首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
In previous studies, we had shown that the buoyant density ofEscherichia coli is determined by the osmolarity of the growth medium by varying the osmolarity of the medium with NaCl or sucrose. However, the buoyant density of the cells always exceeded that of the growth medium. Here we determined the effect of medium with a buoyant density greater than the expected buoyant density of cells by adding Nycodenz to Luria broth. Percoll gradients of cells were analyzed by laser light scattering. The buoyant density for 125- and 375-mOsM-grown cells was 0.002 g/ml and 0.003 g/ml more, respectively, for cells grown in the presence of Nycodenz than those grown without Nycodenz, while the buoyant density of 250-mOsM-grown cells was 0.005 g/ml less for cells grown in the presence of Nycodenz than those grown without Nycodenz. Cells grown in 500-mOsM medium with or without Nycodenz had the same buoyant density. the buoyant density of cultures grown in defined medium was the same as those grown in rich medium, with only the medium osmolarity correlating to buoyant density. We conclude from these experiments that neither buoyant density nor chemical make-up of the medium determines the buoyant density of cells grown in that medium. Only the medium osmolarity determines cell buoyant density, suggesting thatE. coli has no mechanisms to sense buoyant density.  相似文献   

2.
Escherichia coli grown under anaerobic conditions in acidic medium (pH 5.5) upon hyperosmotic stress accumulates potassium ions mainly through the Kup system, the functioning of which is associated with proton efflux decrease. It was shown that H+ secretion but not glucose-induced K+ uptake was inhibited by N,N′-dicyclohexylcarbodiimide (DCC). The inhibitory effect of DCC on the H+ efflux was stronger in the trkA mutant with defective potassium transport. The K+ and H+ fluxes depended on the extent of hyperosmotic stress in the absence or presence of DCC. The decrease in external oxidation/reduction potential and H2 liberation insensitive to DCC were recorded. It was found that the atpD mutant with nonfunctional F0F1-ATPase produced a substantial amount of H2, while in the hyc mutant (but not the hyf mutant defective in hydrogenases 3 (Hyd-3) and 4 (Hyd-4)) the H2 production was significantly suppressed. At the same time, the rate of K+ uptake was markedly lower in hyfR and hyfB-R but not in hycE or hyfA-B mutants; H+ transport was lowered and sensitive to DCC in hyf but not in hyc mutants. The results point to the relationship of K+ uptake with the Hyd-4 activity. Novel options of the expression of some hyf genes in E. coli grown at pH 5.5 are proposed. It is possible that the hyfB-R genes expressed under acidic conditions or their gene products interact with the gene coding for the Kup protein or directly with the Kup system.  相似文献   

3.
Secretion of alkaline phosphatase (PhoA) encoded by a gene constituent of plasmids has been studied in Escherichia coli strains with controlled synthesis of anionic phospholipids (phosphatidylglycerol and cardiolipin, strain HDL11) and zwitterionic phospholipid (phosphatidylethanolamine, strain AD93). Changing the phospholipid composition of the membrane of these strains leads to an increase in secretion of PhoA, which is usually localized in the periplasm, into the culture medium. This correlates with a higher secretion of exopolysaccharides and lower content of lipopolysaccharide in the outer membrane. The results show the possibility of coupling protein secretion into the medium with biogenesis of cell envelope components in which phospholipids are involved.  相似文献   

4.
Escherichia coli Frag1 was grown under various nutrient limitations in chemostat culture at a fixed temperature, dilution rate and pH both in the presence and the absence of a high concentration of ammonium ions by using either ammonium chloride or dl-alanine as the sole nitrogen source. The presence of high concentrations of ammonium ions in the extracellular fluids of potassium-limited cultures of E. coli Frag1 caused an increase of the specific rate of oxygen consumption of these cultures. In contrast, under phosphate-, sulphate- or magnesium-limited growth conditions no such increase could be observed. The presence of high concentrations of ammonium ions in potassium-limited cultures of E. coli Frag5, a mutant strain of E. coli Frag1 which lacks the high affinity potassium uptake system (Kdp), did not increase the specific rate of oxygen consumption.These results indicate that ammonium ions, very similar to potassium ions both in charge and size, are transported via the K dp leading to a futile cycle of ammonium ions and ammonia molecules (plus protons) across the cytoplasmic membrane. Both the uptake of ammonium ions and the extrusion of protons would increase the energy requirement of the cells and therefore increase their specific rate of oxygen consumption. The involvement of a (methyl)ammonium transport system in this futile cycle could be excluded.  相似文献   

