首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The crystal structure of human NF-kappaB p52 in its specific complex with the natural kappaB DNA binding site MHC H-2 has been solved at 2.1 A resolution. Whereas the overall structure resembles that of the NF-kappaB p50-DNA complex, pronounced differences are observed within the 'insert region'. This sequence segment differs in length between different Rel proteins. Compared with NF-kappaB p50, the compact alpha-helical insert region element is rotated away from the core of the N-terminal domain, opening up a mainly polar cleft. The insert region presents potential interaction surfaces to other proteins. The high resolution of the structure reveals many water molecules which mediate interactions in the protein-DNA interface. Additional complexity in Rel protein-DNA interaction comes from an extended interfacial water cavity that connects residues at the edge of the dimer interface to the central DNA bases. The observed water network might acount for differences in binding specificity between NF-kappaB p52 and NF-kappaB p50 homodimers.  相似文献   

4.
5.
6.
Targeting double-stranded DNA with homopyrimidine PNAs results in strand displacement complexes PNA/DNA/PNA rather than PNA/DNA/DNA triplex structures. Not much is known about the binding properties of DNA-PNA chimeras. A 16-mer 5'-DNA-3'-p-(N)PNA(C) has been investigated for its ability to hybridize a complementary duplex DNA by DSC, CD, and molecular modeling studies. The obtained results showed the formation of a triplex structure having similar, if not slightly higher, stability compared to the same all-DNA complex.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Fas-associated factor-1 (FAF1) is a Fas-binding pro-apoptotic protein that is a component of the death-inducing signaling complex in Fas-mediated apoptosis. Here, we show that FAF1 is involved in negative regulation of NF-kappaB activation. Overexpression of FAF1 decreased the basal level of NF-kappaB activity in 293 cells. NF-kappaB activation induced by tumor necrosis factor (TNF)-alpha, interleukin-1beta, and lipopolysaccharide was also inhibited by FAF1 overexpression. Moreover, FAF1 suppressed NF-kappaB activation induced by transducers of diverse NF-kappaB-activating signals such as TNF receptor-associated factor-2 and -6, MEKK1, and IkappaB kinase-beta as well as NF-kappaB p65, one of the end point molecules in the NF-kappaB activation pathway, suggesting that NF-kappaB p65 might be a target molecule upon which FAF1 acts. Subsequent study disclosed that FAF1 physically interacts with NF-kappaB p65 and that the binding domain of FAF1 is the death effector domain (DED)-interacting domain (amino acids 181-381), where DEDs of the Fas-associated death domain protein and caspase-8 interact. The NF-kappaB activity-modulating potential of FAF1 was also mapped to the DED-interacting domain. Finally, overexpression of FAF1 prevented translocation of NF-kappaB p65 into the nucleus and decreased its DNA-binding activity upon TNFalpha treatment. This study presents a novel function of FAF1, in addition to the previously known function as a component of the Fas death-inducing signaling complex, i.e. NF-kappaB activity suppressor by cytoplasmic retention of NF-kappaB p65 via physical interaction.  相似文献   

17.
18.
19.
The inhibitor of NF-kappaB (IkappaB) family of proteins is believed to regulate NF-kappaB activity by cytoplasmic sequestration. We show that in cells depleted of IkappaBalpha, IkappaBbeta and IkappaBepsilon proteins, a small fraction of p65 binds DNA and leads to constitutive activation of NF-kappaB target genes, even without stimulation, whereas most of the p65 remains cytoplasmic. These results indicate that although IkappaBalpha, IkappaBbeta and IkappaBepsilon proteins could be dispensable for cytoplasmic retention of NF-kappaB, they are essential for preventing NF-kappaB-dependent gene expression in the basal state. We also show that in the absence of IkappaBalpha, IkappaBbeta and IkappaBepsilon proteins, cytoplasmic retention of NF-kappaB by other cellular proteins renders the pathway unresponsive to activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号