首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The energetics of hydration of natural DNA of different AT/GC content and model double-helical polyribonucleotides was studied. The results obtained by a new approach, which is based on calorimetric measurements of hydration-dehydration energy of nucleic acid-water systems at different relative humidities are presented. A correlation between the dehydration energy and the nucleotide composition of native DNA was found. The energetic characteristics of systems containing deoxynucleoside monophosphates and water clusters of different dimensions were obtained by the Monte Carlo method. The results of computer simulation correlate with the experimental calorimetric data.  相似文献   

2.
The optical stability of gossypol [1,1',6,6',7,7'-hexahydroxy-3,3'-dimetyl-5,5'-bis(1-methylethyl)-2,2'-binaphthalene-8,8'-dicarboxaldehyde], a natural product exhibiting profoundly enantiospecific antitumor and male antifertility action, was investigated by means of computational methods and thermal racemization experiments. The calculations on gossypol and several derivatives and model compounds were carried out using the MM2 force field; energies and geometries of minimum energy conformations, as well as structures along various inversion pathways, were calculated. According to the calculations, gossypol (the dialdehyde form) and its simple analogues are not thermally racemizable (energy barriers for rotational inversion above 50 kcal/mol). By contrast, the calculations suggest that the acetal tautomer of gossypol and its dehydration product (anhydrogossypol) are thermally racemizable, although the energy barriers are still relatively high (35–40 kcal/mol). Optically pure (+)-anhydrogossypol was prepared and characterized; its racemization became rapid only at high temperatures (180–200°C). When dehydration of gossypol was hindered (in aqueous solution), no racemization of gossypol was observed after prolonged heating at 90°C. © 1992 Wiley-Liss, Inc.  相似文献   

3.
脱水方法对棕榈种子萌发及膜脂过氧化的影响   总被引:1,自引:0,他引:1  
以棕榈种子为材料,比较了硅胶脱水和自然脱水方法下种子萌发特征和膜脂过氧化程度。结果表明:棕榈种子的初始含水量为33.1%,萌发率为83.3%;当硅胶脱水至含水量21.2%时萌发率为80.0%,而自然脱水至23.2%时萌发率仅为56.7%;当含水量降至10%左右时,硅胶脱水萌发率为27.7%,而自然脱水的萌发率为26.7%。在脱水过程中,2种脱水处理种子的浸出液电导率和丙二醛(MDA)含量都呈升高趋势,但自然脱水种子浸出液电导率升高的速率较硅胶脱水快,而MDA含量在硅胶脱水下增加较大。硅胶脱水处理种胚中脯氨酸含量及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)活性均较自然脱水高,但2种脱水处理种子整体均呈先增加再下降的趋势。研究发现,棕榈种子为中间型种子,其在脱水初期对自然脱水较敏感,而脱水后期脱水速率对其生活力影响较小;棕榈种子对硅胶脱水的脱水敏感较自然性脱水要低,硅胶脱水有利于改善棕榈种子的贮藏寿命。  相似文献   

4.
Neutron diffraction, thermogravimetric, and mass spectrographic measurements have been used to show that cytosine monohydrate loses its water of hydration at physiological temperatures (approximately equal to 37 degrees C) and converts to cytosine. The "activation energy" for the dehydration process has been determined from isothermal weight curves and is 27.1 +/- 0.6 kcal . mol-1. It is suggested that pyrimidine dehydration may be involved in structural changes in DNA.  相似文献   

5.
Regular superstructures of purified DNA in ethanolic solutions   总被引:11,自引:0,他引:11  
Aqueous solutions of purified DNA from bacteriophage T7 were subjected to various concentrations of ethanol and visualized by electron microscopy. Compact, linear, unbranched particles with uniform diameters were found which have three distinct lengths, 3.04±0.04 μm, 0.69±0.01 μm and 0.159±0.014μm, with increasing diameters. An analysis of the observations revealed supercoils of first, second and third order for the above lengths. DNA supercoiling may be the consequence of dehydration by ethanol and drying and, in native chromatin, of dehydration by histone.  相似文献   

