首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel, highly sensitive superoxide dismutase biosensor for the direct and simultaneous determination of superoxide radicals was developed by immobilization of superoxide dismutase within carboxymethylcellulose-gelatin on a Pt electrode surface. The parameters affecting the performance of the biosensor were investigated. The response of the CMC-G-SOD biosensor was proportional to O (2) (·-) concentration and the detection limit was 1.25 × 10(-3) mM with a correlation coefficient of 0.9994. The developed biosensor exhibited high analytical performance with wider linear range, high sensitivity and low response time. The biosensor retained 89.8% of its sensitivity after use for 80 days. The support system enhanced the immobilization of superoxide dismutase and promoted the electron transfer of superoxide dismutase minimizing its fouling effect. The biosensor was quite effective not only in detecting O (2) (·-) , but also in determining the antioxidant properties of acetylsalicylic acid-based drugs and the anti-radical activity of healthy and cancerous human brain tissues.  相似文献   

2.
A highly stable and sensitive amperometric alcohol biosensor was developed by immobilizing alcohol oxidase (AOX) through Polyamidoamine (PAMAM) dendrimers on a cysteamine‐modified gold electrode surface. Ethanol determination is based on the consumption of dissolved oxygen content due to the enzymatic reaction. The decrease in oxygen level was monitored at ?0.7 V vs. Ag/AgCl and correlated with ethanol concentration. Optimization of variables affecting the system was performed. The optimized ethanol biosensor showed a wide linearity from 0.025 to 1.0 mM with 100 s response time and detection limit of (LOD) 0.016 mM. In the characterization studies, besides linearity some parameters such as operational and storage stability, reproducibility, repeatability, and substrate specificity were studied in detail. Stability studies showed a good preservation of the bioanalytical properties of the sensor, 67% of its initial sensitivity was kept after 1 month storage at 4°C. The analytical characteristics of the system were also evaluated for alcohol determination in flow injection analysis (FIA) mode. Finally, proposed biosensor was applied for ethanol analysis in various alcoholic beverage as well as offline monitoring of alcohol production through the yeast cultivation. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

3.
The aerobic acidophilic bacterium Acidithiobacillus ferrooxidans oxidizes Fe(2+) and S(2)O(3)(2-) ions by consuming oxygen. An amperometric biosensor was designed including an oxygen probe as transducer and a recognition element immobilized by a suitable home-made membrane. This biosensor was used for the indirect amperometric determination of Cr(2)O(7)(2-) ions owing to methods based on a mediator (Fe(2+)) or titration. Using the mediator, the biosensor response versus Cr(2)O(7)(2-) was linear up to 0.4 mmol L(-1), with a response time of, respectively, 51 s (2 x 10(-5) mol L(-1) Cr(2)O(7)(2-)) and 61 s (6 x 10(-5) mol L(-1) Cr(2)O(7)(2-)). The method sensitivity was 816 microA L mol(-1). Response time and measurement sensitivity depended on membrane material and technique for biomass immobilization. For example, their values were 90 s-200 microA L mol(-1) when using a glass-felt membrane and 540 s-4.95 microA L mol(-1) with a carbon felt one to determine a concentration of 2 x 10(-5) mol L(-1) Cr(2)O(7)(2-). For the titration method, the biosensor is used to determine the equivalence point. The relative error of quantitative analysis was lower than 5%.  相似文献   

4.
An amperometric l-lactate biosensor was fabricated by confining lactate oxidase in a Prussian Blue-modified electrode with a Nafion membrane. The detector was assembled in a flow injection apparatus and operated at -0.1 V. Conditions for optimal electrode response were determined by investigating the influence of the amount of immobilized enzyme, the sample volume, and the flow rate. At the established operational conditions, the biosensor exhibited negligible response from interfering species usually present in biological fluids. The stability of the biosensor was also investigated, and its sensitivity was maintained unchanged at certain experimental conditions. l-Lactate was determined in blood samples, and the influence of physical exercise on the results was clearly evidenced, demonstrating that the proposed amperometric detector is suitable for monitoring changes in the l-lactate levels in biological fluids.  相似文献   