5.
Smirnova  G. V.  Torkhova  O. A.  Oktyabr'skii  O. N. 《Microbiology》2003,72(5):542-547
The study of glutathione status in aerobically grown Escherichia coli cultures showed that the total intracellular glutathione (GSHin + GSSGin) level falls by 63% in response to a rapid downshift in the extracellular pH from 6.5 to 5.5. The incubation of E. coli cells in the presence of 50 mM acetate or 10 g/ml gramicidin S decreased the total intracellular glutathione level by 50 and 25%, respectively. The fall in the total intracellular glutathione level was accompanied by a significant decrease in the (GSHin : GSSGin) ratio. The most profound effect on the extracellular glutathione level was exerted by gramicidin S, which augmented the total glutathione level by 1.8 times and the (GSHout : GSSGout) ratio by 2.1 times. The gramicidin S treatment and acetate stress inhibited the growth of mutant E. coli cells defective in glutathione synthesis 5 and 2 times more severely than the growth of the parent cells. The pH downshift and the exposure of E. coli cells to gramicidin S and 50 mM acetate enhanced the expression of the sodA gene coding for superoxide dismutase SodA.  相似文献   

6.
The accumulation of glycine betaine to a high internal concentration by Escherichia coli cells in high osmolarity medium restores, within 1 h, a subnormal growth rate. The experimental results support the view that cell adaptation to high osmolarity involves a decrease in the initiation frequency of DNA replication via a stringent response; in contrast, glycine betaine transport and accumulation could suppress the stringent response within 1–2 min and restore a higher initiation frequency. High osmolarity also triggers the cells to lengthen, perhaps via an inhibition of cellular division; glycine betaine also reverses this process. It is inferred that turgor could control DNA replication and cell division in two separate ways. Glycine betaine action is not mediated by K+ ions as the internal level of K+ ions is not modified significantly following glycine betaine accumulation.  相似文献   

7.
In Escherichia coli, during survival under adverse conditions, namely starvation and luminous radiation, two things occur. On the one hand organic substances are released into the surrounding medium and on the other there is a transition from the culturable state to viable but non-culturable (VBNC). An analysis of organic molecules released into the surrounding medium showed the presence of proteins, dissolved free amino acids, and dissolved monomeric carbohydrates. The concentration of these substances in the medium changed with exposure time, type of stress and type of molecule. The proteins accumulated in the medium and in some cases their identification revealed the presence of components of the outer membrane. Variations in the concentration of amino acids and carbohydrates point to a twofold process of excretion and uptake. Indeed, cell free supernatants supported the growth of several generations of a population of 10(4) cells ml(-1). The survival of E. coli in supernatants previously colonized by cells in the VBNC state was greater than that observed in the control experiments, with a short delay in the loss of culturability. It was thus clear that organic molecules released into the medium play a role in the transition from culturable to VBNC state.  相似文献   

8.
A recombinant Escherichia coli strain (E. coli NO3) containing genomic DNA fragments from azo-reducing wild-type Pseudomonas luteola strain decolorized a reactive azo dye (C.I. Reactive Red 22) at approx. 17 mg dye h–1 g cell. The ability to decolorize the azo dye probably did not originate from the plasmid DNA. Acclimation in azo-dye-containing media gave a nearly 10% increase in the decolorization rate of E. coli NO3. Growth with 1.25 g glucose l–1 completely stopped the decolorization activity. When the decolorization metabolites from E. coli NO3 were analyzed by HPLC and MS, the results suggested that decolorization of the azo dye may be due to cleavage of the azo bond.  相似文献   

9.
2-Aminopurine (2AP), a base analog, causes both transition and frameshift mutations in Escherichia coli. The analog is thought to cause mutations by two mechanisms: directly, by mispairing with cytosine, and indirectly, by saturation of mismatch repair (MMR). The goal of this work was to measure the relative contribution of these two mechanisms to the occurrence of transition mutations. Our data suggest that, in contrast to 2-aminopurine-stimulated frameshift mutations, the majority of transition mutations are a direct effect of base mispairing.  相似文献   