6.
Xenopus laevis, otherwise known as the African clawed frog, undergoes natural dehydration of up to 30% of its total body water during the dry season in sub-Saharan Africa. To survive under these conditions, a variety of physiological and biochemical changes take place in X. laevis. We were interested in understanding the role that the calcineurin-NFAT pathway plays during dehydration stress response in the skeletal muscles of X. laevis. Immunoblotting was performed to characterize the protein levels of NFATc1-4, calcium signalling proteins, in addition to myogenic proteins (MyoD, MyoG, myomaker). In addition, DNA–protein interaction ELISAs were used to assess the binding of NFATs to their consensus binding sequence, and to identify the effect of urea on NFAT-binding. Our results showed that NFATc1 and c4 protein levels decreased during dehydration, and there were no changes in NFATc2, c3, and calcium signalling proteins. However, MyoG and myomaker both showed increases in protein levels during dehydration, thus indicating that the late myogenic program involving myoblast differentiation, but not satellite cell activation and myoblast proliferation, could be involved in preserving the skeletal muscle of X. laevis during dehydration. In addition, we observed that urea seems to reduce NFATc3-binding to DNA during control, but not during dehydration, possibly indicating that NFATc3 is protected from the denaturing effects of urea as it accumulates during dehydration. These findings expand upon our knowledge of adaptive responses to dehydration, and they identify specific protein targets that could be used to protect the skeletal muscle from damage during stress.  相似文献   

7.
8.
Lipoplexes, which are formed spontaneously between cationic liposomes and negatively charged nucleic acids, are commonly used for gene and oligonucleotide delivery in vitro and in vivo. Being assemblies, lipoplexes can be characterized by various physicochemical parameters, including size distribution, shape, physical state (lamellar, hexagonal type II and/or other phases), sign and magnitude of electrical surface potential, and level of hydration at the lipid-DNA interface. Only after all these variables will be characterized for lipoplexes with a broad spectrum of lipid compositions and DNA/cationic lipid (L(+)) mole (or charge) ratios can their relevance to transfection efficiency be understood. Of all these physicochemical parameters, hydration is the most neglected, and therefore the focus of this study. Cationic liposomes composed of DOTAP without and with helper lipids (DOPC, DOPE, or cholesterol) or of DC-Chol/DOPE were complexed with pDNA (S16 human growth hormone) at various DNA(-)/L(+) charge ratios (0.1-3.2). (DOTAP=N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride; DC-Chol=(3beta-[N-(N',N'-dimethylaminoethane)-carbamoyl]-cholester ol; DOPC=1, 2-dioleoyl-sn-glycero-3-phosphocholine; DOPE=1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine). The hydration levels of the different cationic liposomes and the DNA separately are compared with the hydration levels of the lipoplexes. Two independent approaches were applied to study hydration. First, we used a semi-quantitative approach of determining changes in the 'generalized polarization' (GP) of laurdan (6-dodecanoyl-2-dimethylaminonaphthalene). This method was recently used extensively and successfully to characterize changes of hydration at lipid-water interfaces. Laurdan excitation GP at 340 nm (GP(340)DOTAP. The GP(340) of lipoplexes of all lipid compositions (except those based on DC-Chol/DOPE) was higher than the GP(340) of the cationic liposomes alone and increased with increasing DNA(-)/L(+) charge ratio, reaching a plateau at a charge ratio of 1. 0, suggesting an increase in dehydration at the lipid-water interface with increasing DNA(-)/L(+) charge ratio. Confirmation was obtained from the second method, differential scanning calorimetry (DSC). DOTAP/DOPE lipoplexes with charge ratio 0.44 had 16.5% dehydration and with charge ratio 1.5, 46.4% dehydration. For DOTAP/Chol lipoplexes with these charge ratios, there was 17.9% and 49% dehydration, respectively. These data are in good agreement with the laurdan data described above. They suggest that the dehydration occurs during lipoplex formation and that this is a prerequisite for the intimate contact between cationic lipids and DNA.  相似文献   

9.
The mechanism of dehydration inactivation of Lactobacillus plantarum cells after vacuum-drying above saturated salt solutions was studied. The method used is based on the hypothesis that DNase diffuses into cells with damaged cell membranes/walls and hydrolyses the intracellular DNA. Intact, undamaged cells and cells inactivated by either dehydration or heat treatent were incubated in the presence of DNase. The release of DNA hydrolysis products into the incubation medium was measured. It was shown that dehydration inactivation of L. plantarum, but not thermal inactivation, was associated with clear evidence of membrane damage. The residual glucose-fermenting activity of the dehydrated cells related to the release of hydrolysed DNA in the medium, but there was no such relationship with heat-treated cells. Addition of sorbitol to cells before dehydration increased the residual glucose-fermenting activity after drying and this was associated with a reduced rate of DNA hydrolysis. It is concluded that cell wall and/or cell membrane damage is an important mechanism of dehydration inactivation, but that thermal inactivation (up to 60°C) occurs by a different mechanism.Correspondence to: K. van't Riet  相似文献   

