首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The correlation between auxin and RNA metabolism was investigated in lentil roots. IAA and NAA both cause a considerable rise in the RNA level of germinating lentil roots, though no effect of IAA was found on the DNA level. In untreated germinating roots various sections were isolated and a direct relation found between RNA and auxin content, and an indirect relation between RNA content and auxin oxidase activity. In excised roots, incubated for 24 hours, the loss of RNA is paralleled by a loss of endogenous auxin. Excised roots treated with 10?4M IAA or M 10?4 NAA loose little RNA. The findings suggest that in lentil roots the RNA levels may be controlled by auxin levels, which in turn may be controlled by the levels of auxin oxidase.  相似文献   

2.
Abscisic acid (ABA) reduced growth in a root test (lentil),but the inhibition observed was less noticeable than that producedby using indol-3yl-acetic acid (IAA) alone. When both ABA andIAA were employed together, ABA acted as a growth-antagonistof IAA. ABA produced a strong inhibition of the total RNA accumulationand accelerated the RNase activity, while IAA strongly stimulatedthe RNA accumulation and greatly inhibited RNase activity. WhenABA and IAA were tested together, ABA also acted as an antagonistof TAA.  相似文献   

3.
The lignin content of walnut shoots did not change during in vitro shoot multiplication. Lignin content started to increase as soon as shoots were passed to a rooting medium with auxin. Exogenous auxin (applied for rooting) caused a transient elevation of the endogenous free indoleacetic acid (IAA) content with a simultaneous decrease of peroxidase activity. These events typically marked the completion of the rooting inductive phase (before any visible histological event, that is before the cell divisions beginning the rooting initiation phase). This meant that either the given exogenous auxin or the endogenous IAA has served as signal for the stimulation of lignification. Continued increase of lignification in the shoots required completion of root formation; this increase indeed was slown down when root emergence did not occur. It was further shown that lignification varied conversely to the content of the soluble phenol content, itself apparently being related to the activity of phenylalanine ammonia-lyase activity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
5.
A study has been made on the influence of indole-3-acetic acid (IAA) on the ribonuclease (RNase) activity in wheat coleoptile sections and green pea stem sections. The hormonal effects on the enzyme activity, ribonncleic acid (RNA) metabolism and growth have been compared. Addition of 10?5M IAA to the plant sections causes their RNase activity to decrease and their elongation to increase. Removal of the added IAA results in increasing enzyme activity and decreasing growth. The altered enzyme activities are paralleled by opposite changes in the RNA net synthesis. Administration of crystalline RNase to the plant tissue depresses growth. There is thus evidence that the in vivo effect of IAA on the RNase activity is of importance for the hormonal regulation of RNA metabolism and growth. The IAA-induced reduction in the enzyme activity involves cellular metabolism. The effect can be suspended by means of p-chloromercuribenzoate. A possible mechanism for the reduction is discussed.  相似文献   

6.
Quantification of endogenous IAA and lAAsp was carried out duringadventitious root formation in avocado microcuttings. Both auxinand conjugate were monitored in control cuttings (rooted inthe absence of auxin) as well as in cuttings treated with arooting promotor (IBA) or an auxin transport inhibitor (TIBA).Additionally, a histological study to follow root differentiationwas carried out. In control cuttings IAA levels remained constantthroughout the rooting process, however, in IB A-treated cuttingsIAA levels increased 2-fold during the first 6 d. Addition of200 µM TIBA induced a slight decrease of IAA levels andinhibited root formation. As for IAAsp levels, both control and IBA-treated cuttings showeda big increase before root differentiation occurred and as theprocess went on, a progressive decrease took place. However,in TIBA-treated cuttings IAAsp levels not only did not increasebut diminished progressively during the process. The role ofauxin conjugates during the rooting process of avocado is discussed. Key words: Avocado, IAA, IAAsp, rooting  相似文献   

7.
Incubation of excised Avena leaves in a wet chamber in darkness resulted in an increase in both soluble and particle-bound Rnase activities. Illumination promoted the increase in the total RNase which occurred upon leaf excision. The light-induced increase in total RNase was due to an increase in soluble RNase. The increase in RNase activity in the particulate fraction was inhibited by illumination. Feeding 2 per cent sucrose to the tissues in the dark increased the level of soluble RNase and decreased the activity found in the particulate fraction. Treatment of the illuminated tissues with 10?4M dichlorophenyldimethylurea (DCMU) inhibited the effects of light on the RNase level. It is concluded that the light-effect is explained at least in part by the photosynthetic production of sugars. In excised leaves kept in darkness the RNA content rapidly decreased. Feeding sugars to or illumination of the tissues lowered the rate of RNA breakdown due to leaf excision. DCMU counteracted the light effect. In general, the decrease of RNA was repressed by all treatments leading to an inhibition of the increase of particulate RNase. On the other hand, the observed changes of the soluble RNase were not related with the variations of RNA. Treatment with 3 M urea increased the RNase activity both in the particulate and the soluble fractions. The RNase activity of soluble preparations, partially purified on a Sephadex G-50 column or by (NH4)2SO4 fractionation, was also stimulated by 3 M urea. Treatment with 10?5M kinetin repressed the increase in RNase activity due to leaf excision both in the soluble and the particulate fractions.  相似文献   

