首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Our objective was to study the direct action of a GnRH-I agonist, leuprolide acetate (LA), on ovarian steroidogenesis in preovulatory follicles obtained from equine chorionic gonadotropin (eCG)-treated rats. Previously, we have demonstrated an inhibitory effect of LA on steroidogenesis and follicular development. In this study, we tested the hypothesis that gonadotropin-releasing hormone (GnRH) exerts its negative effect on follicular development by inhibiting thecal cytochrome P-450 C17 (P450C17) alpha-hydroxylase expression and, consequently, androgen synthesis. Studies were carried out in prepubertal female rats injected with either eCG (control) or eCG plus LA (LA) and killed at different time points. Immunohistochemical studies indicated that LA induced steroidogenic acute regulatory protein (StAR) expression mainly in theca cells of preantral and antral follicles. In addition, serum progesterone levels increased significantly (P < 0.05), whereas those of androsterone decreased (P < 0.05) after 8 h of LA treatment. This inhibition caused by LA seemed to be a consequence of the decreased expression of follicular P450C17 alpha-hydroxylase, as demonstrated by Western blot and RT-PCR techniques. In vitro studies using follicles isolated from 48-h-eCG-treated rats and cultured with LA showed a significant (P < 0.05) inhibition of FSH-induced androsterone follicular content as well as P450C17 alpha-hydroxylase protein levels, as determined by Western analysis. However, LA increased StAR protein expression in these follicles without significant changes in P450scc enzyme levels. Taking all these findings into account, we suggest that GnRH-I exerts a direct inhibitory action on gonadotropin-induced follicular development by decreasing the temporal expression of the P450C17 enzyme and, consequently, androgen production, thus reducing the supply of estrogens available to developing follicles.  相似文献   

2.
We investigated the effects of theca cells or FSH on granulosa cell differentiation and steroid production during bovine early follicular growth, using a co-culture system in which granulosa and theca cells were cultured on opposite sides of a collagen membrane. Follicular cells were isolated from early antral follicles (2-4 mm) that were assumed to be in gonadotropin-independent phase and just before recruitment into a follicular wave. Granulosa cells were cultured under serum-free conditions with and without theca cells or recombinant human FSH to test their effects on granulosa cell differentiation. Messenger RNA levels for P450 aromatase (aromatase), P450 cholesterol side chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), LH receptor (LHr), and steroidogenic acute regulatory protein (StAR) in granulosa cells were measured by real-time quantitative RT-PCR analysis. FSH enhanced aromatase mRNA expression in granulosa cells, but did not alter estradiol production. FSH also enhanced mRNA expression for P450scc, LHr, and StAR in granulosa cells, resulting in an increase in progesterone production. In contrast, theca cells enhanced aromatase mRNA expression in granulosa cells resulting in an increase in estradiol production. Theca cells did not alter progesterone production and mRNA expression in granulosa cells for P450scc, 3beta-HSD, LHr, and StAR. The results of the present study indicate that theca cells are involved in both rate-limiting steps in estrogen production, i.e., androgen substrate production and aromatase regulation, and that theca cell-derived factors regulate estradiol and progesterone production in a way that reflects steroidogenesis during the follicular phase of the estrous cycle.  相似文献   

3.
The effect of dexamethasone on LH-induced synthesis of steroidogenic acute regulatory (StAR) protein was studied in a serum-free culture of preovulatory follicles. StAR protein is a steroidogenic tissue-specific, hormone-induced, rapidly synthesized protein previously shown to be involved in the acute regulation of steroidogenesis, probably by promoting the transfer of cholesterol to the inner mitochondrial membrane and the cytochrome P450 side-chain cleavage (P450(scc)) enzyme. Treatment of preovulatory follicles dissected from ovaries of cyclic adult rats on the morning of proestrus with LH for 24 h resulted in a dose-dependent increase in the level of StAR protein that reached a maximum at 10 ng LH/ml. This increase was associated with an increase in progesterone production. Treatment of the follicles with increasing concentrations (1-1000 ng/ml) of dexamethasone suppressed LH (10 ng/ml)-induced StAR protein levels and progesterone production in a dose-dependent manner. The amount of P450(scc) was not affected by this dexamethasone treatment, indicating that the loss of steroidogenic capacity was not a result of inhibition of P450(scc). Dexamethasone also decreased StAR protein levels and progesterone production induced by the adenylate cyclase activator forskolin (10(-5) M) or a cAMP analogue 8-Br-cAMP (0.5 mM). The effects of dexamethasone on 8-Br-cAMP-induced StAR protein levels and progesterone production were blocked by cotreatment of the follicles with glucocorticoid receptor antagonist RU-486. These results demonstrate that dexamethasone inhibits the LH-induced StAR protein levels and that the effects of dexamethasone are mediated by the glucocorticoid receptor.  相似文献   

