首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subsurface cytoskeletal structure can be visualized in either fixed or living mammalian cells in aqueous medium with approximately 50 nm resolution using the Scanning Force Microscope (SFM). In living cells, changes in cell topography, or subsurface cytoskeleton caused by the introduction of drugs (colchicine) or cross-linking of surface receptors (by antibodies against IgE bound to the IgE receptor) can be followed in time. Contrast in SFM images of cell surfaces result from both topographic features of the cell and from variations in cell surface "stiffness". The SFM is therefore capable of measuring local compliance and stress in living cells, and so should make it possible to map the cytoskeletal forces used to generate cell motions and changes in cell shape.  相似文献   

2.
Morphological and functional changes of chondrocytes are typical in OA cartilage. In this work, we have described noteworthy changes in intermediate filaments cytoskeleton evidenced by transmission electron microscopy. Alterations in the distribution as well as in the content of vimentin, actin, and tubulin have been described by specific fluorescence labelling of each cytoskeletal component and confocal analysis. Normal vs OA cartilages showed a reduction in the percentage of labelled chondrocytes of 37.1% for vimentin, 4.7% for actin, and 20.1% for tubulin. Statistical analysis of fluorescence intensities (mean % +/- SEM) between normal and OA rat cartilage revealed a highly significant difference in vimentin, a significant difference in tubulin, and a non-significant difference in actin. Moreover, by western blot, altered electrophoretic patterns were observed mainly for vimentin and tubulin in OA cartilage in comparison with normal cartilage. These results allow us to suggest that substantial changes in vimentin and tubulin cytoskeleton of chondrocytes might be involved in OA pathogenesis.  相似文献   

3.
Many emerging cell-based therapies are based on pluripotent stem cells, though complete understanding of the properties of these cells is lacking. In these cells, much is still unknown about the cytoskeletal network, which governs the mechanoresponse. The objective of this study was to determine the cytoskeletal state in undifferentiated pluripotent stem cells and remodeling with differentiation. Mouse embryonic stem cells (ESCs) and reprogrammed induced pluripotent stem cells (iPSCs), as well as the original un-reprogrammed embryonic fibroblasts (MEFs), were evaluated for expression of cytoskeletal markers. We found that pluripotent stem cells overall have a less developed cytoskeleton compared to fibroblasts. Gene and protein expression of smooth muscle cell actin, vimentin, lamin A, and nestin were markedly lower for ESCs than MEFs. Whereas, iPSC samples were heterogeneous with most cells expressing patterns of cytoskeletal proteins similar to ESCs with a small subpopulation similar to MEFs. This indicates that dedifferentiation during reprogramming is associated with cytoskeletal remodeling to a less developed state. In differentiation studies, it was found that shear stress-mediated differentiation resulted in an increase in expression of cytoskeletal intermediate filaments in ESCs, but not in iPSC samples. In the embryoid body model of spontaneous differentiation of pluripotent stem cells, however, both ESCs and iPSCs had similar gene expression for cytoskeletal proteins during early differentiation. With further differentiation, however, gene levels were significantly higher for iPSCs compared to ESCs. These results indicate that reprogrammed iPSCs more readily reacquire cytoskeletal proteins compared to the ESCs that need to form the network de novo. The strategic selection of the parental phenotype is thus critical not only in the context of reprogramming but also the ultimate functionality of the iPSC-differentiated cell population. Overall, this increased characterization of the cytoskeleton in pluripotent stem cells will allow for the better understanding and design of stem cell-based therapies.  相似文献   

4.
The human bladder carcinoma cell lines RT4 and T24 and the human breast adenocarcinoma cell line MCF-7 were found to be negative for vimentin when studied by means of immunofluorescence and immunoblotting. Northern blot analysis revealed that these cells lacked detectable levels of vimentin mRNA with the exception of T24, which contains trace amounts of vimentin mRNA compared to the RNA level in vimentin-containing HeLa cells. CAT assays performed on these cells showed that a hamster vimentin promoter is inactive in RT4 and MCF-7 cells. In the vimentin-lacking cells, the binding of polyribosomes, specific mRNAs, and translation factor eIF-2α to the cytoskeletal fraction was examined. Our results indicate that the presence of a vimentin network is not crucial for the association of the translation machinery with the cytoskeleton. Furthermore, in these vimentin-negative cell lines the immunofluorescence staining pattern of eIF-2α shows a fibro-granular structure that has no resemblance to the cytokeratin or actin cytoskeleton present in these cells.  相似文献   

