首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin receptor substrate-2 (IRS-2) plays a critical role in the survival and function of pancreatic β-cells. Gene disruption of IRS-2 results in failure of the β-cell compensatory mechanism and diabetes. Nonetheless, the regulation of IRS-2 protein expression in β-cells remains largely unknown. Inducible nitric-oxide synthase (iNOS), a major mediator of inflammation, has been implicated in β-cell damage in type 1 and type 2 diabetes. The effects of iNOS on IRS-2 expression have not yet been investigated in β-cells. Here, we show that iNOS and NO donor decreased IRS-2 protein expression in INS-1/832 insulinoma cells and mouse islets, whereas IRS-2 mRNA levels were not altered. Interleukin-1β (IL-1β), alone or in combination with interferon-γ (IFN-γ), reduced IRS-2 protein expression in an iNOS-dependent manner without altering IRS-2 mRNA levels. Proteasome inhibitors, MG132 and lactacystin, blocked the NO donor-induced reduction in IRS-2 protein expression. Treatment with NO donor led to activation of glycogen synthase kinase-3β (GSK-3β) and c-Jun N-terminal kinase (JNK/SAPK) in β-cells. Inhibition of GSK-3β by pharmacological inhibitors or siRNA-mediated knockdown significantly prevented NO donor-induced reduction in IRS-2 expression in β-cells. In contrast, a JNK inhibitor, SP600125, did not effectively block reduced IRS-2 expression in NO donor-treated β-cells. These data indicate that iNOS-derived NO reduces IRS-2 expression by promoting protein degradation, at least in part, through a GSK-3β-dependent mechanism. Our findings suggest that iNOS-mediated decreased IRS-2 expression may contribute to the progression and/or exacerbation of β-cell failure in diabetes.  相似文献   

2.
We have previously demonstrated that the insulin resistance associated with inducible nitric oxide synthase (iNOS) induction in two different models of obesity, diet-induced obesity and the ob/ob mice, is mediated by S-nitrosation of proteins involved in insulin signal transduction: insulin receptor beta-subunit (IRbeta), insulin receptor substrate 1(IRS-1), and Akt. S-nitrosation of IRbeta and Akt impairs their kinase activities, and S-nitrosation of IRS-1 reduces its tissue expression. In this study, we observed that LPS-induced insulin resistance in the muscle of wild-type mice, as demonstrated by reduced insulin-induced tyrosine phosphorylation of IRbeta and IRS-1, reduced IRS-1 expression and reduced insulin-induced serine phosphorylation of Akt. This resistance occurred in parallel with enhanced iNOS expression, which was accompanied by S-nitrosation of IRbeta/IRS-1 and Akt. In the muscle of iNOS(-/-) mice, we did not observe enhanced iNOS expression or any S-nitrosation of IRbeta/IRS-1 and Akt after LPS treatment. Moreover, insulin resistance was not present. The preservation of insulin-induced tyrosine phosphorylation of IRbeta and IRS-1, of IRS-1 protein expression, and of insulin-induced serine phosphorylation of Akt observed in LPS-treated iNOS(-/-) mice strongly suggests that the insulin resistance induced by LPS is iNOS mediated, probably through S-nitrosation of proteins of early steps of insulin signaling.  相似文献   