5.
A new biosensing flow injection method for the determination of alpha-amylase activity has been introduced. The method is based on the analysis of maltose produced during the hydrolysis of starch in the presence of alpha-amylase. Maltose determination in the flow system was allowed by the application of peroxide electrode equipped with an enzyme membrane. The membrane was obtained by immobilisation of glucose oxidase, alpha-glucosidase and optionally mutarotase on a cellophane, co-crosslinked by gelatin-glutaraldehyde together with bovine serum albumine. alpha-Glucosidase hydrolyses maltose to alpha-D-glucose, which is converted to beta-D-glucose by mutarotase. beta-D-Glucose is then determined via glucose oxidase. The new biosensor has the limit of detection of 50 nmol l(-1) maltose, which means 2 nkat ml(-1) in alpha-amylase activity units, when the reaction time of amylase was 5 min (determined with respect to a signal-to-noise ratio 3:1). When the reaction time of alpha-amylase was 30 min, the limit of detection was 0.5 nkat ml(-1). A linear range of current response was 0.1-3 mmol l(-1) maltose, with a response time of 35s. The biosensor was stable at least two months and retained 70% of its original activity (with mutarotase the stability is decreased to 3 weeks). When the enzyme membrane was stored in a dry state at 4 degrees C in a refrigerator, the lifetime was approximately 6 months (with mutarotase only 3 months).  相似文献   

6.
Together with flow injection analysis (FIA), a chemiluminescence (CL) fiber optic biosensor system has been developed for determining glutamine in animal cell cultures. Glutaminase (GAH) and glutamate oxidase (GLO) were onto separate porous aminopropyl glass beads via glutaraldehyde activation and packed to form an enzyme column. These two enzymes acted in sequence on glutamine to produce hydrogen peroxide, which was then reacted with luminol in the presence of ferricyanide to produce a light signal. An anion exchanger was introduced on-line to eliminate interfering endogenous glutamate in view of its negative charge at pH above 3.22 (isoelectric pH). Among several resins tested, the acetate form was most effective, and this type of ion exchanger also effectively adsorbed uric acid, acetaminophen, and aspartic acid.There was an excellent linear relationship between the CL response and standard glutamine concentration in the range 1 to 100 muM. A complete analysis could be performed in 2 min, including sampling and washing with a good reproducibility (+/- 4.4%). Both the bi-enzymic and ion exchange columns were useful for at least 500 analyses when the biosensor system was applied for the glutamine determination in murine hybridoma cell cultures and insect cell cultures. The values obtained compared well with those of HPLC, thus validating the applicability of the CL fiber optic system. (c) 1993 John Wiley & Sons, Inc.  相似文献   

7.
A bacterial biosensor based on flow injection analysis (FIA) has been developed for the determination of benzene in workplace air samples. Benzene can be used by the bacteria Pseudomonas putida ML2 as a sole carbon source, and its aerobic degradation can be measured using a dissolved oxygen electrode. The bacterial cells were immobilised between two cellulose acetate membranes and fixed onto a Clark dissolved oxygen probe, which was inserted into a custom-made flow cell. The applicability of the biosensor for the analysis of air samples containing benzene was investigated. Air samples were collected from a controlled exposure room using charcoal adsorption tubes, and benzene extracted with solvent desorption using dimethylformamide (DMF). The biosensor displayed a linear detection range between 0.025 and 0.15 mM benzene based on standard solutions containing a maximum of 2% DMF, with a response time of 6 min. This linear detection range allows the analysis of air containing between 3 and 16 ppm benzene based on a 60-min sampling period. DMF proved to be compatible for use with the biosensor, causing minimal interference with the sensor response and causing no toxic effects on the bacterial cells. The FIA system was easily transported to an in situ location, and a correlation was obtained between the biosensor and gas chromatography (GC) results for the preliminary air samples investigated. Moreover, the biosensor displayed no interference to other benzene related compounds in the BTEX range. The results from this work have shown that the biosensor has potential applications for the analysis of benzene in workplace air samples, with the added advantages over the conventional GC methods of low operation costs, ease of use, and portability for in situ measurements.  相似文献   

8.
Platinum nanowires (PtNWs) prepared by electrodeposition method with the help of porous anodic aluminum oxide (AAO) templates have been solubilized in chitosan (CHIT) together with carbon nantubes (CNTs) to form a PtNW-CNT-CHIT organic-inorganic system. The resulting PtNW-CNT-CHIT material brings capabilities for utilizing synergic action of PtNWs and CNTs to facilitate electron-transfer process in electrochemical sensor design. The PtNW-CNT-CHIT film modified electrode offered a significant decrease in the overvoltage for the hydrogen peroxide and showed to be excellent amperometric sensors for hydrogen peroxide at -0.1 V over a wide range of concentrations, and the sensitivity is 260 microAmM-1cm-2. As an application example, by linking glucose oxidase (GOx), an amplified biosensor toward glucose was prepared. The glucose biosensor exhibits a selective determination of glucose at -0.1 V with a linear response range of 5 x 10(-6) to 1.5 x 10(-2)M with a correlation coefficient of 0.997, and response time <10s. The high sensitivity of the glucose biosensor is up to 30 microAmM-1cm-2 and the detection limit was 3 microM. The biosensor displays rapid response and expanded linear response range, and excellent repeatability and stability.  相似文献   

