator. Five nest predators, including Pied Currawong, depredated 40% of the prey measured by the number of prey species taken. Yet, 60% of predation was carried out by the other 64 species, which included by the order of importance birds, mammals, reptiles, frogs and ants. Predation at cup and dome nests was more frequently reported than at burrow, ground and hollow nests. Only 28% of predators were observed at both artificial and natural nests suggesting artificial nests have limited, but not negligible, ability as tools for identifying predators. There was a highly significant and positive correlation between predator and prey masses. The predator prey mass ratio was calculated with a mean 0.25 and a median 0.22, a result closely matching with the proportional size of prey taken by raptors. The finding that predator size is proportional to prey opens a pathway for more life history and conservation research.  相似文献   

13.
Rates of nest predation have frequently been shown to differ between fragmented and unfragmented habitats, but have rarely been compared among natural habitats in the same geographic region. In this study, artificial nests of two types (open cup and domed) were placed in four habitats (mangroves, monsoon rainforests, eucalypt woodlands and paperbark swamps) over 12 months in three localities near Darwin in the Australian monsoon tropics to determine the effects of habitat, season and nest type on the rate of nest predation. A quail egg and a similarly coloured plasticine egg were placed in each nest. Habitat had a strong effect on nest predation rates, with nests in mangroves experiencing predation rates more than four times higher than those in eucalypt woodlands and paperbark swamps. Despite the strong rainfall seasonality of the region, there was no consistent seasonal variation in nest predation rates. Nest type also had little influence on predation rates, except in paperbark swamps where open cup nests suffered a higher predation rate than domed nests. The study indicates that generalised nest predation rates for tropical regions, even for small areas (e.g. <17 km radius), might overlook substantial variation between habitats. Such variation confounds purported differences in nest predation rates between tropical and temperate regions.  相似文献   

14.
Nest predation is widely regarded as a major driver underlying the population dynamics of small forest birds. Following forest fragmentation and the subsequent invasion by species from non-forested landscape matrices, shifts in predator communities may increase nest predation near forest edges. However, effects of human-driven habitat change on nest predation have mainly been inferred from studies with artificial nests, despite being regarded as poor surrogates for natural ones. We studied variation in predation rates, and relationships with timing of breeding and characteristics of microhabitats and fragments, on natural white-starred robin Pogonocichla stellata nests during three consecutive breeding seasons (2004–2007) in a Kenyan fragmented cloud forest. More than 70% of all initiated nests were predated during each breeding season. Predation rates nearly quadrupled between the earliest and the latest nests within a single breeding season, increased with distance to the forest edge, and decreased with the edge-to-area ratio of forest fragments. These spatial relationships oppose the traditional perception of edge and fragmentation effects on nest predation, but are in line with results from artificial nest experiments in other East African forests. In case of inverse edge and fragmentation effects on nest predation, such as shown in this study, species that tolerate edges for breeding may be affected positively, rather than negatively, by forest fragmentation, while the opposite can be expected for species restricted to the forest interior. The possibility of inverse edge effects, and its conservation implications, should therefore be taken into account when drafting habitat restoration plans.  相似文献   

15.
When nest predation levels are very high or very low, the absolute range of observable nest success is constrained (a floor/ceiling effect), and it may be more difficult to detect density-dependent nest predation. Density-dependent nest predation may be more detectable in years with moderate predation rates, simply because there can be a greater absolute difference in nest success between sites. To test this, we replicated a predation experiment 10 years after the original study, using both natural and artificial nests, comparing a year when overall rates of nest predation were high (2000) to a year with moderate nest predation (2010). We found no evidence for density-dependent predation on artificial nests in either year, indicating that nest predation is not density-dependent at the spatial scale of our experimental replicates (1-ha patches). Using nearest-neighbor distances as a measure of nest dispersion, we also found little evidence for "dispersion-dependent" predation on artificial nests. However, when we tested for dispersion-dependent predation using natural nests, we found that nest survival increased with shorter nearest-neighbor distances, and that neighboring nests were more likely to share the same nest fate than non-adjacent nests. Thus, at small spatial scales, density-dependence appears to operate in the opposite direction as predicted: closer nearest neighbors are more likely to be successful. We suggest that local nest dispersion, rather than larger-scale measures of nest density per se, may play a more important role in density-dependent nest predation.  相似文献   

16.
《Acta Oecologica》2002,23(5):313-320
We studied the effect of the general structure of the nest plant, especially the presence of thorns, and the structural homogeneity of the nest patch, on the vulnerability of nests to predation, using natural and artificial nests. Artificial nests placed in non-thorny plants had a significantly lower predation rate and higher daily survival rate than those in thorny plants. The addition of a ‘thorny microhabitat’ around the immediate proximity of nests placed in non-thorny plants did not have any effect on vulnerability of nests to predation. Conversely, natural nests were located in patches of habitat with a higher density of the species of plant that supported the nest compared to patches selected at random. However, daily survival rate was similar for natural nests placed in patches with a higher or lower density of the species of nest plant in the four bird species analysed. Similarly, survival of artificial nests did not increase with the presence of a higher number of plants similar to the nest plant in the nest patch. Thus, the observed patterns of survival for natural and artificial nests did not seem to support the potential prey-site hypotheses. Birds appeared to be the main nest predators in this ecosystem. Behavioural aspects of the identified predators and habitat structure could explain the lack of effect of thorns and nest patch characteristics on nest survival.  相似文献   

