首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Big mitogen-activated protein (MAP) kinase (BMK1), also known as ERK5, is a member of the MAP kinase family whose cellular activity is elevated in response to growth factors, oxidative stress, and hyperosmolar conditions. Previous studies have identified MEK5 as a cellular kinase directly regulating BMK1 activity; however, signaling molecules that directly regulate MEK5 activity have not yet been defined. Through utilization of a yeast two-hybrid screen, we have identified MEKK3 as a molecule that physically interacts with MEK5. This interaction appears to take place in mammalian cells as evidenced by the fact that cellular MEK5 and MEKK3 co-immunoprecipitate. In addition, we show that a dominant active form of MEKK3 stimulates BMK1 activity through MEK5. Moreover, we demonstrate that MEKK3 activity is required for growth factor mediated cellular activation of endogenous BMK1. Taken together, these results identify MEKK3 as a kinase that regulates the activity of MEK5 and BMK1 during growth factor-induced cellular stimulation.  相似文献   

7.
8.
MEKK2 and MEKK3 are two closely related mitogen-activated protein kinase (MAPK) kinase kinases. The kinase domains of MEKK2 and MEKK3 are nearly identical, although their N-terminal regulatory domains are significantly divergent. By yeast two-hybrid library screening, we have identified MEK5, the MAPK kinase in the big mitogen-activated protein kinase 1 (BMK1)/ERK5 pathway, as a binding partner for MEKK2. MEKK2 expression stimulates BMK1/ERK5 activity, the downstream substrate for MEK5. Compared with MEKK3, MEKK2 activated BMK1/ERK5 to a greater extent, which might correlate with a higher affinity MEKK2-MEK5 interaction. A dominant negative form of MEK5 blocked the activation of BMK1/ERK5 by MEKK2, whereas activation of c-Jun N-terminal kinase (JNK) was unaffected, showing that MEK5 is a specific downstream effector of MEKK2 in the BMK1/ERK5 pathway. Activation of BMK1/ERK5 by epidermal growth factor and H2O2 in Cos7 and HEK293 cells was completely blocked by a kinase-inactive MEKK3 (MEKK3kin(-)), whereas MEKK2kin(-) had no effect. However, in D10 T cells, expression of MEKK2kin(-) but not MEKK3kin(-) inhibited BMK1/ERK5 activity. Two-hybrid screening also identified Lck-associated adapter/Rlk- and Itk-binding protein (Lad/RIBP), a T cell adapter protein, as a binding partner for MEKK2. MEKK2 and Lad/RIBP colocalize at the T cell contact site with antigen-loaded presenting cells, demonstrating cotranslocation of MEKK2 and Lad/RIBP during T cell activation. MEKK3 neither binds Lad/RIBP nor is recruited to the T cell contact with antigen presenting cell. MEKK2 and MEKK3 are differentially associated with signaling from specific upstream receptor systems, whereas both activate the MEK5-BMK1/ERK5 pathway.  相似文献   

9.
Cameron SJ  Itoh S  Baines CP  Zhang C  Ohta S  Che W  Glassman M  Lee JD  Yan C  Yang J  Abe J 《FEBS letters》2004,566(1-3):255-260
Big MAP kinase 1 (BMK1/ERK5) plays a critical role in pre-natal development of the cardiovascular system and post-natal eccentric hypertrophy of the heart. Of the two isoforms upstream of MAPK-kinase 5 (MEK5) known to exist, only the longer MEK5alpha isoform potently activates BMK1. We generated cardiac-specific constitutively active form of the MEK5alpha (CA-MEK5alpha transgenic (Tg) mice), and observed a 3 to 4-fold increase in endogenous BMK1 activation and hyperphosphorylation of connexin 43 in the ventricles of the Tg compared to wild-type mice. The CA-MEK5alpha-Tg-mice demonstrated a profoundly accelerated recovery of left ventricular developed pressure after ischemia/reperfusion. We propose a novel role for BMK1 in protecting the heart from ischemia/reperfusion-induced cardiac injury.  相似文献   

10.
11.
12.
The gap junction protein, Cx43, plays a pivotal role in coupling cells electrically and metabolically, and the putative phosphorylation sites that modulate its function are reflected as changes in gap junction communication. Growth factor stimulation has been correlated with a decrease in gap junction communication and a parallel activation of ERK1/2; the inhibition of epidermal growth factor (EGF)-induced Cx43 gap junction uncoupling was observed by using the MEK1/2 inhibitor, PD98059. Because 1) BMK1/ERK5, another MAPK family member also activated by growth factors, possesses a phosphorylation motif similar to ERK1/2, and 2) it has been reported that PD98059 can inhibit not only MEK1/2-ERK1/2 but also MEK5-BMK1 activation, we investigated whether BMK1 can regulate EGF-induced Cx43 gap junction uncoupling and phosphorylation, comparing this to the role of ERK1/2 on Cx43 function and phosphorylation induced by EGF. Selective activation or inactivation of ERK1/2 by using a constitutively active form or a dominant negative form of MEK1 did not regulate Cx43 gap junction coupling. In contrast, we found that BMK1, selectively activated by constitutively active MEK5alpha, induced gap junction uncoupling, and the inhibition of BMK1 activation by transfection of dominant negative BMK1 prevented EGF-induced gap junction uncoupling. Activated BMK1 selectively phosphorylates Cx43 on Ser-255 in vitro and in vivo, but not on S279/S282, which are reported as the consensus phosphorylation sites for MAPK. Furthermore, by co-immunoprecipitation, we found that BMK1 directly associates with Cx43 in vivo. These data indicate that BMK1 is more important than ERK1/2 in EGF-mediated Cx43 gap junction uncoupling by association and Cx43 Ser- 255 phosphorylation.  相似文献   

13.
14.
15.
16.
17.
18.
MAPK/ERK kinase kinase 2 (MEKK2) is a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family of protein kinases. MAP3Ks are components of a three-tiered protein kinase pathway in which a MAP3K phosphorylates and activates a mitogen-activated protein kinase kinase (MAP2K), which in turn activates a mitogen-activated protein kinase (MAPK). We have previously identified residues within protein kinase subdomain X in the MAP3K, MEKK1, that are critical for its interaction with the MAP2K, MKK4, and MEKK1-induced MKK4 activation. We report here that kinase subdomain X also plays a critical role in MEKK2 activity. Select point mutations in subdomain X impair MEKK2 phosphorylation of the MAP2Ks, MKK7 and MEK5, abolish MEKK2-induced activation of the MAPKs, JNK1 and ERK5, and diminish MEKK2-dependent activation of an AP-1 reporter gene. Interestingly, the spectrum of mutations in subdomain X of MEKK2 that affects its activity is overlapping with but not identical to those that have effects on MEKK1. Thus, mutations in subdomain X differentially affect MEKK2 and MEKK1.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号