首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
We previously demonstrated that the thyroid hormone, T(3), acutely stimulates mitochondrial metabolism in a thyroid hormone receptor (TR)-dependent manner. T(3) has also recently been shown to stimulate mitochondrial fatty acid oxidation (FAO). Here we report that TR-dependent stimulation of metabolism is mediated by the mitochondrial trifunctional protein (MTP), the enzyme responsible for long-chain FAO. Stimulation of FAO was significant in cells that expressed a nonnuclear amino terminus shortened TR isoform (sTR(43)) but not in adult fibroblasts cultured from mice deficient in both TRα and TRβ isoforms (TRα(-/-)β(-/-)). Mouse embryonic fibroblasts deficient in MTP (MTP(-/-)) did not support T(3)-stimulated FAO. Inhibition of fatty-acid trafficking into mitochondria using the AMP-activated protein kinase inhibitor 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyrrazolo[1,5-a]-pyrimidine (compound C) or the carnitine palmitoyltransferase 1 inhibitor etomoxir prevented T(3)-stimulated FAO. However, T(3) treatment could increase FAO when AMP-activated protein kinase was maximally activated, indicating an alternate mechanism of T(3)-stimulated FAO exists, even when trafficking is presumably high. MTPα protein levels and higher molecular weight complexes of MTP subunits were increased by T(3) treatment. We suggest that T(3)-induced increases in mitochondrial metabolism are at least in part mediated by a T(3)-shortened TR isoform-dependent stabilization of the MTP complex, which appears to lower MTP subunit turnover.  相似文献   

5.
6.
7.
The c-erbA proto-oncogenes encode nuclear receptors for thyroid hormone (T3), a hormone intimately involved in mammalian brain maturation. To study thyroid hormone receptor (TR) action on neuronal cells in vitro, we expressed the chicken c-erbA/TR alpha-1 as well as its oncogenic variant v-erbA in the adrenal medulla progenitor cell line PC12. In the absence of T3, exogenous TR alpha-1 inhibits NGF-induced neuronal differentiation and represses neuron-specific gene expression. In contrast, TR alpha-1 allows normal differentiation and neuronal gene expression to occur in the presence of T3. Finally, TR alpha-1- expressing cells become NGF-responsive for proliferation when T3 is absent, but NGF-dependent for survival in presence of T3. A similar differentiation induction by NGF plus T3 was observed in a central nervous system-derived neuronal cell line (E 18) expressing exogenous TR alpha-1. Together with the finding that TR alpha-1 constitutively blocked dexamethasone-induced differentiation of PC12 cells into the chromaffin pathway, these results suggest that TR alpha-1 plays an important role in regulating commitment and maturation of neuronal progenitors. In contrast, the v-erbA oncogene, a mutated, oncogenic version of TR alpha-1, partially but constitutively inhibited NGF- induced neuronal differentiation of PC12 cells and potentiated dexamethasone-induced chromaffin differentiation, giving rise to an aberrant "interlineage" cell phenotype.  相似文献   

8.
9.
10.
4-1BB, a T cell costimulatory receptor, prolongs CD8(+) T cell survival. In these studies, 4-1BB stimulation was shown to increase expression of the antiapoptotic genes bcl-x(L) and bfl-1 via 4-1BB-mediated NF-kappaB activation. This signaling pathway was specifically inhibited by PDTC and was different from the pathways that enhanced CD8(+) T cell proliferation. The results suggest a role for the antiapoptotic activities of Bcl-x(L) and Bfl-1 proteins in 4-1BB-mediated CD8(+) T cell survival in vivo.  相似文献   

11.
12.
Stromelysins are a group of proteases which degrade the extracellular matrix and activate other secreted proteases. Stromelysin (ST)-1 and ST-2 genes are induced by tumor promoters, oncogenes and growth factors, and have been involved in acquisition of the malignant phenotype. We show here that the thyroid hormone (T3) increases ST-1 and ST-2 expression in a non-transformed mouse mammary epithelial cell line (EpH4) in a way that is dependent on the level of thyroid receptor/c-erbA (TR alpha-1) expression. In agreement with this, T3 increases the secreted stromelysin activity and enhances the gelatinolytic activity of type IV collagenase. We have also demonstrated that T3 affects the epithelial polarity of EpH4 cells, diminishing the transepithelial electrical resistance of monolayers cultured on permeable filters, causing an abnormal distribution of polarization markers and the disruption of the organized 3-D structures formed by these cells in type I collagen gels. These results indicate that the ligand-activated TR alpha-1 plays an important role in regulating the morphogenetic and invasive capacities of mammary epithelial cells. Because the c-erbA locus is altered in several types of carcinoma, an altered or deregulated TR alpha-1 expression may also be important for breast cancer development and metastasis.  相似文献   

13.
Thyroid hormones, T4 and T3, regulate their own production by feedback inhibition of TSH and TRH synthesis in the pituitary and hypothalamus when T3 binds to thyroid hormone receptors (TRs) that interact with the promoters of the genes for the TSH subunit and TRH. All TR isoforms are believed to be involved in the regulation of this endocrine axis, as evidenced by the massive dysregulation of TSH production in mice lacking all TR isoforms. However, the relative contributions of TR isoforms in the pituitary vs. the hypothalamus remain to be completely elucidated. Thus, to determine the relative contribution of pituitary expression of TR-alpha in the regulation of the hypothalamic-pituitary-thyroid axis, we selectively impaired TR-alpha function in TR-beta null mice (TR-beta-/-) by pituitary restricted expression of a dominant negative TR-beta transgene harboring a delta337T mutation. These animals exhibited 10-fold and 32-fold increase in T4 and TSH concentrations, respectively. Moreover, the negative regulation of TSH by exogenous T3 was completely absent and a paradoxical increase in TSH concentrations and TSH-beta mRNA was observed. In contrast, prepro-TRH expression levels in T3-treated TR-beta-/- were similar to levels observed in the delta337/TR-beta-/- mice, and ligand-independent activation of TSH in hypothyroid mice was equivalently impaired. Thus, isolated TR-beta deficiency in TRH paraventricular hypothalamic nucleus neurons and impaired function of all TRs in the pituitary recapitulate the baseline hormonal disturbances that characterize mice with complete absence of all TRs.  相似文献   

