首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erwinia piriflorinigrans is a necrotrophic pathogen of pear reported from Spain that destroys flowers but does not progress further into the host. We sequenced the complete genome of the type strain CFBP 5888T clarifying its phylogenetic position within the genus Erwinia, and indicating a position between its closest relative, the epiphyte Erwinia tasmaniensis and other plant pathogenic Erwinia spp. (i.e., the fire blight pathogen E. amylovora and the Asian pear pathogen E. pyrifoliae). Common features are the type III and type VI secretion systems, amylovoran biosynthesis and desferrioxamine production. The E. piriflorinigrans genome also provided the first evidence for production of the siderophore chrysobactin within the genus Erwinia sensu stricto, which up to now was mostly associated with phytopathogenic, soft-rot Dickeya and Pectobacterium species. Plasmid pEPIR37, reported in this strain, is closely related to small plasmids found in the fire blight pathogen E. amylovora and E. pyrifoliae. The genome of E. piriflorinigrans also gives detailed insights in evolutionary genomics of pathoadapted Erwinia.  相似文献   

2.
Erwinia piriflorinigrans is a new pathogenic species of the bacterial genus Erwinia that has been described recently in Spain. Accurate detection and identification of E. piriflorinigrans are challenging because its symptoms on pear blossoms are similar to those caused by Erwinia amylovora, the causal agent of fire blight. Moreover, these two species share phenotypic and molecular characteristics. Two specific and sensitive conventional and real-time PCR protocols were developed to identify and detect E. piriflorinigrans and to differentiate it from E. amylovora and other species of this genus. These protocols were based on sequences from plasmid pEPIR37, which is present in all strains of E. piriflorinigrans analyzed. After the stability of the plasmid was demonstrated, the specificities of the protocols were confirmed by the amplification of all E. piriflorinigrans strains tested, whereas 304 closely related pathogenic and nonpathogenic Erwinia strains and microbiota from pear trees were not amplified. In sensitivity assays, 103 cells/ml extract were detected in spiked plant material by conventional or real-time PCR, and 102 cells/ml were detected in DNA extracted from spiked plant material by real-time PCR. The protocols developed here succeeded in detecting E. piriflorinigrans in 102 out of 564 symptomatic and asymptomatic naturally infected pear samples (flowers, cortex stem tissue, leaves, shoots, and fruitlets), in necrotic Pyracantha sp. blossoms, and in necrotic pear and apple tissues infected with both E. amylovora and E. piriflorinigrans. Therefore, these new tools can be used in epidemiological studies that will enhance our understanding of the life cycle of E. piriflorinigrans in different hosts and plant tissues and its interaction with E. amylovora.  相似文献   

3.
PCR-based subtractive hybridization was used to isolate sequences from Erwinia amylovora strain Ea110, which is pathogenic on apples and pears, that were not present in three closely related strains with differing host specificities: E. amylovora MR1, which is pathogenic only on Rubus spp.; Erwinia pyrifoliae Ep1/96, the causal agent of shoot blight of Asian pears; and Erwinia sp. strain Ejp556, the causal agent of bacterial shoot blight of pear in Japan. In total, six subtractive libraries were constructed and analyzed. Recovered sequences included type III secretion components, hypothetical membrane proteins, and ATP-binding proteins. In addition, we identified an Ea110-specific sequence with homology to a type III secretion apparatus component of the insect endosymbiont Sodalis glossinidius, as well as an Ep1/96-specific sequence with homology to the Yersinia pestis effector protein tyrosine phosphatase YopH.  相似文献   

4.
Fire blight caused by the Gram‐negative bacterium Erwinia amylovora can be controlled by antagonistic microorganisms. We characterized epiphytic bacteria isolated from healthy apple and pear trees in Australia, named Erwinia tasmaniensis, and the epiphytic bacterium Erwinia billingiae from England for physiological properties, interaction with plants and interference with growth of E. amylovora. They reduced symptom formation by the fire blight pathogen on immature pears and the colonization of apple flowers. In contrast to E. billingiae, E. tasmaniensis strains induced a hypersensitive response in tobacco leaves and synthesized levan in the presence of sucrose. With consensus primers deduced from lsc as well as hrpL, hrcC and hrcR of the hrp region of E. amylovora and of related bacteria, these genes were successfully amplified from E. tasmaniensis DNA and alignment of the encoded proteins to other Erwinia species supported a role for environmental fitness of the epiphytic bacterium. Unlike E. tasmaniensis, the epiphytic bacterium E. billingiae produced an acyl‐homoserine lactone for bacterial cell‐to‐cell communication. Their competition with the growth of E. amylovora may be involved in controlling fire blight.  相似文献   