5.
In eucaryotic cells, actin filaments are abundant components in the cytoskeleton where they form a complex three dimensional (3D) structural network that provides the cell with its shape and mechanical properties. However, understanding the structural and mechanical properties of actin filaments composing the cell cytoskeleton is often hampered by the inability to faithfully reconstruct the three-dimensional geometric relationships. This paper presents a vision-based reconstruction approach that automatically reconstitutes the three-dimensional structures of cytoskeletal polymers from stereo image pairs taken at the different tilt angles. The approach finds corresponding points between two images and recovers the depth information about the structures. The computational process consists of three major procedures: feature representation, stereo matching, and disparity refinement, implemented in a multi-resolution manner based on a coarse-to-fine strategy. The reconstruction depicts the three-dimensional structure of cytoskeletal polymers and their geometric relationships. New and useful information becomes available and allows quantitative analysis of the structure. Measurement of the cytoskeleton geometrical properties and the filament concentration in a defined volume are obtained by direct calculation.  相似文献   

6.
The human bladder carcinoma cell lines RT4 and T24 and the human breast adenocarcinoma cell line MCF-7 were found to be negative for vimentin when studied by means of immunofluorescence and immunoblotting. Northern blot analysis revealed that these cells lacked detectable levels of vimentin mRNA with the exception of T24, which contains trace amounts of vimentin mRNA compared to the RNA level in vimentin-containing HeLa cells. CAT assays performed on these cells showed that a hamster vimentin promoter is inactive in RT4 and MCF-7 cells. In the vimentin-lacking cells, the binding of polyribosomes, specific mRNAs, and translation factor eIF-2 alpha to the cytoskeletal fraction was examined. Our results indicate that the presence of a vimentin network is not crucial for the association of the translation machinery with the cytoskeleton. Furthermore, in these vimentin-negative cell lines the immunofluorescence staining pattern of eIF-2 alpha shows a fibro-granular structure that has no resemblance to the cytokeratin or actin cytoskeleton present in these cells.  相似文献   

7.
A 140 000 D glycoprotein (140 kD gp), labelled radioactively with surface-specific techniques, remained as the major cell surface glycoprotein in the detergent-resistant cytoskeletal preparations of cultured human fibroblasts. The 140 kD gp was present also in trypsinized cells and was not affected by treatment of the cells either with collagenase, chymotrypsin or thrombin. In density gradient fractionation of whole cells the 140 kD gp was recovered in the plasma membrane fraction together with small amounts of cytoskeletal components. In fractionation of cytoskeletal preparations, on the other hand, the 140 kD gp could not be dissociated from cytoskeletal proteins and together with vimentin it formed the major component of the oligomeric polypeptide complex generated by treating the surface-labelled cytoskeletal preparations with bifunctional cross-Linking reagent, dithiobis succinimidyl propionate (DTPS). Moreover, the 140 kD gp seemed to copurify with vimentin upon reconstitution of intermediate filaments from urea-solubilized cytoskeletal preparations. On the other hand, low ionic-induced degradation of vimentin led to a decrease in the amount of the detergent-resistant 140 kD gp on the cell surface. In electron microscopy, a close apposition between bilayer-like plasma membrane remnants of the adherent cytoskeletons and cytoskeletal elements could be seen. The results indicate that the 140 kD gp is a plasma membrane glycoprotein which closely interacts with the detergent-resistant cytoskeleton of cultured human fibroblast. Possible mechanisms of the association are discussed.  相似文献   