9.
A novel strategy to fabricate an amperometric biosensor for phenol determination based on chitosan/laponite nanocomposite matrix was described. The composite film was used to immobilize PPO on the surface of a glassy carbon electrode. Chitosan was utilized to improve the analytical performance of the pure clay-modified bioelectrode. The biosensor exhibited a series of properties: good affinity to its substrate (the apparent Michaelis-Menten constant for the sensor was found to be 0.16 mM), high sensitivity (674 mA M(-1)cm(-2) for catechol) and remarkable long-term stability in storage (it retains 88% of the original activity after 60 days). In addition, optimization of the biosensor construction as well as effects of experimental variables such as pH, operating potential and temperature on the amperometric response of the sensor were discussed.  相似文献   

10.
An amperometric tyrosinase enzyme electrode for the determination of phenols was developed by a simple and effective immobilization method using sol-gel techniques. A grafting copolymer was introduced into sol-gel solution and the composition of the resultant organic-inorganic composite material was optimized, the tyrosinase retained its activity in the sol-gel thin film and its response to several phenol compounds was determined at 0 mV vs. Ag/AgCl (sat. KCl). The dependences of the current response on pH, oxygen level and temperature were studied, and the stability of the biosensor was also evaluated. The sensitivity of the biosensor for catechol, phenol and p-cresol was 59.6, 23.1 and 39.4 microA/mM, respectively. The enzyme electrode maintained 73% of its original activity after intermittent use for three weeks when storing in a dry state at 4 degrees C.  相似文献   

11.
Nanographene-based tyrosinase biosensor for rapid detection of bisphenol A   总被引:1,自引:0,他引:1  
Hydrophilic nanographene (NGP) prepared by ball milling of graphite was used as the support to construct a novel tyrosinase biosensor for determination of bisphenol A (BPA). The performances of the nanographene-based tyrosinase biosensor were systematically compared with those of multiwall carbon nanotubes (MWNTs) modified tyrosinase biosensors. The results indicated that the nanographene-based tyrosinase biosensor provided significant advantages over MWNTs-based tyrosinase biosensor in term of response, repeatability, background current and limit of detection (LOD), which could be attributed to its larger specific surface area and unique hierarchical tyrosinase-NGP nanostructures. The nanographene-based tyrosinase biosensor displayed superior analytical performance over a linear range from 100 nmol L(-1) to 2000 nmol L(-1), with LOD of 33 nmol L(-1) and sensitivity of 3108.4 mA cm(-2)M(-1). The biosensor was further used for detecting BPA (leaching from different vessels) in tap water, and the accuracy of the results was validated by high performance liquid chromatography (HPLC). The nanographene-based tyrosinase biosensor proved to be a promising and reliable tool for rapid detection of BPA leached from polycarbonate plastic products and for on-site rapid analysis of emergency pollution affairs of BPA.  相似文献   

12.
A flow injection analysis (FIA) biosensor system for the determination of phosphate was constructed using immobilized nucleoside phosphorylase and xanthine oxidase and an amperometric electrode (platinum vs silver/silver chloride, polarized at 0.7 V). When a phosphate-containing sample was injected into the detection cell, phosphate reacted with inosine in the carrier buffer to produce hypoxanthine and ribose-1-phosphate in the presence of nucleoside phosphorylase. Hypoxanthine was then oxidized by xanthine oxidase to uric acid and hydrogen peroxide, which were both detected by the amperometric electrode. The response of the FIA biosensor system was linear up to 100 microM phosphate, with a minimum detectable concentration of 1.25 microM phosphate. Each assay could be performed in 5-6 min and the system could be used for about 160 repeated analyses. This system was applicable for the determination of phosphate in various food products and plasma, and the results obtained agreed well with those of the enzymatic assay.  相似文献   