10.
The yield of periplasmic enzyme, penicillin amidase (PA), from E. coli ATCC 11105 is regulated at the post-translational level by two competitive processes-intracellular proteolysis of newly synthesised pre-pro-PA (ppPA) in the cytoplasm and membrane transport and maturation of ppPA. Intracellular proteolysis results in a significant loss in the yield of active PA. Immunochemical analysis were used to study the influence of the cultivation temperature, phenylacetic acid, and glucose on the proteolysis of the ppPA in the cytoplasm. An increase in glucose concentrations or temperature during the cultivation resulted in a significant loss of PA activity due to the increased rate of intracellular proteolysis of ppPA. Addition of phenylacetic acid reduced the intracellular proteolysis of ppPA and, as a consequence, increased the PA production. Taken together, these data explain a new aspect of regulation of active PA production in E. coli.  相似文献   

11.
In mineral salts medium, supplementing with betaine in combination with increased production of endogenous osmoprotectant from a second copy of the trehalose biosynthetic genes (otsBA) improved growth of E. coli and increased the MIC for xylose, glucose, sodium lactate and NaCl. With these compounds, this combination was more effective than either betaine or trehalose alone. With succinate, this combination was no more effective than betaine alone. Neither approach improved tolerance to ethanol. A combination of betaine and increased trehalose may improve strain productivity for many bioproducts by promoting growth in the presence of high sugar concentrations.  相似文献   

12.
A cell density-dependent metabolic switch in amino acid metabolism occurs in E. coli W3110 batch cultures at 1.15 g dry wt l–1 (Han L, Doverskog M, Enfors S-O, Häggström L, 2002, J. Biotechnol. 92: 237–249). A two- to three-fold decrease of the concentration of most glycolytic and citric acid cycle metabolites, and an increase in acetyl-CoA concentration after the switch, indicates that the central metabolism also is affected. The specific acetate production rate decreases throughout the culture, except for a temporary increase at the switch point. The intracellular acetate concentration remains relatively constant during the culture.  相似文献   

13.
The DNA of growing cells of Escherichia coli occurs in one or a few lobular bodies known as nucleoids. Upon exposure to chloramphenicol, the nucleoids assume compact, rounded forms ("cm-nucleoids") that have been described as ring- or sphere-shaped. Multiple views of single cells or spheroplasts, however, support a different, curved toroid shape for cm-nucleoids. The multiple views were obtained either by DNA fluorescence imaging as the cells or spheroplasts reoriented in liquid medium or by optical sectioning using phase-contrast or fluorescence imaging of immobilized cells. The curved toroid shape is consistent with electron microscope images of thin sections of chloramphenicol-treated cells. The relationship of this structure to active and inactive nucleoids and to the smaller toroidal forms made by in vitro DNA condensation is discussed.  相似文献   

14.
Hepcidin is a low-molecular-weight, highly disulfide bonded peptide relevant to small intestine iron absorption and body iron homeostasis. In this work, hepcidin was expressed in Escherichia coli as a 10.5 kDa fusion protein (His-hepcidin) with a N-terminal hexahistidine tag. The expressed His-hepcidin existed in the form of inclusion bodies and was purified by IMAC under denaturation condition. Since the fusion partner for hepcidin did not contain other cysteine residues, the formation of disulfide bonds was performed before the His-tag was removed. Then, the oxidized His-hepcidin monomer was separated from protein multimers through gel filtration. Following monomer refolding, hepcidin was cleaved from fusion protein by enterokinase and purified with reverse-phase chromatography. The recombinant hepcidin exhibited obvious antibacterial activity against Bacillus subtilis.  相似文献   

15.
Summary We describe the construction and analysis of an isogenic series ofEscherichia coli K12 strains that vary in their outer membrane permeability. They carry mutations that alter the amount and the type of porin present in the outer membrane. The permeability profiles of these strains suggest that both the amount and the type of porin present in the outer membrane affects permeability. Several of the strains carry mutations that extend the permeability of the outer membrane to include a variety of compounds that are normally excluded from entering the cell.  相似文献   