8.
The cytoskeleton is the physical and biochemical interface for a large variety of cellular processes. Its complex regulation machinery is involved upstream and downstream in various signaling pathways. The cytoskeleton determines the mechanical properties of a cell. Thus, cell elasticity could serve as a parameter reflecting the behavior of the system rather than reflecting the specific properties of isolated components. In this study, we used atomic force microscopy to perform real-time monitoring of cell elasticity unveiling cytoskeletal dynamics of living bronchial epithelial cells. In resting cells, we found a periodic activity of the cytoskeleton. Amplitude and frequency of this spontaneous oscillation were strongly affected by intracellular calcium. Experiments reveal that basal cell elasticity and superimposed elasticity oscillations are caused by the collective action of myosin motor proteins. We characterized the cell as a mechanically multilayered structure, and followed cytoskeletal dynamics in the different layers with high time resolution. In conclusion, the collective activities of the myosin motor proteins define overall mechanical cell dynamics, reflecting specific changes of the chemical and mechanical environment.  相似文献   

9.
Cytoskeletons with three-dimensional architecture were isolated from cultured normal rat kidney cells. The preparation procedure consisted of Triton-demembranization of suspended cells followed by differential and sucrose density gradient centrifugation. By using higher (0.5%) and lower (0.1%) Triton concentrations for demembranization, two kinds of isolated cytoskeletons (CSK), called H-CSK and L-CSK, respectively, were prepared. H-CSK and L-CSK displayed unique morphology and protein composition. Three classes of cytoskeletal filaments, microfilaments, intermediate filaments, and microtubules were shown to be major components in the electron microscopic images of the H-CSK. Stereoscopic electron microscopy of the H-CSK, dried by the critical point method, revealed that the cytoskeletal filaments are arranged in three-dimensional configurations even after isolation in vitro. Two-dimensional gel electrophoresis demonstrated that the H-CSK was composed mainly of actin, tubulin, and vimentin, reflecting its basic architecture. Electron microscopic images of L-CSK were more intricate than images of the H-CSK and showed, in addition to the filament types discussed above, anastomosing networks of short filamentous structures. These short filaments, with diameters of 3-8 nm and lengths of 30-150 nm, seemed to cross-link other elements of the cytoskeleton. The morphology of these short filaments resembles that of microtrabeculae observed in situ. Two-dimensional gels of the L-CSK showed over 100 protein spots when the gels were stained by the silver method. Subsequent treatment of the L-CSK with 0.5% Triton removed the microtrabeculae-like materials leaving as a residue the basic cytoskeleton similar to the H-CSK. Our observations indicate that microtrabeculae are composed of heterogenous proteins associated, in some instances, with a core structure of actin.  相似文献   

10.
Intermediate filaments in smooth muscle   总被引:1,自引:0,他引:1  
The intermediate filament (IF) network is one of the three cytoskeletal systems in smooth muscle. The type III IF proteins vimentin and desmin are major constituents of the network in smooth muscle cells and tissues. Lack of vimentin or desmin impairs contractile ability of various smooth muscle preparations, implying their important role for smooth muscle force development. The IF framework has long been viewed as a fixed cytostructure that solely provides mechanical integrity for the cell. However, recent studies suggest that the IF cytoskeleton is dynamic in mammalian cells in response to various external stimulation. In this review, the structure and biological properties of IF proteins in smooth muscle are summarized. The role of IF proteins in the modulation of smooth muscle force development and redistribution/translocation of signaling partners (such as p130 Crk-associated substrate, CAS) is depicted. This review also summarizes our latest understanding on how the IF network may be regulated in smooth muscle. cytoskeleton; force development; vimentin; desmin  相似文献   

11.
The Epstein-Barr virus (EBV) latent infection membrane protein (LMP) is likely to be an important mediator of EBV-induced cell proliferation, since it is one of the few proteins encoded by the virus in latent infection and since production of this protein in Rat-1 cells results in their conversion to a fully transformed phenotype. LMP was previously noted to localize to patches at the cell periphery. In this paper we examine the basis of LMP patching in EBV-infected, transformed lymphocytes. Our data indicate that LMP is associated with the cytoskeletal protein vimentin. Although LMP is fully soluble in isotonic Triton X-100 buffer, only 50% of it is extracted from cells in this solution. The rest remains bound to the cytoskeleton. LMP undergoes phosphorylation, and phosphorylated LMP is preferentially associated with the cytoskeleton. As judged by both immunofluorescence and immunoelectron microscopy, the vimentin network in EBV-transformed lymphocytes or EBV-infected Burkitt tumor lymphocytes is abnormal. Vimentin and LMP often colocalize in a single patch near the plasma membrane. In response to Colcemid treatment of EBV-infected cells, vimentin reorganizes into perinuclear rings, as it does in uninfected cells. LMP is associated with these perinuclear rings. Vimentin (or a vimentin-associated protein) may be a transducer of an LMP transmembrane effect in lymphoproliferation.  相似文献   