10.
The effects of compression and pulverization on the dehydration kinetics and hardness of creatine monohydrate tablets were studied using a variety of kinetic equations and physical models. The dehydration behavior of unpulverized and pulverized tablets was investigated by using differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). The hardness of both unpulverized and pulverized monohydrate tablets was significantly decreased after dehydration. The relationship between the degree of dehydration and the tablet hardness of both unpulverized and pulverized monohydrate tablets formed a straight line. The results suggest that the reduction in tablet hardness is dependent on the dehydration of crystal water, and the values of the slopes indicate that the bonding energy of the unpulverized sample was stronger than that of the pulverized sample. The dehydration kinetics of the unpulverized and pulverized monohydrate tablets were evaluated by analyzing the fit of the isothermal DSC data using a variety of solid-state kinetic models. The dehydration of the unpulverized tablets at various levels of compression pressure followed the 3-dimensional growth of nuclei mechanism. In contrast, although the dehydration kinetics of pulverized monohydrate tablets compressed at 500 and 750 kg/cm2 followed the 3-dimensional diffusion mechanism, those compressed at 1000 kg/cm2 followed the 3-dimensional growth of nuclei mechanism. The PXRD analysis indicated that the diffraction intensity of the pulverized monohydrate powder was significantly lower than that of the unpulverized powder. The diffraction peaks of the (h00) planes and the micropore structure of the unpulverized monohydrate tablets were affected by pulverization and compression force, respectively. Published: October 26, 2005  相似文献   

11.
Larvae of the Antarctic midge, Belgica antarctica, routinely face periods of limited water availability in their natural environments on the Antarctic Peninsula. As a result, B. antarctica is one of the most dehydration-tolerant insects studied, surviving up to 70% loss of its body water. While previous studies have characterized the physiological effects of a single bout of dehydration, in nature larvae are likely to experience multiple bouts of dehydration throughout their lifetime. Thus, we examined the physiological consequences of repeated dehydration and compared results to larvae exposed to a single, prolonged period of dehydration. For the repeated dehydration experiment, larvae were exposed to 1-5 cycles of 24 h dehydration at 75% RH followed by 24 h rehydration. Each bout of dehydration resulted in 30-40% loss of body water, with a concomitant 2- to 3-fold increase in body fluid osmolality. While nearly 100% of larvae survived a single bout of dehydration, <65% of larvae survived five such cycles. Larvae subjected to multiple bouts of dehydration also experienced severe depletion of carbohydrate energy reserves; glycogen and trehalose content decreased with each successive cycle, with larvae losing 89% and 48% of their glycogen and trehalose, respectively, after five cycles of dehydration/rehydration. Larvae exposed to prolonged dehydration (99% RH for 10d) had 26% less water, 43% less glycogen, and 27% less lipid content than controls, but did not experience any mortality. Thus, both repeated and prolonged dehydration results in substantial energetic costs that are likely to negatively impact fitness.  相似文献   

12.
13.
Mummified human tissues are of great interest in forensics and biomolecular archaeology. The aim of this study was to analyse post mortem DNA alterations in soft tissues in order to improve our knowledge of the patterns of DNA degradation that occur during salt mummification. In this study, the lower limb of a female human donor was amputated within 24 h post mortem and mummified using a process designed to simulate the salt dehydration phase of natural or artificial mummification. Skin and skeletal muscle were sampled at multiple time points over a period of 322 days and subjected to genetic analysis. Patterns of genomic fragmentation, miscoding lesions, and overall DNA degradation in both nuclear and mitochondrial DNA was assessed by different methods: gel electrophoresis, multiplex comparative autosomal STR length amplification, cloning and sequence analysis, and PCR amplification of different fragment sizes using a damage sensitive recombinant polymerase. The study outcome reveals a very good level of DNA preservation in salt mummified tissues over the course of the experiment, with an overall slower rate of DNA fragmentation in skin compared to muscle.  相似文献   