5.
The bacterial plant pathogen Erwinia amylovora causes fire blight, a major disease threat to pome fruit production worldwide with further impact on a wide-range of Rosaceae species. Important factors contributing to the development of the disease were discovered in the last decades. Comparative genomics of the genera Erwinia and Pantoea is coming into focus with the recent availability of complete genome sequences. Insights from comparative genomics now position us to answer fundamental questions regarding the evolution of E. amylovora as a successful pathogen and the critical elements for biocontrol activity of Pantoea spp. This trove of new data promises to reveal novel determinants and to understand interactive pathways for virulence, host range and ecological fitness. The ultimate aim is now to apply genomics and identify the pathogen Achilles heels and antagonist mechanisms of action as targets for designing innovative control strategies for fire blight.  相似文献   

6.
Evolutionary genomics is coming into focus with the recent availability of complete sequences for many bacterial species. A hypothesis on the evolution of virulence factors in the plant pathogen Erwinia amylovora, the causative agent of fire blight, was generated using comparative genomics with the genomes E. amylovora, Erwinia pyrifoliae and Erwinia tasmaniensis. Putative virulence factors were mapped to the proposed genealogy of the genus Erwinia that is based on phylogenetic and genomic data. Ancestral origin of several virulence factors was identified, including levan biosynthesis, sorbitol metabolism, three T3SS and two T6SS. Other factors appeared to have been acquired after divergence of pathogenic species, including a second flagellar gene and two glycosyltransferases involved in amylovoran biosynthesis. E. amylovora singletons include 3 unique T3SS effectors that may explain differential virulence/host ranges. E. amylovora also has a unique T1SS export system, and a unique third T6SS gene cluster. Genetic analysis revealed signatures of foreign DNA suggesting that horizontal gene transfer is responsible for some of these differential features between the three species.  相似文献   

7.
Aims: To detect the apple and pear pathogens Erwinia amylovora and Erwinia pyrifoliae as well as the related epiphytes Erwinia tasmaniensis and Erwinia billingiae, we created novel PCR primers and also applied them to a series of other plant‐associated bacteria as control. To facilitate fast diagnosis, we used matrix‐assisted laser desorption ionization–time‐of‐flight mass spectrometry (MALDI–TOF MS). Methods and Results: The PCR primers were deduced from the pstSglmS regions, which can include the gene for levansucrase, and also from regions encoding capsular polysaccharide synthesis. All primer combinations were specific for their associated Erwinia species to detect them with conventional PCR, also in mixed cultures from necrotic plant tissue. Other primers designed for quantitative PCR with SYBR Green or together with TaqMan probes were applied for real‐time detection to determine growth of Erw. amylovora, Erw. billingiae, Erw. pyrifoliae and Erw. tasmaniensis in apple blossoms. From whole‐cell protein extracts, profiles were generated using a Bruker microflex machine and Erwinia strains classified according to a score scheme. Conclusions: The designed PCR primers identified the Erwinia species unambiguously and can be applied to qualitative and quantitative tests. MALDI–TOF MS data were in agreement with the PCR assays. Significance and Impact of the Study: The applied diagnosis methods allow fast and precise monitoring of two pathogenic and two epiphytic Erwinia species. They are valuable for population studies with apple and pear flowers and with diseased plant material.  相似文献   

8.
9.
The fire blight pathogen Erwinia amylovora was assayed for survival under unfavourable conditions such as on nitrocellulose filters, in non‐host plants as well as in inoculated mature apples and in infested apple stem sections. In a sterile dry environment, an E. amylovora EPS (exopolysaccharide) mutant, and to a lesser extent its parental wild‐type strain decreased within 3 weeks to a low titre. However, under moist conditions the decrease of viable cells occurred only partially for both strains. Very low cell titres were recovered after application of E. amylovora onto the surface of tobacco leaves, whereas infiltration into the leaves produced lesions (hypersensitive response, HR), in which the bacteria survived in significant amounts. A similar effect was found for the necrotic zones of HR in tobacco leaves caused by E. pyrifoliae, by Pseudomonas syringae pathovars and HR‐deficient E. amylovora mutants or mutants deficient in EPS synthesis and disease‐specific genes. During 7 years of storage, the viability of E. amylovora in wood sections from fire blight‐infested apple trees declined to a low titre. In tissue of mature apples, E. amylovora cells slowly dispersed and could still be recovered after several weeks of storage at room temperature. A minimal risk of accidental dissemination of E. amylovora apart from infested host plants can experimentally not be excluded, but other data confirm a very low incidence of any long distance distribution.  相似文献   