12.
One characteristic feature of senescent fibroblasts is flat, enlarged, and heterogeneous cell shapes. The present study was aimed to understand the structural basis of the senescent cell morphology. SDS-gel electrophoresis as well as western blotting demonstrated that there occurred a prominent protein band about 57 kDa in the senescent cells as compared with normal young or immortalized cells growing rapidly, and the protein was identified with a cytoskeletal protein, vimentin. In fact, senescent fibroblasts contained approximately threefold more vimentin protein, and fourfold more vimentin mRNA than young embryonic fibroblasts. In the senescent cells, vimentin cytoskeleton occurred as densely bundled filaments in parallel with the long axis of cell bodies, whereas in young or actively growing cells it showed short and thin vimentin filaments or fur-like irregular networks. It was further demonstrated that senescent cell shapes could be induced when a vimentin expression construct was transfected in young fibroblasts. These results suggest that senescent fibroblasts overproduce vimentin protein, and the overproduced vimentin filaments bring about the senescent cell morphology.  相似文献   

13.
There is increasing evidence that the different polymers that constitute the cytoskeleton are interconnected to form a three-dimensional network. The macromolecular interaction patterns that stabilize this network and its intrinsic dynamics are the basis for numerous cellular processes. Within this context,in vitrostudies have pointed to the existence of specific associations between microtubules, microfilaments, and intermediate filaments. It has also been postulated that microtubule-associated proteins (MAPs) are directly involved in mediating these interactions. The interactions of tau with vimentin filaments, and its relationships with other filaments of the cytoskeletal network, were analyzed in SW-13 adenocarcinoma cells, through an integrated approach that included biochemical and immunological studies. This cell line has the advantage of presenting a wild-type clone (vim+) and a mutant clone (vim−) which is deficient in vimentin expression. We analyzed the cellular roles of tau, focusing on its interactions with vimentin filaments, within the context of its functional aspects in the organization of the cytoskeletal network. Cosedimentation experiments of microtubular protein with vimentin in cell extracts enriched in intermediate filaments, combined with studies on the direct interaction of tau with nitrocellulose-bound vimentin and analysis of tau binding to vimentin immobilized in single-strand DNA affinity columns, indicate that tau interacts with the vimentin network. These studies were confirmed by a quantitative analysis of the immunofluorescence patterns of cytoskeleton-associated tubulin, tau, and vimentin using flow cytometry. In this regard, a decrease in the levels of tau associated to the cytoskeletal network in the vim− cell mutant compared with the wild-type clones was observed. However, immunofluorescence data on SW-13 cells suggest that the absence of a structured network of vimentin in the mutant vim− cells does not affect the cytoplasmic organization formed by microtubules and actin filaments, when compared with the wild-type vim+ cells. These studies suggest that tau associates with vimentin filaments and that these interactions may play a structural role in cells containing these filaments.  相似文献   

14.
The small GTPases Rho, Rac, and Cdc42 regulate the actin cytoskeleton in all eukaryotic cells. In this study we have evaluated the effect of cholesterol oxides (7-ketocholesterol and 25-hydroxycholesterol) on cell migration, cell adhesion, and cytoskeletal organisation of lens epithelial cells (LEC). Effects of cholesterol oxides on cytoskeleton were evaluated by immunofluorescence confocal microscopy. The 7-ketocholesterol induced cell arborisation, with bundling of vimentin and tubulin in the cell processes and formation of filopodia and stress fibres. Cells treated with 25-hydroxycholesterol showed a collapse of vimentin filaments towards the nucleus and formation of lamellipodia. In addition, cells treated with 7-ketocholesterol or 25-hydroxycholesterol showed decreased migration. The effects of cholesterol oxides on cytoskeletal proteins involve the activation of the small GTPases Rho, Rac, and Cdc42. Indeed, formation of both filopodia and stress fibres induced by 7-ketocholesterol is inhibited by overexpressing dominant negatives forms of Cdc42 and RhoA, respectively. Similarly, the collapse of vimentin intermediate filament network and the formation of lamellipodia, induced by 25-hydroxycholesterol, is inhibited by overexpressing dominant negatives forms of Rac1. The effects of cholesterol oxides described in this study for LEC are also observed for at least two other cell lines (H36CE and U373), suggesting that this may represent a general mechanism whereby cholesterol oxides induces cytoskeletal disorganisation.  相似文献   