14.
The thermal properties of two forms of the Drosophila melanogaster HMG-D protein, with and without its highly basic 26 residue C-terminal tail (D100 and D74) and the thermodynamics of their non-sequence-specific interaction with linear DNA duplexes were studied using scanning and titration microcalorimetry, spectropolarimetry, fluorescence anisotropy and FRET techniques at different temperatures and salt concentrations. It was shown that the C-terminal tail of D100 is unfolded at all temperatures, whilst the state of the globular part depends on temperature in a rather complex way, being completely folded only at temperatures close to 0 degrees C and unfolding with significant heat absorption at temperatures below those of the gross denaturational changes. The association constant and thus Gibbs energy of binding for D100 is much greater than for D74 but the enthalpies of their association are similar and are large and positive, i.e. DNA binding is a completely entropy-driven process. The positive entropy of association is due to release of counterions and dehydration upon forming the protein/DNA complex. Ionic strength variation showed that electrostatic interactions play an important but not exclusive role in the DNA binding of the globular part of this non-sequence-specific protein, whilst binding of the positively charged C-terminal tail of D100 is almost completely electrostatic in origin. This interaction with the negative charges of the DNA phosphate groups significantly enhances the DNA bending. An important feature of the non-sequence-specific association of these HMG boxes with DNA is that the binding enthalpy is significantly more positive than for the sequence-specific association of the HMG box from Sox-5, despite the fact that these proteins bend the DNA duplex to a similar extent. This difference shows that the enthalpy of dehydration of apolar groups at the HMG-D/DNA interface is not fully compensated by the energy of van der Waals interactions between these groups, i.e. the packing density at the interface must be lower than for the sequence-specific Sox-5 HMG box.  相似文献   

15.
R Nandi  S Chakraborty  M Maiti 《Biochemistry》1991,30(15):3715-3720
The dependence on base-pair composition and sequence specificity of the (aristololactam beta-D-glucoside)-DNA interaction was examined by spectrophotometric, spectrofluorometric, spectropolarimetric, thermal melting, thermodynamic, and viscometric studies. Binding of this alkaloid to various natural and synthetic DNAs was dependent upon the base composition and sequences of DNA. The binding parameters obtained from spectrophotometric analysis, according to an excluded-site model, indicated a relatively high affinity of the alkaloid binding to GC-rich DNA and alternating GC polymer. This affinity was further evidenced by the quenching of fluorescence intensity, decrease in quantum yield, and perturbations in circular dichroic spectrum. The alkaloid stabilized all DNAs against thermal denaturation. The temperature dependence of the binding constants was used to estimate the thermodynamic parameters involved in the complex formation of the alkaloid with various DNAs. The negative enthalpy and entropy change increased with increasing GC content of DNA and also compensated one another to produce a relatively small Gibbs free energy change. Viscometric studies showed that in the strong binding region the increase of contour length of DNA depended strongly on its base composition and sequence of bases, being larger for GC-rich DNA and alternating GC polymer. On the basis of these observations, it is concluded that the alkaloid binds to DNA by a mechanism of intercalation and exhibits considerable specificity toward alternating GC polymer.  相似文献   

16.
The energetics of the Sox-5 HMG box interaction with DNA duplexes, containing the recognition sequence AACAAT, were studied by fluorescence spectroscopy, isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). Fluorescence titration showed that the association constant of this HMG box with the duplexes is of the order 4x10(7) M(-1), increasing somewhat with temperature rise, i.e. the Gibbs energy is -40 kJ mol(-1) at 5 degrees C, decreasing to -48 kJ mol(-1) at 32 degrees C. ITC measurements of the enthalpy of association over this temperature range showed an endothermic effect below 17 degrees C and an exothermic effect above, suggesting a heat capacity change on binding of about -4 kJ K(-1) mol(-1), a value twice larger than expected from structural considerations. A straightforward interpretation of ITC data in heat capacity terms assumes, however, that the heat capacities of all participants in the association reaction do not change over the considered temperature range. Our previous studies showed that over the temperature range of the ITC experiments the HMG box of Sox-5 starts to unfold, absorbing heat and the heat capacities of the DNA duplexes also increase significantly. These heat capacity effects differ from that of the DNA/Sox-5 complex. Correcting the ITC measured binding enthalpies for the heat capacity changes of the components and complex yielded the net enthalpies which exhibit a temperature dependence of about -2 kJ K(-1) mol(-1), in good agreement with that predicted on the basis of dehydration of the protein-DNA interface. Using the derived heat capacity change and the enthalpy and Gibbs energy of association measured at 5 degrees C, the net enthalpy and entropy of association of the fully folded HMG box with the target DNA duplexes was determined over a broad temperature range. These functions were compared with those for other known cases of sequence specific DNA/protein association. It appears that the enthalpy and entropy of association of minor groove binding proteins are more positive than for proteins binding in the major groove. The observed thermodynamic characteristics of protein binding to the A+T-rich minor groove of DNA might result from dehydration of both polar and non-polar groups at the interface and release of counterions. The expected entropy of dehydration was calculated and found to be too large to be compensated by the negative entropy of reduction of translational/rotational freedom. This implies that DNA/HMG box association proceeds with significant decrease of conformational entropy, i.e. reduction in conformational mobility.  相似文献   