4.
C C Yu  W Y Chen  P S Li 《Life sciences》2001,70(1):57-72
The effect of cantharidin, a natural toxicant of blister beetles and a strong inhibitor of protein phosphatases types 1 and 2A, on luteinizing hormone (LH)-induced synthesis of steroidogenic acute regulatory (StAR) protein was studied in a serum-free culture of preovulatory follicles. StAR protein is a steroidogenic tissue-specific, hormone-induced, rapidly synthesized protein previously shown to be involved in the acute regulation of steroidogenesis, probably by promoting the transfer of cholesterol to the inner mitochondrial membrane and the cytochrome P450 side-chain cleavage (P450scc) enzyme. Treatment of preovulatory follicles dissected from ovaries of immature rats primed with pregnant mares' serum gonadotropin (10 IU) with LH for 24 h resulted in a dose-dependent increase in the level of StAR protein that reached a maximum at 100 ng LH/ml. This increase was associated with an increase in progesterone production. Treatment of follicles with increasing concentrations (10 - 1000 ng/ml) of cantharidin suppresssed LH (100 ng/ml)-induced StAR protein levels and progesterone production in a dose-dependent manner. The amount of P450scc protein and the conversion of 22R-hydroxycholesterol to progesterone were not affected by cantharidin. This indicates that cantharidin did not interfere with the activity of P450scc. Cantharidin also decreased StAR protein levels and progesterone production induced by the adenylate cyclase activator forskolin (10(-5) M) or a cAMP analog 8-Br-cAMP (0.5 mM). These results demonstrate that cantharidin inhibits the LH-induced StAR protein levels, and, thus, suggest that phosphoprotein phosphatase activity is required for the cAMP-protein kinase A-stimulated steroidogenic activity of the preovulatory follicle.  相似文献   

5.
6.
7.
The purpose of this study was to evaluate the effects of GnRH-analog (Leuprolide acetate, LA) administration on follicular luteinization in equine chorionic gonadotropin plus human chorionic gonadotropin (eCG + hCG)-superovulated prepubertal treated rats. Results indicate that LA treatment decreases circulating levels of progesterone (P) and P accumulation in collagenase-dispersed ovarian cell cultures, though estradiol(E2) production is increased. These data suggest that cells from the LA group may be less luteinized following gonadotropin treatment. Studies performed on histological ovarian sections after different times of eCG administration showed that LA injections produce lower amounts of corpora lutea and antral follicles, and a greater number of atretic and preantral follicles. The basal and LH-stimulated P and progestagen accumulations are decreased in incubations of corpora lutea isolated from the LA group. In addition, the mitochondrial cholesterol side-chain cleavage (P450SCC) levels in corpora lutea from LA-treated rats are reduced, indicating that the decrease in P production observed is due in part to an alteration in the steroidogenic luteal capability. Immunocytochemical localization of nuclei exhibiting DNA fragmentation by the technique of terminal deoxynucleotidyl transferase end-labeling showed that LA treatment causes an increase in the number of apoptotic cells in preantral and antral follicles at all times studied (1, 2, 4, or 7 days of LA administration). A similar effect, though less pronounced, was observed in corpora lutea. It is concluded that LA treatment produces a failure in the steroidogenic luteal capability and an increase of apoptotic mechanisms in the ovary, producing as a consequence an interference in the follicular recruitment, growth, and luteinization induced by gonadotropins. Mol. Reprod. Dev. 51:287–294, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Undifferentiated granulosa cells from prehierarchal (6- to 8-mm-diameter) hen follicles express very low to undetectable levels of LH receptor (LH-R) mRNA, P450 cholesterol side chain cleavage (P450scc) enzyme activity, and steroidogenic acute regulatory (StAR) protein, and produce negligible progesterone, in vitro, following an acute (3-h) challenge with either FSH or LH. It has previously been established that culturing such cells with FSH for 18-20 h induces LH-R, P450scc, and StAR expression, which enables the initiation of progesterone production. The present studies were conducted to characterize the ability of activin and transforming growth factor (TGF) beta, both alone and in combination with FSH, to promote hen granulosa cell differentiation, in vitro. A 20-h culture of prehierarchal follicle granulosa cells with activin A or transforming growth factor beta (TGFbeta)1 increased LH-R mRNA levels compared with control cultured cells. Activin A and TGFbeta1 also promoted FSH-receptor (FSH-R) mRNA expression when combined with FSH treatment. Neither activin A nor TGFbeta1 alone stimulated progesterone production after 20 h culture. However, preculture with either factor for 20 h (to induce gonadotropin receptor mRNA expression) followed by a 3-h challenge with FSH or LH potentiated StAR expression and progesterone production compared with cells challenged with gonadotropin in the absence of activin A or TGFbeta1 preculture. Significantly, activation of the mitogen-activated protein (MAP) kinase pathway with transforming growth factor alpha (TGFalpha) (monitored by Erk phosphorylation) blocked TGFbeta1-induced LH-R expression, and this effect was associated with the inhibition of Smad2 phosphorylation. We conclude that a primary differentiation-inducing action of activin A and TGFbeta1 on hen granulosa cells from prehierarchal follicles is directed toward LH-R expression. Enhanced LH-R levels subsequently sensitize granulosa cells to LH, which in turn promotes StAR plus P450scc expression and subsequently an increase in P4 production. Significantly, the finding that TGFbeta signaling is negatively regulated by MAP kinase signaling is proposed to represent a mechanism that prevents premature differentiation of granulosa cells.  相似文献   