3.
Inducible nitric-oxide synthase (iNOS), a major mediator of inflammation, plays an important role in obesity-induced insulin resistance. Inhibition of iNOS by gene disruption or pharmacological inhibitors reverses or ameliorates obesity-induced insulin resistance in skeletal muscle and liver in mice. It is unknown, however, whether increased expression of iNOS is sufficient to cause insulin resistance in vivo. To address this issue, we generated liver-specific iNOS transgenic (L-iNOS-Tg) mice, where expression of the transgene, iNOS, is regulated under mouse albumin promoter. L-iNOS-Tg mice exhibited mild hyperglycemia, hyperinsulinemia, insulin resistance, and impaired insulin-induced suppression of hepatic glucose output, as compared with wild type (WT) littermates. Insulin-stimulated phosphorylation of insulin receptor substrate-1 (IRS-1) and -2, and Akt was significantly attenuated in liver, but not in skeletal muscle, of L-iNOS-Tg mice relative to WT mice without changes in insulin receptor phosphorylation. Moreover, liver-specific iNOS expression abrogated insulin-stimulated phosphorylation of glycogen synthase kinase-3β, forkhead box O1, and mTOR (mammalian target of rapamycin), endogenous substrates of Akt, along with increased S-nitrosylation of Akt relative to WT mice. However, the expression of insulin receptor, IRS-1, IRS-2, Akt, glycogen synthase kinase-3β, forkhead box O1, protein-tyrosine phosphatase-1B, PTEN (phosphatase and tensin homolog), and p85 phosphatidylinositol 3-kinase was not altered by iNOS transgene. Hyperglycemia was associated with elevated glycogen phosphorylase activity and decreased glycogen synthase activity in the liver of L-iNOS-Tg mice, whereas phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and proliferator-activated receptor γ coactivator-1α expression were not altered. These results clearly indicate that selective expression of iNOS in liver causes hepatic insulin resistance along with deranged insulin signaling, leading to hyperglycemia and hyperinsulinemia. Our data highlight a critical role for iNOS in the development of hepatic insulin resistance and hyperglycemia.  相似文献   

4.
Inducible nitric-oxide synthase (iNOS) has been implicated in many human diseases including insulin resistance. However, how iNOS causes or exacerbates insulin resistance remains largely unknown. Protein S-nitrosylation is now recognized as a prototype of a redox-dependent, cGMP-independent signaling component that mediates a variety of actions of nitric oxide (NO). Here we describe the mechanism of inactivation of Akt/protein kinase B (PKB) in NO donor-treated cells and diabetic (db/db) mice. NO donors induced S-nitrosylation and inactivation of Akt/PKB in vitro and in intact cells. The inhibitory effects of NO donor were independent of phosphatidylinositol 3-kinase and cGMP. In contrast, the concomitant presence of oxidative stress accelerated S-nitrosylation and inactivation of Akt/PKB. In vitro denitrosylation with reducing agent reactivated recombinant and cellular Akt/PKB from NO donor-treated cells. Mutated Akt1/PKBalpha (C224S), in which cysteine 224 was substituted by serine, was resistant to NO donor-induced S-nitrosylation and inactivation, indicating that cysteine 224 is a major S-nitrosylation acceptor site. In addition, S-nitrosylation of Akt/PKB was increased in skeletal muscle of diabetic (db/db) mice compared with wild-type mice. These data suggest that S-nitrosylation-mediated inactivation may contribute to the pathogenesis of iNOS- and/or oxidative stress-involved insulin resistance.  相似文献   

5.
SOCS (suppressor of cytokine signaling) proteins are inhibitors of cytokine signaling involved in negative feedback loops. We have recently shown that insulin increases SOCS-3 mRNA expression in 3T3-L1 adipocytes. When expressed, SOCS-3 binds to phosphorylated Tyr(960) of the insulin receptor and prevents Stat 5B activation by insulin. Here we show that in COS-7 cells SOCS-3 decreases insulin-induced insulin receptor substrate 1 (IRS-1) tyrosine phosphorylation and its association with p85, a regulatory subunit of phosphatidylinositol-3 kinase. This mechanism points to a function of SOCS-3 in insulin resistance. Interestingly, SOCS-3 expression was found to be increased in the adipose tissue of obese mice, but not in the liver and muscle of these animals. Two polypeptides known to be elevated during obesity, insulin and tumor necrosis factor-alpha (TNF-alpha), induce SOCS-3 mRNA expression in mice. Insulin induces a transient expression of SOCS-3 in the liver, muscle, and the white adipose tissue (WAT). Strikingly, TNF-alpha induced a sustained SOCS-3 expression, essentially in the WAT. Moreover, transgenic ob/ob mice lacking both TNF receptors have a pronounced decrease in SOCS-3 expression in the WAT compared with ob/ob mice, providing genetic evidence for a function of this cytokine in obesity-induced SOCS-3 expression. As SOCS-3 appears as a TNF-alpha target gene that is elevated during obesity, and as SOCS-3 antagonizes insulin-induced IRS-1 tyrosine phosphorylation, we suggest that it is a player in the development of insulin resistance.  相似文献   