17.
《Ostrich》2013,84(1):93-96
Nest predation is the leading cause of reproductive failure in birds and thus it shapes their life history strategies. Intensities of nest predation appear to differ among nest locations and types in both temperate and tropical regions. However, there is limited knowledge of factors influencing susceptibility of avian nests to predation in Africa. The aim of our study was to investigate artificial nest predation rates of different ground and shrub nests located at different heights in the rainforest undergrowth. We placed artificial avian nests within a homogeneous lowland forest interior with sparse forest undergrowth in the Mount Cameroon National Park, Cameroon. We exposed three sets of nests: 50 bare-ground, 50 cup-ground and 50 cup-shrub nests, for 10 d. Predation was higher for cup-ground nests compared to cup-shrub nests, and bare-ground nests were more depredated than cup-ground nests. We concluded that the presence of a cup as well as higher nest position significantly increased probability of artificial nest survival. The results of this study suggest a potential selection pressure on nest type and placement in lowland forest birds for a poorly known tropical region.  相似文献   

18.
Three factors and their interaction effects are increasingly recognized as important determinants of nest predation: nest concealment, nest height, and predator type. The risk of nest predation is predicted to vary across these variables because of nest detectability and accessibility. In general, however, few studies examine how these three variables interact in relation to nest predation, focusing instead on either nest concealment or nest height (whereby predator identity is usually not known). In this study, we examine the role of nest concealment and nest height for nest survival using both artificial and natural nests in the superb fairy-wren (Malurus cyaneus). We indirectly identified potential predators through marks left on artificial eggs and footprints left on tracking tunnels. Predation level at artificial nests was lower than at natural nests, and this could be due to a failure of some nest predators to locate cryptic nests in the absence of cues provided by parental activity. Our results supported the prediction that exposed and concealed nests have different levels of nest predation, which can be explained by variation in predator type. Visual predators were only detected at exposed nests, and survival from visual predators was lower for high nests that were also exposed. However, olfactory predators were detected irrespective of nest height or nest concealment. Because rodents use olfaction to locate nests, this could explain the lack of association between nest concealment and predation outcome at low nests. In addition, rodent footmarks near nests were significantly associated with rodent tooth marks on eggs.  相似文献   

19.
We studied whether the presence of breeding kestrels (Falco tinnunculus) affected nest predation and breeding habitat selection of curlews (Numenius arquata) on an open flat farmland area in western Finland. We searched for nests of curlews from an area of 6 km2 during 1985–1993. For each nest found, we recorded the fate of the nest, and the distance to the nearest kestrel nest and to the nearest perch. We measured the impact of breeding kestrels on nest predation by constructing artificial curlew nests in the vicinity of ten kestrel nests in 1993. Curlew nests were closer to kestrel nests than expected from random distribution, eventhough kestrels fed on average 5.5% of curlew chick production. Predation risk by kestrels was lower than predation risk by corvids and other generalist predators, which predated 9% of curlew nests surviving farming practices and an unknown proportion of chicks. Artificial nest experiment showed that nest predation was lower close to kestrel nests than further away suggesting that the breeding association of curlews and kestrels was a behavioural adaptation against nest predation. Thus, the presence of a predator may sometimes be beneficial to prey, and prey animals have behavioural adaptations to these situations.  相似文献   

20.
Sublethal effects of predation constitute an important part of predation effects, which may modulate prey population and community dynamics. In birds, the risk of nest predation may cause a reduction in parental activity in the care of offspring to reduce the chance of being detected by predators. In addition, parents may modify their parental food allocation preferences within the brood in response to predation risk. Our aim in this study was to evaluate the effects of risk of nest predation on parental care and within‐nest food allocation in the European Roller (Coracias garrulus), an asynchronously hatching bird. We manipulated brood predation risk by placing a snake model near the nests that simulates the most common nest predator in the Mediterranean region. Our results show that males but not females increased their provisioning rate when they were exposed to the model and that despite this, nestlings’ body mass decreased in response to this temporary increase in predation risk. We did not find evidence that parents changed their food allocation strategy towards senior or junior nestlings in their nests in response to predation risk. These results show that the European roller modifies parental care in response to their perception of predation risk in the nest and a sex‐specific sensitivity to the threat, which suggests a different perception of offspring reproductive value by parents. Finally, our results show that changes in parental behaviour in response to nest predation risk might have consequences for nestling fitness prospects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号