10.
The siderophore produced by Erwinia amylovora, the causal agent of fire blight of Maloideae, is one of the virulence factors of this bacterium. The production of siderophores enables E. amylovora to overcome the conditions of iron limitation met in plant tissue, and may also protect the bacteria against active oxygen species produced through the Fenton reaction. In this paper, we have examined the ability of an iron chelator protein, encoded by the bovine lactoferrin gene, to reduce fire blight susceptibility in pear (Pyrus communis L.). Transgenic pear clones expressing this gene controlled by the CaMV35S promoter were produced by Agrobacterium tumefaciens mediated transformation. Transformants were analysed by RT-PCR and western blot to determine lactoferrin expression levels. Most transgenic clones demonstrated significant reduction of susceptibility to fire blight in vitro and in the greenhouse when inoculated by E. amylovora. These transgenic clones also showed a significant reduction of symptoms when inoculated with two other pear bacterial pathogens : Pseudomonas syringae pv. syringae and Agrobacterium tumefaciens. Moreover, we have shown that this increase in bacterial resistance was correlated with an increase in root ferric reductase level activity and leaf iron content. Despite negative effects on the growth of a few clones, our results indicate the potential of lactoferrin gene transformation to protect pear from fire blight through increased iron chelation.  相似文献   

11.
Fire blight, a devastating disease of pome fruit trees continues to pose threat to agricultural production. Detection of its causative agent, bacterium Erwinia amylovora, is usually straightforward in symptomatic samples. Methods with increased sensitivity however, are sometimes needed for detection of E. amylovora and real-time PCR assays have been shown to have required sensitivity and reliability. Here we summarize our previous results on real-time PCR detection of fire blight and present new, fast and sensitive real-time PCR assay based on amsC gene performed on SmartCycler? instrument. The setting is optimal for analysis of small number of samples in the laboratory or for on-site detection. Many advantages of real-time PCR assays warrant their use in detection and diagnosis of E. amylovora, particularly in detection of low concentrations of target bacteria e.g. in testing for latent infections. It is to be expected that the use of real-time PCR will increase in both diagnostics and in research, as a tool for target detection and quantification as well as for gene expression analysis.  相似文献   

12.
13.
The bacterium Erwinia amylovora causes fire blight, a serious and widespread disease of several pome fruit and ornamental plants. The use of suitable detection tools is essential for preventing its dissemination and, according to the protocol of the European and Mediterranean Plant Protection Organization, the isolation and further identification of E. amylovora is the only conclusive test of its presence. However, bacterial growth on solid media can be hampered when the pathogen is suffering stressful conditions in pome fruit or in other habitats. Since copper is an essential micronutrient that, in E. amylovora, also increases the exopolysaccharide production in rich-nutrient media, we have designed a non-selective differential medium containing 1.5 mM CuSO4 to improve the recovery of E. amylovora from plants under unfavorable conditions. In this new medium named Recovery Erwinia amylovora-Stressed Cells (RESC), its colonies were easily distinguished by a light yellow color and a high mucus production. The plating recovery of several E. amylovora strains in vitro and from naturally infected samples was significantly improved with respect to other media routinely employed, particularly when the pathogen was suffering stressful conditions. Thus, the recovery of stressed E. amylovora cells (after UV irradiation, nutrient deprivation, or the presence of copper ions in non-copper-complexing media) was significantly enhanced on RESC medium, and their culturability period extended. Therefore, RESC is a useful and valuable medium for the isolation of E. amylovora when adverse conditions in the natural environment are expected.  相似文献   

14.
Erwinia amylovora is a polyphagous bacterium causing fire blight on apple, pear and over 130 other plant species belonging mainly to the Rosaceae family. Although E. amylovora is regarded as a very homogenous species, the particular strains can differ in pathogenic ability as far as their host range is concerned (e.g. those originating from Rubus or Maloidae plants) as well as by the extent of the disease they cause. It was found that strains originating from North America are generally more genetically heterogeneous than those from Europe. Diversity of E. amylovora is also related to streptomycin resistance as a result of its application to control of fire blight. The level of genetic heterogeneity of E. amylovora is so low (comparative genome analysis revealed a similarity of over 99% for the two genomes tested) that standard DNA-based techniques fail in detection of intra-species variability. Amplified fragment length polymorphism was found to be most useful for differentiation of strains of fire blight causal agent as well as techniques ensuing release of pan-genome sequences of two E. amylovora strains: multi-locus variable number of tandem repeats analysis and clustered regularly interspaced short palindrome repeats.  相似文献   