13.
An amperometric bacterial sensor with current response to Fe(2+) and S(2)O(3)(2-) ions has been designed by immobilizing an acidophilic biomass of Acidithiobacillus ferrooxidans on a multi disk flat-front oxygen probe. The bacterial layer was located between the oxygen probe and a membrane of cellulose. A filtration technique was used to yield the bacterial membranes having reproducible activity. The decrease of O(2) flow across the bacterial layer is proportional to the concentration of the dosed species. The dynamic range appeared to be linear for the Fe(2+) ions up to 2.5 mmol L(-1) with a detection limit of 9 x 10(-7) mol L(-1) and a sensitivity of 0.25 A L mol(-1). The response of the biosensor is 84 s for a determination of 2 x 10(-4) mol L(-1) Fe(2+). Optimizing the Fe(2+) determination by A. ferrooxidans sensor was carried out owing to Design of Experiments (DOE) methodology and empirical modelling. The optimal response was thus obtained for a pH of 3.4, at 35 degrees C under 290 rpm solution stirring. S(2)O(3)(2-) concentration was determined at pH 4.7, so avoiding its decomposition. The concentration range was linear up to 0.6 mmol L(-1). Sensitivity was 0.20 A L mol(-1) with a response time of 207 s for a 2 x 10(-4) mol L(-1) S(2)O(3)(2-) concentration.  相似文献   

14.
A new zinc oxide nanoparticles/chitosan/carboxylated multiwall carbonnanotube/polyaniline (ZnO-NPs/CHIT/c-MWCNT/PANI) composite film has been synthesized on platinum (Pt) electrode using electrochemical techniques. Three enzymes, creatinine amidohydrolase (CA), creatine amidinohydrolase (CI) and sarcosine oxidase (SO) were immobilized on ZnO-NPs/CHIT/c-MWCNT/PANI/Pt electrode to construct the creatinine biosensor. The enzyme electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS). The enzyme electrode detects creatinine level as low as 0.5 μM at a signal to noise ratio of 3 within 10s at pH 7.5 and 30°C. The fabricated creatinine biosensor showed linear working range of 10-650 μM creatinine with a sensitivity of 0.030 μA μM(-1)cm(-2). The biosensor shows only 15% loss of its initial response over a period of 120 days when stored at 4°C. The fabricated biosensor was successfully employed for determination of creatinine in human blood serum.  相似文献   

15.
肌苷酶电极生物传感器   总被引:1,自引:0,他引:1  
为了构建肌苷酶电极生物传感器,以固定化核苷磷酸化酶(EC 2.4.2.1)、黄嘌呤氧化酶(EC 1.2.3.2)与过氧化氢电极组成电流型酶电极生物传感器,用于检测肌苷片中的肌苷,其输出电流可达500nA.结果发现,肌苷测定的线性范围为1-268 mg/L,精度:RSD小于0.14%,响应时间:60 s,使用寿命大于25 d,实际测定肌苷片中肌苷含量回收率:100.8%.由此表明:采用双酶电极法测定肌苷片中的肌苷含量,由于酶促反应专一性高、样品不需分离直接进样分析、处理条件温和、反应时间短暂因而结果较为可靠.  相似文献   

16.
A sensitive, selective and stable amperometric glucose biosensor employing novel PtPd bimetallic nanoparticles decorated on multi-walled carbon nanotubes (PtPd-MWCNTs) was investigated. PtPd-MWCNTs were prepared by a modified Watanabe method, and characterized by XRD and TEM. The biosensor was constructed by immobilizing the PtPd-MWCNTs catalysts in a Nafion film on a glassy carbon electrode. An inner Na?on film coating was used to eliminate common interferents such as uric acid, ascorbic acid and fructose. Finally, a highly porous surface with an orderly three-dimensional network enzyme layer (CS-GA-GOx) was fabricated by electrodeposition. The resulting biosensor exhibited a good response to glucose with a wide linear range (0.062-14.07 mM) and a low detection limit 0.031 mM. The biosensor also showed a short response time (within 5 s), and a high sensitivity (112 μA mM(-1)cm(-2)). The Michaelis-Menten constant (K(m)) was determined as 3.3 mM. In addition, the biosensor exhibited high reproducibility, good storage stability and satisfactory anti-interference ability. The applicability of the biosensor to actual serum sample analysis was also evaluated.  相似文献   

17.
Pan D  Chen J  Nie L  Tao W  Yao S 《Analytical biochemistry》2004,324(1):115-122
Prussian blue (PB), as a good catalyst for the reduction of hydrogen peroxide, has been combined with nonconducting poly(o-aminophenol) (POAP) film to assemble glucose biosensor. Compared with PB-modified enzymatic biosensor, the biosensor based on glucose oxidase immobilized in POAP film at PB-modified electrode shows much improved stability (78% remains after 30 days) in neutral medium. Additionally, the biosensor, at an applied potential of 0.0 V, exhibits other good characteristics, such as relative low detection limit (0.01 mM), short response time (within 5s), large current density (0.28 mA/cm2), high sensitivity (24 mAM(-1)cm(-2)), and good antiinterferent ability. The apparent activation energy of enzyme-catalyzed reaction and apparent Michaelis-Menten constant are 34.2 KJmol(-1) and 10.5 mM, respectively. In addition, effects of temperature, applied potential used in the determination, pH value of the detection solution, and electroactive interferents on the amperometric response of the sensor were investigated and are discussed.  相似文献   