17.
Lung carbonic anhydrase (CA) participates directly in plasma CO2-HCO3(-)-H+ reactions. To characterize pulmonary CA activity in situ, CO2 excretion and capillary pH equilibration were examined in isolated saline-perfused rat lungs. Isolated lungs were perfused at 25, 30, and 37 degrees C with solutions containing various concentrations of HCO3- and a CA inhibitor, acetazolamide (ACTZ). Total CO2 excretion was partitioned into those fractions attributable to dissolved CO2, uncatalyzed HCO3- dehydration, and catalyzed HCO3- dehydration. Approximately 60% of the total CO2 excretion at each temperature was attributable to CA-catalyzed HCO3- dehydration. Inhibition of pulmonary CA diminished CO2 excretion and produced significant postcapillary perfusate pH disequilibria, the magnitude and time course of which were dependent on temperature and the extent of CA inhibition. The half time for pH equilibration increased from approximately 5 s at 37 degrees C to 14 s at 25 degrees C. For the HCO3- dehydration reaction, pulmonary CA in situ displayed an apparent inhibition constant for ACTZ of 0.9-2.2 microM, a Michaelis-Menten constant of 90 mM, a maximal reaction velocity of 9 mM/s, and an apparent activation energy of 3.0 kcal/mol.  相似文献   

18.
Ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO), an enzyme in the Calvin-Benson-Bassham cycle of photosynthesis, catalyzes the first step of CO2 fixation in plants, algae, and photosynthetic bacteria. Despite of the important function in the global carbon cycle, RuBisCO suffers from a slow reaction rate and a competing reaction with O2 which draw attentions to improve the enzyme efficiency. In this study, a RuBisCO dimer from Rhodospirillum rubrum was assembled on a DNA scaffold using a dimeric DNA binding protein as an adaptor. The enzyme assembly was characterized by atomic force microscopy and RuBisCO assembled on the DNA scaffold showed avid enzymatic activity with retaining its parent carboxylase function. To mimic the environment of the natural microcompartment in cyanobacterial carboxysome that encapsulate the second enzyme carbonic anhydrase (CA) with RuBisCO, RuBisCO was next co-assembled with CA on the DNA scaffold. Although the natural carboxysome assembly is believed to enhance the RuBisCO activity, the co-assembly of RuBisCO and CA reduced the RuBisCO activity, suggesting that the preferential CO2 dehydration by CA reduced the RuBisCO reaction rate. In line with the recent study, our results suggest that the proximity in the interenzyme distance of RuBisCO and CA is not the crucial determinant for the enhanced RuBisCO activity in carboxysome. The assembly of RuBisCO and CA on DNA scaffold provides a platform for further study on the spatial control of RuBisCO and associating enzymes.  相似文献   

19.
DELTOUR  R.; JACQMARD  A. 《Annals of botany》1974,38(3):529-534
Mitotic index, percent nuclei in DNA synthesis and the relativeDNA content per nucleus were determined from cells of the Zeamays radicle at various times after the beginning of germination.Nuclear DNA synthesis was initiated after 45 h and mitosis wasfirst observed after 74 h from sowing. Most of the dormant nucleiwere in the pre-synthetic or G1 phase of the mitotic cycle.By 72 h most cells were in S and 77 h after the beginning ofgermination, the cells of the primary root were observed inall phases of the mitotic cycle. Dehydration of karyopses after45–74 h of imbibition progressively reduced the percentof germination to zero upon dehydration and subsequent replantingdemonstrating that drought sensitivity was related to the onsetof nuclear DNA synthesis and genome duplication.  相似文献   

20.
The enthalpy effect of hydrate envelope deformation was first taken into consideration for estimating the influence of aqueous medium on the stability of RNA duplexes. In addition two rarely used parameters (macroscopic value of dielectric water permeability and entropy effect of dehydration) were employed. According to the energy model described the contribution of the free energy of dehydration to the RNA duplexes stability is significant even in comparison with that of the interstrand stacking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号