6.
Elevated circulating free fatty acid levels are important contributors to insulin resistance in the muscle and liver, but the underlying mechanisms require further elucidation. Here, we show that geranylgeranyl diphosphate synthase 1 (GGPPS), which is a branch point enzyme in the mevalonic acid pathway, promotes lipid-induced muscle insulin resistance through activation of the RhoA/Rho kinase signaling pathway. We have found that metabolic perturbation would increase GGPPS expression in the skeletal muscles of db/db mice and high fat diet-fed mice. To address the metabolic effects of GGPPS activity in skeletal muscle, we generated mice with specific GGPPS deletions in their skeletal muscle tissue. Heterozygous knock-out of GGPPS in the skeletal muscle improved systemic insulin sensitivity and glucose homeostasis in mice fed both normal chow and high fat diets. These metabolic alterations were accompanied by activated PI3K/Akt signaling and enhanced glucose uptake in the skeletal muscle. Further investigation showed that the free fatty acid-stimulated GGPPS expression in the skeletal muscle was able to enhance the geranylgeranylation of RhoA, which further induced the inhibitory phosphorylation of IRS-1 (Ser-307) by increasing Rho kinase activity. These results implicate a crucial role of the GGPPS/RhoA/Rho kinase/IRS-1 pathway in skeletal muscle, in which it mediates lipid-induced systemic insulin resistance in obese mice. Therefore, skeletal muscle GGPPS may represent a potential pharmacological target for the prevention and treatment of obesity-related type 2 diabetes.  相似文献   

7.
Serine/threonine phosphorylation of insulin receptor substrate-1 (IRS-1) is an important negative modulator of insulin signaling. Previously, we showed that glycogen synthase kinase-3 (GSK-3) phosphorylates IRS-1 at Ser(332). However, the fact that GSK-3 requires prephosphorylation of its substrates suggested that Ser(336) on IRS-1 was the "priming" site phosphorylated by an as yet unknown protein kinase. Here, we sought to identify this "priming kinase" and to examine the phosphorylation of IRS-1 at Ser(336) and Ser(332) in physiologically relevant animal models. Of several stimulators, only the PKC activator phorbol ester PMA enhanced IRS-1 phosphorylation at Ser(336). Treatment with selective PKC inhibitors prevented this PMA effect and suggested that a conventional PKC was the priming kinase. Overexpression of PKCalpha or PKCbetaII isoforms in cells enhanced IRS-1 phosphorylation at Ser(336) and Ser(332), and in vitro kinase assays verified that these two kinases directly phosphorylated IRS-1 at Ser(336). The expression level and activation state of PKCbetaII, but not PKCalpha, were remarkably elevated in the fat tissues of diabetic ob/ob mice and in high-fat diet-fed mice compared with that from lean animals. Elevated levels of PKCbetaII were also associated with enhanced phosphorylation of IRS-1 at Ser(336/332) and elevated activity of GSK-3beta. Finally, adenoviral mediated expression of PKCbetaII in adipocytes enhancedphosphorylation of IRS-1 at Ser(336). Taken together, our results suggest that IRS-1 is sequentially phosphorylated by PKCbetaII and GSK-3 at Ser(336) and Ser(332). Furthermore, these data provide evidence for the physiological relevance of these phosphorylation events in the pathogenesis of insulin resistance in fat tissue.  相似文献   