18.
An l-glutamate biosensor modified by cation exchanger membrane on a palladium (Pd) electrode was designed for the purpose of preventing interferences and electrode fouling during the measurement of serum AST and ALT activities. The rate of signal increase obtained by our sensor for the determination of AST and ALT activity was 0.259 and 0.596 nA/min U(-1)l and the response of the sensor to AST and ALT activity were linear over the range of 8-200 and 8-250 Ul(-1), respectively. Both AST and ALT activities could be measured sequentially by injecting the serum into a solution containing l-aspartate and alpha-ketoglutarate. The rate of current increase was relative to AST activity. The activity of ALT was sequentially determined after addition of l-alanine into the solution. The change in the current increase rate after the addition of l-alanine was proportional to the ALT activity. By using the proposed biosensor, the interference of 1mM ascorbic acid was negligible on a dynamical aminotransferase determination when the dynamic data are taken after the steady state of an elevated baseline has been reached. The proposed l-glutamate biosensor provides adequate sensitivity for the measurement of AST and ALT and is expectable to be applied for rapid blood screening of AST and ALT activity in clinical sample.  相似文献   

19.
Amperometric and impedimetric biosensor for detecting trimethylamine (TMA) which represents good parameters for estimating fish freshness has been developed. The biosensor is based on a conducting polypyrrole substituted with ferrocenyl, where flavin-containing monooxygenase 3 (FMO3) enzyme was immobilised by covalent bonding. FMO3 catalyzes the monooxygenation TMA to trimethylamine N-oxide (TMO). For catalysis FMO require flavin adenine (FAD) as a prosthetic group, NADPH as a cofactor and molecular oxygen as cosubstrate. Ferrocenyl group substituted on the polypyrrole matrix will serve as redox probe for monitoring the response of the biosensor to TMA. The construction of the biosensor was characterized by FT-IR, cyclic voltammetry and impedance measurements. Detection is done through the analysis of the current of oxidation signal of the ferrocenyl groups and compared to the measurement of impedance related to the electrical properties of the layers. Amperometric and impedimetric response were measured as a function of TMA concentration in range of 0.4 μgm L(-1)-80 μgm L(-1) (6.5 μmol L(-1)-1.5 mmol L(-1)). Amperometric measurements show a decrease in current response which is in correlation with the increase of the charge transfer resistance demonstrated by impedance. Calibration curve obtained by impedance spectroscopy shows a high sensitivity with a dynamic range from (0.4 μgm L(-1) to 80 μgm L(-1)). We demonstrated, using ferrocene as redox probe for catalytic reaction of FMO3, that high sensitivity and dynamic range was obtained. The biosensor was stable during 16 days. The biosensor shows high selectivity and its sensitivity to TMA in real samples was evaluated using fish extract after deterioration during storage.  相似文献   

20.
We report on the utilization of a novel nanoscaled cobalt phthalocyanine (NanoCoPc)-glucose oxidase (GOD) biocomposite colloid to create a highly responsive glucose biosensor. The biocomposite colloid is constructed under enzyme-friendly conditions by adsorbing GOD molecules on CoPc nanoparticles via electrostatic interactions. The glucose biosensor can be easily achieved by casting the biocomposite colloid on a pyrolytic graphite electrode (PGE) without any auxiliary matter. It has been found that GOD can be firmly immobilized on PGE surface and maintain its bioactivity after conjugating with NanoCoPc. NanoCoPc displays intrinsic electrocatalytic ability to the oxidation of the product of enzymatic reaction H2O2 and shows a higher catalytic activity than that of bulk CoPc. Under optimal conditions, the biosensor shows a wide linear response to glucose in the range of 0.02-18 mM, with a fast response (5s), high sensitivity (7.71 microA cm(-2) mM(-1)), as well as good thermostability and long-term life. The detection limit was 5 microM at 3 sigma. The general interferences coexisted in blood except ascorbic acid and L-cysteine do not affect glucose determination, and further coating Nafion film on the surface of the biosensor can effectively eliminate the interference from ascorbic acid and L-cysteine. The biosensor with Nafion film has been used for the determination of glucose in serum with an acceptable accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号