8.
Scott , Tom K., and Winslow R. Briggs . (Stanford U., Stanford, Calif.) Recovery of native and applied auxin from the light-grown ‘Alaska’ pea seedling. Amer. Jour. Bot. 49(10): 1056–1063. Illus. 1962.—The physiological status of both endogenous and exogenously applied auxin was compared in the epicotyl of the 9-day-old light-grown ‘Alaska’ pea (Pisum sativum L.) by means of agar-diffusion and short-term ether extraction. A detailed analysis of endogenous auxin revealed a linear basipetal decrease in diffusible auxin within the growing region. A decrease in extractable auxin occurred only within the most mature region. The capacity for uptake of indole-3-acetic acid (IAA), applied in lanolin paste, was compared in different regions of the epicotyl. The fifth and most apical internode had the greatest capacity for uptake as measured by extraction. A reduced capacity was found in more basal internodes. The transport rate of applied IAA, under conditions of optimal uptake, was 10–12 mm/hr. An application of IAA for 24 hr resulted in a dramatic increase in auxin content throughout the length of the epicotyl compared to that found in the normal control. There was no apparent gradation in content from apex to base. An increase of diffusible auxin was also found, but only in the fourth and third internodes. That no such increase was detected in the basal 3 internodes suggested that the auxin transport system within this region had special properties related to a transition between shoot and root vascular patterns.  相似文献   

9.
Comparative effects of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) on lateral root (LR) formation were studied using 2-day-old seedlings of IR8 rice (Oryza sativa L.). Results showed that IBA at all concentrations (0.8–500 nmol/L) increased the number of LRs in the seminal root. However exogenous IAA, failed to increase the number of LRs. On the other hand, both IBA and IAA caused inhibition of seminal root elongation and promotion of LR elongation, but IAA can only reach to the same degree of that of IBA at a more than 20-fold concentration. Exogenous IBA had no effect on endogenous IAA content. We conclude from the results that IBA could act directly as a distinct auxin, promoting LR formation in rice, and that the signal transduction pathway for IBA is at least partially different from that for IAA.  相似文献   

10.
The hormone auxin is known to inhibit root elongation and to promote initiation of lateral roots. Here we report complex effects of auxin on lateral root initiation in roots showing reduced cell elongation after auxin treatment. In Arabidopsis thaliana, the promotion of lateral root initiation by indole-3-acetic acid (IAA) was reduced as the IAA concentration was increased in the nanomolar range, and IAA became inhibitory at 25 nM. Detection of this unexpected inhibitory effect required evaluation of root portions that had newly formed during treatment, separately from root portions that existed prior to treatment. Lateral root initiation was also reduced in the iaaM-OX Arabidopsis line, which has an endogenously increased IAA level. The ethylene signaling mutants ein2-5 and etr1-3, the auxin transport mutants aux1-7 and eir1/pin2, and the auxin perception/response mutant tir1-1 were resistant to the inhibitory effect of IAA on lateral root initiation, consistent with a requirement for intact ethylene signaling, auxin transport and auxin perception/response for this effect. The pericycle cell length was less dramatically reduced than cortical cell length, suggesting that a reduction in the pericycle cell number relative to the cortex could occur with the increase of the IAA level. Expression of the DR5:GUS auxin reporter was also less effectively induced, and the AXR3 auxin repressor protein was less effectively eliminated in such root portions, suggesting that decreased auxin responsiveness may accompany the inhibition. Our study highlights a connection between auxin-regulated inhibition of parent root elongation and a decrease in lateral root initiation. This may be required to regulate the spacing of lateral roots and optimize root architecture to environmental demands.  相似文献   