8.
Hyperglycemia, glucose intolerance and elevated insulin levels frequently occur in burned patients; however, the mechanism(s) for this insulin resistance has not been fully elucidated. One possible mechanism could involve alterations in the phosphorylation of serine 307 of the insulin receptor substrate-1 (IRS-1) via activation of stress kinase enzymes, including SAPK/JNK. In the present study we examined the time course of the effect of burn injury to mice on: levels of IRS-1 protein, phosphorylation of serine 307 of IRS-1, SAPK/JNK kinase levels and activity and Akt kinase activity in hind limb skeletal muscle. Burn injury produced a reduction in hind limb muscle mass 24 h after injury, and, which persisted for 168 h. At 24 h after injury, there was a dramatic ( approximately 9-fold) increase in phosphorylation of IRS-1 serine 307 followed by a more moderate elevation thereafter. Total IRS-1 protein was slightly elevated at 24 h after injury and decreased to levels below sham treated animals at the later times. Burn injury did not appear to change total SAPK/JNK protein content, however, enzyme activity was increased for 7 days after injury. Akt kinase activity was decreased in skeletal muscle following burn injury; providing a biochemical basis for burn-induced insulin resistance. These findings are consistent with the hypothesis that burn-induced insulin resistance may be related, at least in part, to alterations in the phosphorylation of key proteins in the insulin signaling cascade, including IRS-1, and that changes in stress kinases, such as SAPK/JNK produced by burn injury, may be responsible for these changes in phosphorylation.  相似文献   

9.
We previously found that disruption of Kir6.2-containing ATP-sensitive K+ (KATP) channels increases glucose uptake in skeletal muscle, but the mechanism is not clear. In the present study, we generated knockout mice lacking both Kir6.2 and insulin receptor substrate-1 (IRS-1). Because IRS-1 is the major substrate of insulin receptor kinase, we expected disruption of the IRS-1 gene to reduce glucose uptake in Kir6.2 knockout mice. However, the double-knockout mice do not develop insulin resistance or glucose intolerance. An insulin tolerance test reveals the glucose-lowering effect of exogenous insulin in double-knockout mice and in Kir6.2 knockout mice to be similarly enhanced compared with wild-type mice. The basal 2-deoxyglucose uptake rate in skeletal muscle of double-knockout mice is increased similarly to the rate in Kir6.2 knockout mice. Accordingly, disruption of the IRS-1 gene affects neither systemic insulin sensitivity nor glucose uptake in skeletal muscles of Kir6.2-deficient mice. In addition, no significant changes were observed in phosphatidylinositol 3-kinase (PI3K) activity and its downstream signal in skeletal muscle due to lack of the Kir6.2 gene. Disruption of Kir6.2-containing Katp channels clearly protects against IRS-1-associated insulin resistance by increasing glucose uptake in skeletal muscles by a mechanism separate from the IRS-1/PI3K pathway.  相似文献   

10.
Diet-induced insulin resistance in mice lacking adiponectin/ACRP30   总被引:116,自引:0,他引:116  
Here we investigated the biological functions of adiponectin/ACRP30, a fat-derived hormone, by disrupting the gene that encodes it in mice. Adiponectin/ACRP30-knockout (KO) mice showed delayed clearance of free fatty acid in plasma, low levels of fatty-acid transport protein 1 (FATP-1) mRNA in muscle, high levels of tumor necrosis factor-alpha (TNF-alpha) mRNA in adipose tissue and high plasma TNF-alpha concentrations. The KO mice exhibited severe diet-induced insulin resistance with reduced insulin-receptor substrate 1 (IRS-1)-associated phosphatidylinositol 3 kinase (PI3-kinase) activity in muscle. Viral mediated adiponectin/ACRP30 expression in KO mice reversed the reduction of FATP-1 mRNA, the increase of adipose TNF-alpha mRNA and the diet-induced insulin resistance. In cultured myocytes, TNF-alpha decreased FATP-1 mRNA, IRS-1-associated PI3-kinase activity and glucose uptake, whereas adiponectin increased these parameters. Our results indicate that adiponectin/ACRP30 deficiency and high TNF-alpha levels in KO mice reduced muscle FATP-1 mRNA and IRS-1-mediated insulin signaling, resulting in severe diet-induced insulin resistance.  相似文献   