16.
Lipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria, and is the causative agent of endotoxin shock. LPS induces signal transduction in immune cells when it is recognized by the cell surface complex of toll-like receptor 4 (TLR4) and MD-2. The complex recognizes the lipid A structure in LPS, which is buried in the membrane of the outer envelope. To present the Lipid A structure to the TLR4/MD-2, processing of LPS by LPS-binding protein (LBP) and CD14 is required. In previous studies, we expressed recombinant proteins of human MD-2 and CD14 as fusion proteins with thioredoxin in Escherichia coli, and demonstrated their specific binding abilities to LPS. In this study, we prepared a recombinant fusion protein containing 212 amino terminal residues of human LBP (HLB212) by using the same expression system. The recombinant protein expressed in E. coli was purified as a complex form with host LPS. The binding was not affected by high concentrations of salt, but was prevented by low concentrations of various detergents. Both rough-type LPS lacking the O antigen and smooth-type LPS with the antigen bound to HLBP212. Therefore, oligosaccharide repeats appeared to be unnecessary for the binding. A nonpathogenic penta-acylated LPS also bound to HLBP212, but the binding was weaker than that of the wild type. The hydrophobic interaction between the LBP and acyl chains of lipid A appears to be important for the binding. The recombinant proteins of LPS-binding molecules would be useful for analyzing the defense mechanism against infections.  相似文献   

17.
Re-engineering Escherichia coli for ethanol production   总被引:2,自引:1,他引:1  
A lactate producing derivative of Escherichia coli KO11, strain SZ110, was re-engineered for ethanol production by deleting genes encoding all fermentative routes for NADH and randomly inserting a promoterless mini-Tn5 cassette (transpososome) containing the complete Zymomonas mobilis ethanol pathway (pdc, adhA, and adhB) into the chromosome. By selecting for fermentative growth in mineral salts medium containing xylose, a highly productive strain was isolated in which the ethanol cassette had been integrated behind the rrlE promoter, designated strain LY160 (KO11, Δfrd::celY Ec ΔadhE ΔldhA, ΔackA lacA::casAB Ko rrlE::(pdc Zm -adhA Zm -adhB Zm -FRT-rrlE) pflB + ). This strain fermented 9% (w/v) xylose to 4% (w/v) ethanol in 48 h in mineral salts medium, nearly equal to the performance of KO11 with Luria broth.  相似文献   

18.
Acid stress in Escherichia coli involves a complex resource- and energy-consuming response mechanism. By overexpression of arginine kinase from Limulus polyphemus in E. coli, we improved the recovery from a transient pH stress. While wild type E. coli resumed growth after a transient pH reduction to pH 3 for 1 h with a rate that was 25% lower than before the stress, the arginine kinase expressing strain continued to grow as rapidly as before. This effect is presumably caused by the physiological function of arginine kinase as a short term energy buffer in the form of phosphoarginine, but a pH-buffering effect cannot be excluded.  相似文献   

19.
Human interferon-gamma (hIFN-gamma) was expressed in Escherichia coli BL21(DE3) under the control of the T7 promoter. Glucose was used as the sole source of carbon and energy with simple exponential feeding rate in fed-batch process. Cell density of recombinant E. coli was reached to 100 g dry wt l(-1) under both constant (0.12 h(-1)) and variable (0.12-0.52 h(-1)) specific growth rates. In the variable specific growth rate fed-batch process, plasmid stability and specific yield of rhIFN-gamma were greater than constant specific growth rate fed-batch process. The final specific yield and overall productivity of rhIFN-gamma were 0.35 +/- 0.02 g rhIFN-gamma g(-1) dry cell wt and 0.9 +/- 0.05 g rhIFN-gamma l(-1) h(-1) in the variable specific growth rate fed-batch process, respectively.  相似文献   

20.
Fermenting Escherichia coli is able to produce formate and molecular hydrogen (H2) when grown on glucose. H2 formation is possessed by two hydrogenases, 3 (Hyd-3) and 4 (Hyd-4), those, in conjunction with formate dehydrogenase H (Fdh-H), constitute distinct membrane-associated formate hydrogenylases. At slightly alkaline pH (pH 7.5), the production of H2 was found to be dependent on Hyd-4 and the F0F1-adenosine triphosphate (ATPase), whereas external formate increased the activity of Hyd-3. In this study with cells grown without and with external formate H2 production dependent on pH was investigated. In both types of cells, H2 production was increased after lowering of pH. At acidic pH (pH 5.5), this production became insensitive either to N,N′-dicyclohexylcarbodiimide or to osmotic shock and it became largely dependent on Fdh-H and Hyd-3 but not Hyd-4 and the F0F1-ATPase. The results indicate that Hyd-3 has a major role in H2 production at acidic pH independently on the F0F1-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号