9.
The objective of this study was to investigate the levels of expression of steroid biosynthetic enzymes and steroidogenic acute regulatory protein (StAR) at different stages of ovarian follicular development in zebrafish (Danio rerio), and to investigate the sites within the steroid biosynthetic pathway that may be regulated by gonadotropins. Ovarian follicles of sexually mature fish were separated into primary, previtellogenic, vitellogenic, and mature stages and the expression of StAR, P450 side chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), P450 hydroxylase/lyase (P450c17), 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), 17beta-hydroxysteroid dehydrogenase type 3 (17beta-HSD3), and P450 aromatase (P450aromA) was determined by Real time RT-PCR. The expression of all genes changed significantly as follicles grew, with a decrease in the expression of StAR, P450scc, 3beta-HSD and P450c17 with maturation, and an increase in the expression of 17beta-HSD3 during vitellogenesis and 17beta-HSD1 and P450aromA during previtellogenesis. In vitro incubation of vitellogenic follicles demonstrated that the expression of StAR, 17beta-HSD3, and P450aromA increased in response to hCG, and decreased in the absence of hCG. In contrast, the expression of P450scc, 3beta-HSD, P450c17, and 17beta-HSD1 remained constant between treatments and over time. Testosterone and estradiol production in the culture medium was stimulated by human chorionic gonadotropin (hCG). These experiments aid in the characterization of the roles and regulation of steroids throughout ovarian development, and suggest that gonadotropins play a key role in the regulation of StAR, 17beta-HSD3, and P450aromA in zebrafish.  相似文献   

10.
Previous studies have indicated that digoxin (DG) inhibits testosterone production by rat testicular interstitial cells through both in vivo and in vitro experiments. DG and digitoxin (DT), but not ouabain, inhibit the progesterone, pregnenolone, and corticosterone secretion by rat granulosa cells, luteal cells, and zona fasciculata-reticularis (ZFR) cells, respectively. However, the effect of DG and DT on the enzyme kinetics of cytochrome P450 side chain cleavage enzyme (P450scc), the protein expression of P450scc and steroidogenic acute regulatory protein (StAR), and mRNA expression of StAR are unclear. ZFR cells were prepared from adrenocortical tissues of ovariectomized rats, and then challenged with adrenocorticotropin (ACTH), 8-Br-cAMP, forskolin, A23187, cyclopiazonic acid (CPA), nicotinic acid adenine dinucleotide phosphate (NAADP), trilostane, 25-OH-Cholesterol, progesterone, or deoxycorticosterone in the presence of DG, DT, or ouabain for 1 h. Enzyme kinetics of P450scc, protein expression of acute regulatory protein (StAR) and P450scc, and mRNA expression of StAR were investigated. DG and DT but not ouabain suppressed basal and other evoked-corticosterone release significantly. DG and DT also inhibited pregnenolone production. The Vmax of the DG and DT group was the same as the control group, but the Km was higher in DG- and DT-treated group than in control group. DT and ouabain significant suppressed mRNA expression of StAR. DG and DT had no effect on the P450scc and StAR protein expression at basal state, but diminished ACTH-induced StAR protein expression to basal level. These results indicated that DG and DT have an inhibitory effect on corticosterone production via a Na+, K+-ATPase-independent mechanism by diminishing actions on cAMP-, Ca2+-pathway, competitive inhibition of P450scc enzyme and reduction of StAR mRNA expression.  相似文献   