11.
Most rodent models of insulin resistance are accompanied by decreased circulating adiponectin levels. Adiponectin treatment improves the metabolic phenotype by increasing fatty acid oxidation in skeletal muscle and suppressing hepatic glucose production. Muscle IGF-I receptor (IGF-IR)-lysine-arginine (MKR) mice expressing dominant-negative mutant IGF-IRs in skeletal muscle are diabetic with insulin resistance in muscle, liver, and adipose tissue. Adiponectin levels are elevated in MKR mice, suggesting an unusual discordance between insulin resistance and adiponectin responsiveness. Therefore, we investigated the metabolic actions of adiponectin in MKR mice. MKR and ob/ob mice were treated both acutely (28 microg/g) and chronically (for 2 wk) with full-length adiponectin. Acute hypoglycemic effects of adiponectin were evident only in ob/ob mice but not in MKR mice. Chronic adiponectin treatment significantly improved both insulin sensitivity and glucose tolerance in ob/ob but not in MKR mice. Adiponectin receptor mRNA levels and adiponectin-stimulated phosphorylation of AMPK in skeletal muscle and liver were similar among MKR, wild-type, and ob/ob mice. Thus MKR mice are adiponectin resistant despite normal expression of adiponectin receptors and normal AMPK phosphorylation in muscle and liver. MKR mice may be a useful model for dissecting relationships between insulin resistance and adiponectin action in regulation of glucose homeostasis.  相似文献   

12.

Background

It is believed that the endotoxin lipopolysaccharide (LPS) is implicated in the metabolic perturbations associated with both sepsis and obesity (metabolic endotoxemia). Here we examined the role of inducible nitric oxide synthase (iNOS) in skeletal muscle insulin resistance using LPS challenge in rats and mice as in vivo models of endotoxemia.

Methodology/Principal Findings

Pharmacological (aminoguanidine) and genetic strategies (iNOS−/− mice) were used to counter iNOS induction in vivo. In vitro studies using peroxynitrite (ONOO) or inhibitors of the iNOS pathway, 1400 W and EGCG were conducted in L6 myocytes to determine the mechanism by which iNOS mediates LPS-dependent insulin resistance. In vivo, both pharmacological and genetic invalidation of iNOS prevented LPS-induced muscle insulin resistance. Inhibition of iNOS also prevented insulin resistance in myocytes exposed to cytokine/LPS while exposure of myocytes to ONOO fully reproduced the inhibitory effect of cytokine/LPS on both insulin-stimulated glucose uptake and PI3K activity. Importantly, LPS treatment in vivo and iNOS induction and ONOO treatment in vitro promoted tyrosine nitration of IRS-1 and reduced insulin-dependent tyrosine phosphorylation.

Conclusions/Significance

Our work demonstrates that iNOS-mediated tyrosine nitration of IRS-1 is a key mechanism of skeletal muscle insulin resistance in endotoxemia, and presents nitrosative modification of insulin signaling proteins as a novel therapeutic target for combating muscle insulin resistance in inflammatory settings.  相似文献   