15.
The integration of the vimentin intermediate filament (IF) cytoskeleton and cellular organelles in vivo is an incompletely understood process, and the identities of proteins participating in such events are largely unknown. Here, we show that the Golgi complex interacts with the vimentin IF cytoskeleton, and that the Golgi protein formiminotransferase cyclodeaminase (FTCD) participates in this interaction. We show that the peripherally associated Golgi protein FTCD binds directly to vimentin subunits and to polymerized vimentin filaments in vivo and in vitro. Expression of FTCD in cultured cells results in the formation of extensive FTCD-containing fibers originating from the Golgi region, and is paralleled by a dramatic rearrangements of the vimentin IF cytoskeleton in a coordinate process in which vimentin filaments and FTCD integrate into chimeric fibers. Formation of the FTCD fibers is obligatorily coupled to vimentin assembly and does not occur in vim(-/-) cells. The FTCD-mediated regulation of vimentin IF is not a secondary effect of changes in the microtubule or the actin cytoskeletons, since those cytoskeletal systems appear unaffected by FTCD expression. The assembly of the FTCD/vimentin fibers causes a coordinate change in the structure of the Golgi complex and results in Golgi fragmentation into individual elements that are tethered to the FTCD/vimentin fibers. The observed interaction of Golgi elements with vimentin filaments and the ability of FTCD to specifically interacts with both Golgi membrane and vimentin filaments and promote their association suggest that FTCD might be a candidate protein integrating the Golgi compartment with the IF cytoskeleton.  相似文献   

16.
Toxin B, an exotoxin produced by Clostridium difficile, induces the rounding-up and arborization of cultured mammalian cells, a typical effect which resembles that provoked by cytochalasins. In this study, the effect of toxin B was examined on astroglial cells grown in primary culture. A specific antiserum to toxin B was used to investigate its mechanisms of action. We found that the toxin exerts its effects on cell morphology after its incorporation into cells. The internalization of toxin B requires the presence of calcium ions in the extracellular medium. Replacement of NaCl with sucrose or with potassium glutamate prevents the internalization of the toxin. The direct introduction of calcium ions into cells by the calcium ionophore A23187 stimulates toxin-induced morphological changes. In contrast, toxin-induced morphological transformations were prevented in cells treated with tumor-promoting phorbol. esters or with dibutyryl-cAMP, although such treatment did not abolish the internalization of the toxin. As in the other cell types, the earliest effect of toxin B on astrocyte cytoskeleton is the disruption of actin filaments, without no visible alteration of intermediate filament nor microtubule networks. As astrocytes with toxin-induced stellate morphology survive toxin treatment, the progression of cell morphology and cytoskeleton organization were followed for several weeks. Twenty-six days after exposure to toxin B, stellate astrocytes have processes which were markedly longer and much more branched than those of cells freshly exposed to toxin. At that time, cells are still devoid of F-actin as assessed with rhodamine-conjugated phalloidin and only 70% contain vimentin while all astrocytes present in control cultures express vimentin. Some flat epithelioid astrocytes with prominent bundles of microfilaments reappear during the second week after toxin treatment. Our results show that Clostridium difficile toxin B is internalized into brain astrocytes in culture where it acts by modifying cytoskeletal elements. Its cytopathic effects are reversible. Although actin-related components of the cytoskeleton are the major target of toxin B, other cytoskeletal elements also seem to be affected.  相似文献   