14.
Resistance to thyroid hormone (RTH) is caused by mutations of the thyroid hormone receptor beta (TR beta) gene. Almost all RTH patients are heterozygous with an autosomal dominant pattern of inheritance. That most are clinically euthyroid suggests a compensatory role of the TR alpha1 isoform in maintaining the normal functions of thyroid hormone (T3) in these patients. To understand the role of TR alpha1 in the manifestation of RTH, we compared the phenotypes of mice with a targeted dominantly negative mutant TR beta (TR betaPV) with or without TR alpha1. TR betaPV mice faithfully recapitulate RTH in humans in that these mice demonstrate abnormalities in the pituitary-thyroid axis and impairment in growth. Here we show that the dysregulation of the pituitary-thyroid axis was worsened by the lack of TR alpha1 in TR betaPV mice, and severe impairment of postnatal growth was manifested in TR betaPV mice deficient in TR alpha1. Furthermore, abnormal expression patterns of T3-target genes in TR betaPV mice were altered by the lack of TR alpha1. These results demonstrate that the lack of TR alpha1 exacerbates the manifestation of RTH in TR betaPV mice. Therefore, TR alpha1 could play a compensatory role in mediating the functions of T3 in heterozygous patients with RTH. This compensatory role may be especially crucial for postnatal growth.  相似文献   

15.
16.

Background

Thyroid hormone acts via receptor subtypes (TRα1, TRβ1, TRβ2) with differing tissue distributions, encoded by distinct genes (THRA, THRB). THRB mutations cause a disorder with central (hypothalamic–pituitary) resistance to thyroid hormone action with markedly elevated thyroid hormone and normal TSH levels.

Scope of review

This review describes the clinical features, genetic and molecular pathogenesis of a homologous human disorder mediated by defective THRA. Clinical features include growth retardation, skeletal dysplasia and constipation associated with low-normal T4 and high-normal T3 levels and a low T4/T3 ratio, together with subnormal reverse T3 levels. Heterozygous TRa1 mutations in affected individuals generate defective mutant receptors which inhibit wild-type receptor action in a dominant negative manner.

Major conclusions

Mutations in human TRα1 mediate RTH with features of hypothyroidism in particular tissues (e.g. skeleton, gastrointestinal tract), but are not associated with a markedly dysregulated pituitary–thyroid axis.

General significance

Human THRA mutations could be more common but may have eluded discovery due to the absence of overt thyroid dysfunction. Nevertheless, in the appropriate clinical context, a thyroid biochemical signature (low T4/T3 ratio, subnormal reverse T3 levels), may enable future identification of cases.This article is part of a Special Issue entitled Thyroid hormone signalling.  相似文献   

17.
18.
19.
Lin HY  Hopkins R  Cao HJ  Tang HY  Alexander C  Davis FB  Davis PJ 《Steroids》2005,70(5-7):444-449
Because the androgen and estrogen nuclear hormone receptors are subject to acetylation, we speculated that the nuclear thyroid hormone receptor-beta1 (TRbeta1), another superfamily member, was also subject to this posttranslational modification. Treatment of 293T cells that contain TRbeta1(wt) with l-thyroxine (T4)(10(-7)M, total concentration) resulted in the accumulation of acetylated TR in nuclear fractions at 30-45 min and a decrease in signal by 60 min. A similar time course characterized recruitment by TR of p300, a coactivator protein with intrinsic transacetylase activity. Recruitment by the receptor of SRC-1, a TR coactivator that also acetylates nucleoproteins, was also demonstrated. Inhibition of the MAPK (ERK1/2) signal transduction cascade by PD 98059 blocked the acetylation of TR caused by T4. Tetraiodothyroacetic acid (tetrac) decreased T4-induced acetylation of TR. At 10(-7)M, 3,5,3'-triiodo-l-thyronine (T3) was comparably effective to T4 in causing acetylation of TR. We studied acetylation in TR that contained mutations in the DNA-binding domain (DBD) (residues 128-142) that are known to be relevant to recruitment of coactivators and to include the MAPK docking site. In response to T4 treatment, the K128A TR mutant transfected into CV-1 cells recruited p300, but not SRC-1, and was subject to acetylation. R132A complexed with SRC-1, but not p300; it was acetylated equally well in both the absence and presence of T4. S142E was acetylated in the absence and presence of T4 and bound SRC-1 under both conditions; this mutant was also capable of binding p300 in the presence of T4. There was no serine phosphorylation of TR in any of these mutants. We conclude that (1) TRbeta1, like AR and ER, is subject to acetylation; (2) the process of acetylation of TR requires thyroid hormone-directed MAPK activity, but not serine phosphorylation of TR by MAPK, suggesting that the contribution of MAPK is upstream in the activation of the acetylase; (3) the amino acid residue 128-142 region of the DBD of TR is important to thyroid hormone-associated recruitment of p300 and SRC-1; (4) acetylation of TR DBD mutants that is directed by T4 appears to be associated with recruitment of p300.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号