15.
Fire blight disease, caused by Erwinia amylovora, could damage rosaceous plants such as apples, pears, and raspberries. In this study, we designed to understand how E. amylovora affected other bacterial communities on apple rhizosphere; twig and fruit endosphere; and leaf, and fruit episphere. Limited studies on the understanding of the microbial community of apples and changes the community structure by occurrence of the fire blight disease were conducted. As result of these experiments, the infected trees had low species richness and operational taxonomic unit diversity when compared to healthy trees. Rhizospheric bacterial communities were stable regardless of infection. But the communities in endosphere and episphere were significanlty affected by E. amylovora infection. We also found that several metabolic pathways differ significantly between infected and healthy trees. In particular, we observed differences in sugar metabolites. The finding provides that sucrose metabolites are important for colonization of E. amylovora in host tissue. Our results provide fundamental information on the microbial community structures between E. amylovora infected and uninfected trees, which will contribute to developing novel control strategies for the fire blight disease.  相似文献   

16.
Genomics has clarified the biosynthetic pathway for desferrioxamine E critical for iron acquisition in the enterobacterial fire blight pathogen Erwinia amylovora. Evidence for each of the individual steps and the role of desferrioxamine E biosynthesis in pathogen virulence and cell protection from host defenses is presented. Using comparative genomics, it can be concluded that desferrioxamine biosynthesis is ancestral within the genera Erwinia and Pantoea.  相似文献   

17.
Fire blight, caused by the gram-negative bacteriumErwinia amylovora (Burrill) Winslow et al., is a dangerous disease of pome fruits, including pear. A pear breeding program for fire blight resistance was initiated in 2003 at the Department of Pomology, Warsaw University of Life Sciences, Poland. Since several Asian species are considered to be potential sources of resistance to fire blight, the susceptiblePyrus communis ‘Doyenne du Comice’ was crossed with the resistantP. ussuriensis. The F1 full-sib progeny composed of 155 seedlings was tested for susceptibility to fire blight by artificial shoot inoculation. A framework linkage map of both parents was constructed based on 48 AFLP and 32 SSR markers and covered a length of 595 cM and 680 cM in ‘Doyenne du Comice’ andP. ussuriensis, respectively. For the first time a putative QTL for fire blight resistance inP. ussuriensis linkage group 11 was identified. Another putative QTL in linkage group 4 of ‘Doyenne du Comice’ seems to indicate that sources of fire blight resistance can be identified also in the susceptible cultivars.  相似文献   

18.
19.
Two strains of Erwinia herbicola effective in the biocontrol of E. amylovora, the etiological agent of fire blight, were screened for proferrioxamine siderophores by on-line liquid chromatography-electrospray mass spectrometry (LC-MS). Type strains of E. herbicola and Pantoea species were included in this study for taxonomic comparisons. Proferrioxamine profiles similar to that previously described for E. amylovora, including tri- and tetrameric hydroxamates and diaminopropane-containing proferrioxamines, were observed for P. agglomerans, but not for other E. herbicola-like species. Biocontrol activity was not correlated with proferrioxamine synthesis. The results of this study are consistent with the notion that some, but not all, biocontrol strains may inhibit E. amylovora via competition for iron. Further studies into the link between biocontrol of fire blight and siderophores are thus warranted. This study also revealed limitations of standard nutrient utilization and fatty acid profile analyses for the differentiation of P. agglomerans, P. dispersa and other E. herbicola-like species from each other. Given these limitations, LC-MS may become a much needed additional diagnostic tool for the identification of E. herbicola-like strains at the species level.  相似文献   

20.
The rapid and effective activation of disease resistance responses is essential for plant defense against pathogen attack. These responses are initiated when pathogen-derived molecules (elicitors) are recognized by the host. In order to create novel mechanisms for fire blight resistance in pear, we have generated transgenic pears expressing the elicitor harpin Nea from Erwinia amylovora under the control of the constitutive promoter CaMV35S. The transient expression of hrpN Ea in pear cells did not provoke any apparent damage. Therefore, stable constitutive expression of hrpN Ea was studied in seventeen transgenic clones of the very susceptible cultivar “Passe Crassane.” Most transgenic clones displayed significant reduction of susceptibility to fire blight in vitro when inoculated by E. amylovora, which was positively correlated to their degree of expression of the transgene hrpN Ea . These results indicate that ectopic expression of a bacterial elicitor such as harpin Nea is a promising way to improve pear resistance to fire blight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号