13.
Rexinoids and thiazolidinediones (TZDs) are two classes of nuclear receptor ligands that induce insulin sensitization in diabetic rodents. TZDs are peroxisome proliferator-activated receptor gamma (PPARgamma) activators, whereas rexinoids are selective ligands for the retinoid X receptors (RXRs). Activation of both the insulin receptor substrates (IRSs)/Akt and the c-Cbl-associated protein (CAP)/c-Cbl pathways are important in regulating insulin-stimulated glucose transport. We have compared the effects of a rexinoid (LG268) and a TZD (rosiglitazone) on these two signal pathways in skeletal muscle of diabetic (db/db) mice. The results we have obtained show that treatment of db/db mice with either LG268 or rosiglitazone for 2 weeks results in a significant increase in insulin-stimulated glucose transport activity in skeletal muscle. Treatment with LG268 increases insulin-stimulated IRS-1 tyrosine phosphorylation and Akt phosphorylation in skeletal muscle without affecting the activity of the CAP/c-Cbl pathway. In contrast, rosiglitazone increases the levels of CAP expression and insulin-stimulated c-Cbl phosphorylation without affecting the IRS-1/Akt pathway. The effects of LG268 on the IRS-1/Akt pathway were associated with a decrease in the level of IRS-1 Ser(307) phosphorylation. Taken together, these data suggest that rexinoids improve insulin sensitivity via changes in skeletal muscle metabolism that are distinct from those induced by TZDs. Rexinoids represent a novel class of insulin sensitizers with potential applications in the treatment of insulin resistance.  相似文献   

14.
Angiotensin converting enzyme (ACE) inhibitors are a widely used intervention for blood pressure control, and are particularly beneficial in hypertensive type 2 diabetic subjects with insulin resistance. The hemodynamic effects of ACE inhibitors are associated with enhanced levels of the vasodilator bradykinin and decreased production of the vasoconstrictor and growth factor angiotensin II (ATII). In insulin-resistant conditions, ACE inhibitors can also enhance whole-body glucose disposal and glucose transport activity in skeletal muscle. This review will focus on the metabolic consequences of ACE inhibition in insulin resistance. At the cellular level, ACE inhibitors acutely enhance glucose uptake in insulin-resistant skeletal muscle via two mechanisms. One mechanism involves the action of bradykinin, acting through bradykinin B(2) receptors, to increase nitric oxide (NO) production and ultimately enhance glucose transport. A second mechanism involves diminution of the inhibitory effects of ATII, acting through AT(1) receptors, on the skeletal muscle glucose transport system. The acute actions of ACE inhibitors on skeletal muscle glucose transport are associated with upregulation of insulin signaling, including enhanced IRS-1 tyrosine phosphorylation and phosphatidylinositol-3-kinase activity, and ultimately with increased cell-surface GLUT-4 glucose transporter protein. Chronic administration of ACE inhibitors or AT(1) antagonists to insulin-resistant rodents can increase protein expression of GLUT-4 in skeletal muscle and myocardium. These data support the concept that ACE inhibitors can beneficially modulate glucose control in insulin-resistant states, possibly through a NO-dependent effect of bradykinin and/or antagonism of ATII action on skeletal muscle.  相似文献   

15.
Chronic hyperglycemia induces impairment of muscle growth and development of diabetes mellitus (DM). Since skeletal muscle is the major site for disposal of ingested glucose, impaired glucose metabolism causes imbalance between protein synthesis and degradation which adversely affects physical mobility.In this study, we investigated the effect of tocotrienol-rich fraction (TRF) supplementation on skeletal muscle damage in diabetic mice. Diabetes was induced by a high-fat diet with streptozotocin (STZ) injection (100 mg/kg) in male C57BL/6J mice. After diabetes was induced (fasting blood glucose levels≥250 mg/dl), normal control (CON) and diabetic control (DMC) groups were administrated with olive oil, while TRF treatment groups were administrated with TRF (dissolved in olive oil) at low dose (100 mg/kg BW, LT) or high dose (300 mg/kg BW, HT) by oral gavage for 12 weeks.TRF supplementation ameliorated muscle atrophy, plasma insulin concentration and homeostatic model assessment estimated insulin resistance in diabetic mice. Moreover, TRF treatment up-regulated IRS-1 and Akt levels accompanied by increased translocation of GLUT4. Furthermore, TRF increased mitochondrial biogenesis by activating SIRT1, SIRT3 and AMPK in diabetic skeletal muscle. These changes were in part mechanistically explained by reduced levels of skeletal muscle proteins related to oxidative stress (4-hydroxynonenal, protein carbonyls, Nrf2 and HO-1), inflammation (NFkB, MCP-1, IL-6 and TNF-α), and apoptosis (Bax, Bcl₂ and caspase-3) in diabetic mice. Taken together, these results suggest that TRF might be useful as a beneficial nutraceutical to prevent skeletal muscle atrophy associated with diabetes by regulating insulin signaling via AMPK/SIRT1/PGC1α pathways in type 2 diabetic mice.  相似文献   