11.
The following study was undertaken to determine which hormones (luteinizing hormone, LH, and prolactin, PRL) and enzymes (cytochrome P450(17)alpha, nicotinamide adenine dinucleotide phosphate [NADPH]-cytochrome P450 reductase, 3-hydroxy-3-methylglutaryl [HMG] CoA reductase, cholesterol side-chain cleavage cytochrome P450 [P450scc], and adrenodoxin) were associated with the regulation of androgen biosynthesis by developing rat follicles and corpora lutea in vivo as well as by thecal explants maintained in culture. Immunoblots of soluble cell extracts of small antral (SA), preovulatory (PO), and luteinizing (PO + human chorionic gonadotropin [hCG], 7 h) follicles, newly formed corpora lutea (PO + hCG, 24 h), and corpora luteal isolated on Day 15 of pregnancy, demonstrated that cytochrome P450(17)alpha was low in SA follicles, selectively increased 4-fold in PO follicles, and decreased to less than 10% within 7 h after hCG. Filter hybridization assays using a 32P-labeled cytochrome P450(17)alpha cDNA probe demonstrated that changes in the content of P450(17)alpha mRNA exhibited a pattern similar to that of the enzyme. Conversely, immunoblots for other microsomal enzymes either exhibited no change (NADPH cytochrome P450 reductase) or a transient increase after the hCG surge (HMG CoA reductase), whereas the mitochondrial enzymes either increased markedly in association with luteinization (cytochrome P450scc) or were increased in a more transient manner (adrenodoxin). The LH-induced loss of cytochrome P450(17)alpha in vivo was not associated with loss of androgen biosynthesis when luteinizing theca were placed in culture in medium containing either LH or LH and PRL, suggesting that other hormones, or the presence of other cell types, are required to maintain the decrease in cytochrome P450(17)alpha in vivo. Conversely, the LH-induced increase in cytochrome P450scc in vivo was associated with the maintenance of elevated progesterone production by theca in culture, suggesting that cytochrome P450scc may be constitutively expressed in luteinized theca. Thus, thecal cell cytochrome P450(17)alpha and the regulation of its content and mRNA by LH are pivotal to the biosynthesis of androgens, the obligatory precursors for estradiol biosynthesis and the consequent development of preovulatory follicles. The molecular basis for the different effects of low versus elevated concentrations of LH on cytochrome P450(17)alpha, as well as cytochrome P450scc, remain to be determined.  相似文献   

12.
In vivo and in vitro luteinization were investigated in the porcine ovary, with emphasis on expression of steroidogenic acute regulatory protein (StAR). StAR mRNA and protein as well as cytochrome P450 side-chain cleavage mRNA (P450scc) increased during the luteal phase in the corpus luteum (CL) and were absent in regressed CL. Cytochrome P450 aromatase mRNA (P450arom) was not detectable at any time in CL. In vitro luteinization of granulosa cells occurred over 96 h in culture, during which P450arom mRNA was present at 1 h after cell isolation but not detectable at 6 h; and P450scc and StAR mRNAs were first detectable at 6 h and 48 h, respectively. Incubation of cultures with insulin-like growth factor I (IGF-I, 10 ng/ml), dibutyryl cAMP (cAMP, 300 microM), or their combination, induced measurable StAR mRNA at 24 h (p < 0.05), increased progesterone accumulation at 48 h, and elevated both StAR and P450scc expression through 96 h. Incubation of luteinized granulosa cells with epidermal growth factor (EGF, 10 nM) changed their phenotype from epithelioid to fibroblastic, eliminated steady-state StAR expression, and interfered with cAMP induction of StAR mRNA and progesterone accumulation. EGF had little apparent effect on P450scc mRNA abundance. It is concluded that StAR expression characterizes luteinization, and early luteinization is induced by cAMP and IGF-I in vitro. Further, EGF induces a morphological and functional phenotype that appears similar to an earlier stage of granulosa cell function.  相似文献   