17.
The cytoskeleton of senescent cells was systematically studied using senescent and young fibroblasts. In the cell senescence, skin fibroblasts extraordinarily produced vimentin in contrast to actin and tubulin, which were down-regulated. Among the focal adhesion proteins, paxillin and c-Src decreased also. Senescent cells developed a long and dense vimentin network, long and thin actin fibers, and numerous small focal contact sites, which contrasted with young cells with short and thick actin stress fibers and prominently large focal adhesions. Noticeably, senescent fibroblasts markedly produced p53 molecules and anchored them to vimentin-cytoskeleton in the cytoplasm. The vimentin-anchored p53 was detected with antibody PAb240 that specifically recognizes a conformation variant of p53. A GFP-tagged wild type p53 cDNA was expressed by transfection and shown also to be retained in the cytoplasm in senescent cells, suggesting that p53 is structurally modified to be recognized by PAb240 and anchored to vimentin filaments. We discuss the correlation of the marked alteration of cytoskeleton and senescent cells diminished proliferation and migration, as well as the significance of cytoskeletal anchorage of tumor suppressor p53.  相似文献   

18.
The contribution of the intermediate filament (IF) network to the mechanical response of cells has so far received little attention, possibly because the assembly and regulation of IFs are not as well understood as that of the actin cytoskeleton or of microtubules. The mechanical role of IFs has been mostly inferred from measurements performed on individual filaments or gels in vitro. In this study we employ atomic force microscopy (AFM) to examine the contribution of vimentin IFs to the nanomechanical properties of living cells under native conditions. To specifically target and modulate the vimentin network, Rat-2 fibroblasts were transfected with GFP-desmin variants. Cells expressing desmin variants were identified by the fluorescence microscopy extension of the AFM instrument. This allowed us to directly compare the nanomechanical response of transfected and untransfected cells at high spatial resolution by means of AFM. Depending on the variant desmin, transfectants were either softer or stiffer than untransfected fibroblasts. Expression of the non-filament forming GFP-DesL345P mutant led to a collapse of the endogenous vimentin network in the perinuclear region that was accompanied by localized stiffening. Correlative confocal microscopy indicates that the expression of desmin variants specifically targets the endogenous vimentin IF network without major rearrangements of other cytoskeletal components. By measuring functional changes caused by IF rearrangements in intact cells, we show that IFs play a crucial role in mechanical behavior not only at large deformations but also in the nanomechanical response of individual cells.  相似文献   

19.
A recombinant measles virus which expresses enhanced green fluorescent protein (MVeGFP) has been used to infect two astrocytoma cell lines (GCCM and U-251) to study the effect of virus infection on the cytoskeleton. Indirect immunocytochemistry was used to demonstrate the cellular localization of the cytoskeletal components. Enhanced green fluorescent protein autofluorescence was used to identify measles virus-infected cells. No alteration of the actin, tubulin, or vimentin components of the cytoskeleton was observed in either cell type, whereas a disruption of the glial-fibrillary-acidic protein filament (GFAP) network was noted in MVeGFP-infected U-251 cells. The relative amounts of GFAP present in infected and uninfected U-251 cells were quantified by image analysis of data sets obtained by confocal microscopy by using vimentin, another intermediate filament on which MVeGFP has no effect, as a control.  相似文献   

20.
The suitability of proteome-based strategies for the targeting of tumor-associated markers along with further analysis regarding their clinical significance were investigated in human renal cell carcinoma (RCC). The immunogenic protein expression profile of normal kidney and RCC cell lines was studied by proteome analysis combined with immunoblotting using sera from healthy donors and RCC patients, also termed PROTEOMEX. Employing this approach, a series of proteins reactive with either RCC patient sera and/or reactive with control sera were identified by microanalysis of tryptic peptides. Some of these candidate antigens represent members of the cytoskeletal family, such as cytokeratins, in particular cytokeratin 8, cytoskeletal tropomyosin, F-actin capping protein, gamma-actin, stathmin, tubulin-alpha, tubulin-beta and vimentin. The expression pattern and clinical significance of three of these antigens, namely cytokeratin 8, stathmin and vimentin, were further analyzed in a large series of surgically removed RCC lesions of distinct subtypes. A heterogeneous expression pattern of cytokeratin 8, stathmin and vimentin was demonstrated in the different RCC subtypes. All epithelial cells of the autologous normal kidney showed a strong cytokeratin 8 staining pattern, whereas they totally lack vimentin expression. Stathmin was expressed in 10% of tubule cells. In conclusion, PROTEOMEX could be employed for the identification of tumor-associated antigens of the cytoskeleton which are differentially expressed in RCC of distinct subtypes as well as in normal renal epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号