16.
Tumor necrosis factor-alpha (TNF-alpha) induces skeletal muscle insulin resistance by impairing insulin signaling events involved in GLUT4 translocation. We tested whether mitogenic-activated protein kinase kinase kinase kinase isoform 4 (MAP4K4) causes the TNF-alpha-induced negative regulation of extracellular signal-regulated kinase-1/2 (ERK-1/2), c-Jun NH2-terminal kinase (JNK), and the insulin receptor substrate-1 (IRS-1) on the insulin signaling pathway governing glucose metabolism. Using small interfering RNA (siRNA) to suppress the expression of MAP4K4 protein 85% in primary human skeletal muscle cells, we provide evidence that TNF-alpha-induced insulin resistance on glucose uptake was completely prevented. MAP4K4 silencing inhibited TNF-alpha-induced negative signaling inputs by preventing excessive JNK and ERK-1/2 phosphorylation, as well as IRS-1 serine phosphorylation. These results highlight the MAPK4K4/JNK/ERK/IRS module in the negative regulation of insulin signaling to glucose transport in response to TNF-alpha. Depletion of MAP4K4 also prevented TNF-alpha-induced insulin resistance on Akt and the Akt substrate 160 (AS160), providing evidence that appropriate insulin signaling inputs for glucose metabolism were rescued. Silencing of MAP2K1 and MAP2K4, signaling proteins downstream of MAP4K4, recapitulated the effect of MAP4K4 siRNA in TNF-alpha-treated cells. Thus, strategies to inhibit MAP4K4 may be efficacious in the prevention of TNF-alpha-induced inhibitory signals that cause skeletal muscle insulin resistance on glucose metabolism in humans. Moreover, in myotubes from insulin-resistant type II diabetic patients, siRNA against MAP4K4, MAP2K4, or MAP2K1 restored insulin action on glucose uptake to levels observed in healthy subjects. Collectively, our results demonstrate that MAP4K4 silencing prevents insulin resistance in human skeletal muscle and restores appropriate signaling inputs to enhance glucose uptake.  相似文献   

17.
c-Jun NH(2)-terminal kinase (JNK) has been shown to negatively regulate insulin signaling through serine phosphorylation of residue 307 within the insulin receptor substrate-1 (IRS-1) in adipose and liver tissue. Using a rat hindlimb suspension model for muscle disuse atrophy, we found that JNK activity was significantly elevated in atrophic soleus muscle and that IRS-1 was phosphorylated on Ser(307) prior to the degradation of the IRS-1 protein. Moreover, we observed a corresponding reduction in Akt activity, providing biochemical evidence for the development of insulin resistance in atrophic skeletal muscle.  相似文献   