13.
The nephrotic syndrome is a renal disease characterized by proteinuria, hypoproteinemia, edema and hyperlipidemia. It has been reported that female nephrotic rats are characterized by loss of the oestrus cycle, follicle atresia, low gonadotropin and steroid concentrations; particularly, undetectable estradiol levels. Therefore, to determine the mechanisms involved in the ovarian steroidogenesis impairment, in this present study we evaluated the ovarian expression of the essential steroidogenesis components: cytochrome P450 side cholesterol chain cleavage enzyme (P450scc) and steroidogenic acute regulatory protein (StAR). The experiments were conducted in the rat experimental model of nephrosis induced by puromycin aminonucleoside (PAN) and in control groups. The evaluation of the expression of P450scc and StAR mRNA were performed during the acute phase of nephrosis as well as after the exogenous administration of 1 or 4 doses of human chorionic gonadotrophin (hCG), or a daily dose of FSH or FSH+hCG for 10 days. In addition, serum hormone concentrations, intra-ovarian steroid content, and the reproductive capacity were determined. The results revealed a decreased expression of mRNA of P450scc enzyme and StAR during nephrosis, and eventhough they increased after gonadotropins treatment, they did not conduce to a normal cycling rat period or fertility recovery. This study demonstrates that the mechanism by which ovarian steroid biosynthesis is altered during acute nephrosis involves damage at the P450scc and StAR mRNA synthesis and processing.  相似文献   

14.
We determined 1) whether the previously observed induction of estradiol secretion in bovine granulosa cells cultured in serum-free conditions is associated with an increase in cytochrome P450 aromatase (P450(arom)) mRNA abundance and 2) whether P450(arom) mRNA levels are responsive to FSH in vitro. Granulosa cells from small (2-4-mm) follicles were cultured in serum-free medium. Estradiol secretion increased with time in culture and was correlated with increased P450(arom) mRNA abundance. Progesterone secretion also increased with time in culture, but P450 cholesterol side-chain cleavage (P450(scc)) mRNA abundance did not. FSH stimulated estradiol secretion and P450(arom) mRNA abundance; the effect was quadratic for both estradiol and P450(arom) mRNA. Estradiol secretion and P450(arom) mRNA levels were correlated. FSH stimulated progesterone secretion and P450(scc) mRNA abundance, although the minimum effective dose of FSH was lower for estradiol (0.1 ng/ml) than for progesterone (10 ng/ml) production. Insulin alone stimulated estradiol secretion and P450(arom) mRNA levels but not progesterone or P450(scc) mRNA abundance. We conclude that this cell culture system maintained both estradiol secretion and P450(arom) mRNA abundance responsiveness to FSH and insulin, whereas P450(scc) mRNA abundance and progesterone secretion were responsive to FSH but not insulin.  相似文献   

15.
Morita K  Kuwada A  Fujihara H  Morita Y  Sei H 《Life sciences》2003,72(17):1973-1982
Selective REM sleep deprivation was carried out under the conditions designed to minimize the adverse influence of environmental conditions and restricted movement, and the influence of REM sleep deprivation on adrenocortical steroid metabolism was investigated by measuring the steady-state levels of mRNAs encoding steroid metabolism-related genes, steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme cytochrome P450 (P450scc) and steroid 5alpha-reductase (5alpha-R), in rat adrenal glands. Selective REM sleep deprivation caused a significant decrease in StAR mRNA and an increase in 5alpha-R mRNA levels without any notable change in P450scc mRNA levels in the adrenal gland. In contrast, non-selective sleep disturbance, resulting in the partial reductions of non-REM and REM sleep, tended to increase both StAR and P450scc mRNA levels without any statistical significance. These results indicate that REM sleep deprivation by itself may affect the expression of steroid metabolism-related genes in the adrenal gland, suggesting a possible relation between REM sleep and adrenocortical steroid metabolism.  相似文献   