11.
Basu P  Brown KM  Pal A 《Plant physiology》2011,155(4):2056-2065
Vertical placement of roots within the soil determines their efficiency of acquisition of heterogeneous belowground resources. This study quantifies the architectural traits of seedling basal roots of bean (Phaseolus vulgaris), and shows that the distribution of root tips at different depths results from a combined effect of both basal root growth angle (BRGA) and root length. Based on emergence locations, the basal roots are classified in three zones, upper, middle, and lower, with each zone having distinct architectural traits. The genotypes characterized as shallow on BRGA alone produced basal roots with higher BRGA, greater length, and more vertically distributed roots than deep genotypes, thereby establishing root depth as a robust measure of root architecture. Although endogenous indole-3-acetic acid (IAA) levels were similar in all genotypes, IAA and 1-N-naphthylphthalamic acid treatments showed different root growth responses to auxin because shallow and deep genotypes tended to have optimal and supraoptimal auxin levels, respectively, for root growth in controls. While IAA increased ethylene production, ethylene also increased IAA content. Although differences in acropetal IAA transport to roots of different zones can account for some of the differences in auxin responsiveness among roots of different emergence positions, this study shows that mutually dependent ethylene-auxin interplay regulates BRGA and root growth differently in different genotypes. Root length inhibition by auxin was reversed by an ethylene synthesis inhibitor. However, IAA caused smaller BRGA in deep genotypes, but not in shallow genotypes, which only responded to IAA in the presence of an ethylene inhibitor.  相似文献   

12.
Galactoglucomannan oligosaccharides (GGMOs) activity in K. humboldtiana root culture has been determined. GGMOs inhibited adventitious root growth and lateral root induction in contrast to IAA, IBA, and NAA stimulating effect in these processes. Similarly, the combination of GGMOs with natural auxins (IAA, IBA) evoked an inhibition of adventitious root growth and lateral root induction that depended on the oligosaccharides concentration and the type of auxin. The growth stimulating effect of the synthetic auxin, NAA, in adventitious roots was negatively affected by GGMOs, but they were without influence on lateral root induction. The presence of oligosaccharides triggered lateral root position on adventitious roots and the anatomy of adventitious roots (diameter, proportion of primary cortex to the central cylinder, number and size of primary cortical cells, intercellular spaces, and the number of starch grains in cells of primary cortex) in dependence on their coactions with auxin.  相似文献   

13.
EFFECT OF LIGHT ON AUXIN TRANSPORT AND ELONGATION OF AVENA MESOCOTYL   总被引:1,自引:0,他引:1  
The present work was undertaken to find if there are relations between light and auxin action on elongation of coleoptilar node and mesocotyl with Avena seedlings. Red light inhibited the elongation of mesocotyl and simultaneously decreased the rate of transport of diffusible auxin through the node. Red light also inhibited the transport of exogenously given IAA through the nodal region. The light inhibition of IAA transport was closely related to the increase of IAA immobilization. As the age proceeds, the ability of IAA immobilization increased with the decrease in the rate of mesocotyl elongation, even if the seedling was grown in complete darkness. The nature of radioactive substances found in the IAA-C14 treated tissue was examined by paper chromatography. The above results strongly suggested that the increase of IAA immobilization might result in the inhibition of mesocotyl elongation.  相似文献   

14.
The distribution and biosynthesis of indole-3-acetic acid (IAA) was investigated during early plant development in Arabidopsis. The youngest leaves analysed, less than 0.5 mm in length, contained 250 pg mg(-1) of IAA and also exhibited the highest relative capacity to synthesize this hormone. A decrease of nearly one hundred-fold in IAA content occurred as the young leaves expanded to their full size, and this was accompanied by a clear shift in both pool size and IAA synthesis capacity. The correlation between high IAA content and intense cell division was further verified in tobacco leaves, where a detailed analysis revealed that dividing mesophyll tissue contained ten-fold higher IAA levels than tissue growing solely by elongation. We demonstrated that all parts of the young Arabidopsis plant can potentially contribute to the auxin needed for growth and development, as not only young leaves, but also all other parts of the plant such as cotyledons, expanding leaves and root tissues have the capacity to synthesize IAA de novo. We also observed that naphthylphthalamic acid (NPA) treatment induced tissue-dependent feedback inhibition of IAA biosynthesis in expanding leaves and cotyledons, but intriguingly not in young leaves or in the root system. This observation supports the hypothesis that there is a sophisticated tissue-specific regulatory mechanism for auxin biosynthesis. Finally, a strict requirement for maintaining the pool sizes of IAA was revealed as reductions in leaf expansion followed both decreases and increases in the IAA levels in developing leaves. This indicates that leaves are not only important sources for IAA synthesis, but that normal leaf expansion depends on rigorous control of IAA homeostasis.  相似文献   