18.
Thiazolidinediones have been shown to up-regulate adiponectin expression in white adipose tissue and plasma adiponectin levels, and these up-regulations have been proposed to be a major mechanism of the thiazolidinedione-induced amelioration of insulin resistance linked to obesity. To test this hypothesis, we generated adiponectin knock-out (adipo-/-) ob/ob mice with a C57B/6 background. After 14 days of 10 mg/kg pioglitazone, the insulin resistance and diabetes of ob/ob mice were significantly improved in association with significant up-regulation of serum adiponectin levels. Amelioration of insulin resistance in ob/ob mice was attributed to decreased glucose production and increased AMP-activated protein kinase in the liver but not to increased glucose uptake in skeletal muscle. In contrast, insulin resistance and diabetes were not improved in adipo-/-ob/ob mice. After 14 days of 30 mg/kg pioglitazone, insulin resistance and diabetes of ob/ob mice were again significantly ameliorated, which was attributed not only to decreased glucose production in the liver but also to increased glucose uptake in skeletal muscle. Interestingly, adipo-/-ob/ob mice also displayed significant amelioration of insulin resistance and diabetes, which was attributed to increased glucose uptake in skeletal muscle but not to decreased glucose production in the liver. The serum-free fatty acid and triglyceride levels as well as adipocyte sizes in ob/ob and adipo-/-ob/ob mice were unchanged after 10 mg/kg pioglitazone but were significantly reduced to a similar degree after 30 mg/kg pioglitazone. Moreover, the expressions of TNFalpha and resistin in adipose tissues of ob/ob and adipo-/-ob/ob mice were unchanged after 10 mg/kg pioglitazone but were decreased after 30 mg/kg pioglitazone. Thus, pioglitazone-induced amelioration of insulin resistance and diabetes may occur adiponectin dependently in the liver and adiponectin independently in skeletal muscle.  相似文献   

19.
The exercise-induced interleukin (IL)-6 production and secretion within skeletal muscle fibers has raised the question of a putative tissue-specific function of IL-6 in the energy metabolism of the muscle during and after the exercise. In the present study, we followed the hypothesis that IL-6 signaling may directly interact with insulin receptor substrate (IRS)-1, a keystone in the insulin signaling cascade. We showed that IL-6 induces a rapid recruitment of IRS-1 to the IL-6 receptor complex in cultured skeletal muscle cells. Moreover, IL-6 induced a rapid and transient phosphorylation of Ser-318 of IRS-1 in muscle cells and in muscle tissue, but not in the liver of IL-6-treated mice, probably via the IL-6-induced co-recruitment of protein kinase C-delta. This Ser-318 phosphorylation improved insulin-stimulated Akt phosphorylation and glucose uptake in myotubes since transfection with an IRS-1/Glu-318 mutant simulating a permanent phospho-Ser-318 modification increased Akt phosphorylation and glucose uptake. Noteworthily, two inhibitory mechanisms of IL-6 on insulin action, phosphorylation of the inhibitory Ser-307 residue of IRS-1 and induction of SOCS-3 expression, were only found in liver but not in muscle of IL-6-treated mice. Thus, the data provided evidence for a possible molecular mechanism of the physiological metabolic effects of IL-6 in skeletal muscle, thereby exerting short term beneficial effects on insulin action.  相似文献   

20.
One hallmark of the insulin-resistant state of prediabetes and overt type 2 diabetes is an impaired ability of insulin to activate glucose transport in skeletal muscle, due to defects in IRS-1-dependent signaling. An emerging body of evidence indicates that one potential factor in the multifactorial etiology of skeletal muscle insulin resistance is oxidative stress, an imbalance between the cellular exposure to an oxidant stress and the cellular antioxidant defenses. Exposure of skeletal muscle to an oxidant stress leads to impaired insulin signaling and subsequently to reduced glucose transport activity. Numerous studies have demonstrated that treatment of insulin-resistant animals and type 2 diabetic humans with antioxidants, including alpha-lipoic acid (ALA), is associated with improvements in skeletal muscle glucose transport activity and whole-body glucose tolerance. An additional intervention that is effective in ameliorating the skeletal muscle insulin resistance of prediabetes and type 2 diabetes is endurance exercise training. Recent investigations have demonstrated that the combination of exercise training and antioxidant treatment using ALA in an animal model of obesity-associated insulin resistance provides a unique interactive effect resulting in a greater improvement in insulin action on skeletal muscle glucose transport than either intervention individually. Moreover, this interactive effect of exercise training and ALA is due in part to improvements in IRS-1-dependent insulin signaling. These studies highlight the effectiveness of combining endurance exercise training and antioxidants in beneficially modulating the molecular defects in insulin action observed in insulin-resistant skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号