16.
The purpose of the present study was to evaluate the in vivo effect of the GnRH analogue leuprolide acetate (LA) on follicular development and apoptosis-related mechanisms in preovulatory ovarian follicles (POF) obtained from prepubertal eCG-treated rats. Serum progesterone and estradiol levels were measured, and a significant decrease in circulating estradiol levels was observed in the LA group, whereas serum progesterone levels remained unchanged. Ovarian histology revealed an inhibitory effect of LA treatment on the follicular development induced by eCG. After 48 h of LA treatment, the numbers of atretic and preantral follicles were increased as compared with controls, whereas the number of antral follicles had decreased. Cells undergoing DNA fragmentation were quantified by performing in situ 3' end labeling of DNA with digoxygenin-dUTP on ovarian sections. LA treatment caused an increase in the percentage of apoptotic cells in preantral and antral follicles. DNA isolated from these POF incubated 24 h in serum-free medium exhibited the typical apoptotic DNA degradation pattern. Treatment of follicles with epidermal growth factor (EGF) suppressed the spontaneous onset of DNA fragmentation, and a similar effect was observed in LA follicles. POF obtained from LA-treated rats showed no changes in Bcl-2 or Bax protein levels. However, a reduction in the Bcl-xL:Bcl-xS ratio was observed, with a greater decrease in Bcl-xL compared with Bcl-xS during the incubation, suggesting a lower stability of the Bcl-xL isoform in the LA group. These results indicate that in vivo GnRH agonist treatment produces an increase in the apoptosis process in POF from eCG-treated rats, and this effect is reversed in vitro by EGF. This GnRH analogue also reduced the stability of the Bcl-xL protein, thus interfering with follicular development by an as yet unknown mechanism.  相似文献   

17.
A decrease in serum progesterone at the end of pregnancy is essential for the induction of parturition in rats. We have previously demonstrated that LH participates in this process through: 1) inhibiting 3beta-hydroxysteroid dehydrogenase (3beta-HSD) activity and 2) stimulating progesterone catabolism by inducing 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) activity. The objective of this investigation was to determine the effect of LH and progesterone on the luteal expression of the steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage (P450(scc)), 3beta-HSD, and 20alpha-HSD genes. Gene expression was analyzed by Northern blot analysis 24 and 48 h after administration of LH or vehicle on Day 19 of pregnancy. StAR and 3beta-HSD mRNA levels were lower in LH-treated rats than in rats administered with vehicle at both time points studied. P450(scc) mRNA levels were unaffected by LH. The 20alpha-HSD mRNA levels were not different between LH and control rats 24 h after treatment; however, greater expression of 20alpha-HSD, with respect to controls, was observed in LH-treated rats 48 h after treatment. Luteal progesterone content dropped in LH-treated rats at both time points studied, whereas serum progesterone decreased after 48 h only. In a second set of experiments, the anti-progesterone RU486 was injected intrabursally on Day 20 of pregnancy. RU486 had no effect on 3beta-HSD or P450(scc) expression but increased 20alpha-HSD mRNA levels after 8 h treatment. In conclusion, the luteolytic effect of LH is mediated by a drop in StAR and 3beta-HSD expression without effect on P450(scc) expression. We also provide the first in vivo evidence indicating that a decrease in luteal progesterone content may be an essential step toward the induction of 20alpha-HSD expression at the end of pregnancy in rats.  相似文献   

18.
Compelling evidence has now demonstrated direct biological actions of sex steroids at the cerebellum. Likewise, the expression of key steroidogenic factors, such as the steroidogenic acute regulatory protein (StAR), cytochrome P450 side chain cleavage (P450scc), and aromatase, at this neural site has been reported. Little is known, however, about the regulation of their genes in the cerebellum. Assessment of StAR, P450scc, and aromatase mRNAs in the cerebellum of male and female rats revealed that the expression of these genes is developmentally regulated, with the highest levels at early postnatal ages in both sexes and with significantly higher mRNA levels in postnatal males. Expression of these genes in the female remained unaltered after perinatal androgenization and along the estrous cycle. In contrast, damage of cerebellar afferent neurons of the inferior olivary nucleus evoked a significant increase in StAR, P450scc, and aromatase mRNA levels at this site, as well as a transient elevation in StAR mRNA at the cerebellum. Finally, enhancement of cAMP levels in cultured cerebellar neurons induced a significant increase in StAR and aromatase mRNA levels. In summary, we present herein novel evidence for the developmentally regulated and partially sexually dimorphic pattern of expression of StAR, P450scc, and aromatase genes in the rat cerebellum. These observations, together with the finding that the mRNA levels of these steroidogenic molecules are sensitive to injury and are regulated by intracellular cAMP, strongly suggest that local steroidogenesis is likely to play an important role during development and adaptation to neurodegenerative processes in the olivocerebellar system.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号