15.
16.
Auxins control growth and development in plants, including lateral rootinitiation and root gravity response. However, how endogenous auxin regulatesthese processes is poorly understood. In this study, the effects of auxins onlateral root initiation and root gravity response in rice were investigatedusing a lateral rootless mutant Lrt1, which fails to formlateral roots and shows a reduced root gravity response. Exogenous applicationof IBA to the Lrt1 mutant restored both lateral rootinitiation and root gravitropism. However, application of IAA, a major form ofnatural auxin, restored only root gravitropic response but not lateral rootinitiation. These results suggest that IBA is more effective than IAA in lateralroot formation and that IBA also plays an important role in root gravitropicresponse in rice. The application of NAA restored lateral root initiation, butdid not completely restore root gravitropism. Root elongation assays ofLrt1 displayed resistance to 2,4-D, NAA, IBA, and IAA.This result suggests that the reduced sensitivity to exogenous auxins may be due tothe altered auxin activity in the root, thereby affecting root morphology inLrt1.  相似文献   

17.
18.
The changes in ascorbate (ASC) and dehydroascorbate (DHA) levels and the activities of ascorbate metabolising enzymes were examined during adventitious root formation in cuttings of tomato (Lycopersicon esculentum Mill. cv. Paw) seedlings. The effects of ASC, DHA and the immediate ascorbate precursor – galactono-γ-lactone (GalL) supplemented to the culture medium on the rooting response, ascorbate content and the activities of the ASC-metabolising enzymes were also investigated. The cuttings treated with abovementioned compounds formed more roots then control plants. However, in contrast to the number of regenerated organs, the elongation of newly formed roots was markedly inhibited. Treatment with auxin (IAA) resulted in a similar phenotype. The inhibitor of auxin polar transport-TIBA (2,3,5-triiodobenzoic acid) effectively blocked rooting. The inhibitory effect of TIBA was reversed by auxin and ASC treatments, while DHA and GalL were ineffective. Both auxin and ASC stimulated cell divisions in an area of pericycle layer of TIBA-treated rooting zones, that enabled cuttings to form roots in the presence of the inhibitor of auxin polar transport. It has been found that the first stages of rooting, preceding the emergence of roots, are accompanied by an increase in endogenous content of ASC with a peak in the 3rd day of rooting. Subsequent stages, when elongation of newly formed roots occurs, are characterised by low level of ASC. The activities of the ascorbate peroxidase (APX), ascorbate oxidase (AOX), ascorbate free radical reductase (AFRR) and dehydroascorbate reductase (DHR) increased in the first 3 days of root formation. The initial period of rooting was also accompanied by the increase of the hydrogen peroxide content and the activities of catalase (CAT) and guaiacol peroxidase (GPX) in the rooting zones. IAA, ASC, DHA as well as Gal stimulated the APX activity, however the rise of the enzyme's activity induced by ASC, DHA and Gal was reversed by TIBA, which was found to inhibit APX. Only exogenous IAA was able to maintain the high level of APX activity in the TIBA-treated cuttings. AOX was strongly affected by ASC and GalL – treatments, its activity increased in the cuttings grown on the media containing ASC in the absence as well as in the presence of TIBA. On the other hand, GalL-dependent stimulation of its activity was suppressed if TIBA was present in a rooting medium.  相似文献   

19.
Although considerable researches have been conducted on the physiological responses to plant iron (Fe) deficiency stress in dicotyledonous plants, much still needs to be learned about the regulation of these processes. In the present research, red clover was used to investigate the role of root phenolics accumulation in regulating Fe-deficiency induced Fe(III) chelate reductase (FCR). The root FCR activity, IAA and phenolics accumulation, and also the phenolics secretion were greatly increased by the Fe deficiency treatment. The application of TIBA (2,3,5-triiodobenoic acid) to the stem, an IAA polar transport inhibitor, which could decrease IAA accumulation in root, significantly inhibited the FCR activity, but did not effect root phenolics accumulation and secretion, suggesting that IAA itself did not involve in root phenolics accumulation and secretion. In contrast, the Fe deficiency treatment significantly decreased the root IAA-oxidase activity. Interestingly the phenolics extracted from roots inhibited IAA-oxidase activity in vitro, and this inhibition was greater with phenolics extracted from roots of Fe deficient plants than that from Fe sufficient plants, indicating that the Fe deficiency-induced IAA-oxidase inhibition probably caused by the phenolics accumulation in Fe deficient roots. Based on these observations, we propose a model where under Fe deficiency stress in dicots, an increase in root phenolics concentrations plays a role in regulating root IAA levels through an inhibition of root IAA oxidase activity. This response, leads to, or at least partially leads to an increase in root IAA levels, which in turn help induce increased root FCR activity.Key Words: Fe deficiency, ferric chelate reductase, phenolics, Trifolium pretense  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号